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A B S T R A C T

Peatlands store a large amount of carbon. However, peatlands are complex ecosystems, and acquiring reliable 
estimates of how much carbon is stored underneath the Earth’s surface is inherently challenging, even at small 
scales. Here, we aim to establish links between the above- and below-ground factors that control soil carbon 
status, identify the key environmental variables associated with carbon storage, as well as to explore the po-
tential for using Unmanned Aerial Vehicle (UAV) remote sensing for spatial mapping of peatlands. We combine 
UAVs equipped with Red-Green-Blue (RGB), multispectral, thermal infrared, and light detection and ranging 
(LiDAR) sensors with ground-penetrating radar (GPR) technology and traditional field surveys to provide a 
comprehensive, 3-dimensional mapping of a peatland hillslope-floodplain landscape in the Belgian Hautes 
Fagnes. Our results indicate that both peat thickness and soil organic carbon (SOC) stock (top 1 m) are spatially 
heterogeneous and that the contributions from the surface topography to peat thickness and SOC stock varied 
from micro- to macro-scales. Peat thickness was more strongly controlled by macro-topography (R2 = 0.46) than 
SOC stock, which was more influenced by micro-topography (R2 = 0.21). Current vegetation had little predictive 
power for explaining their spatial variability. Additionally, the UAV data provided accurate estimates of both 
peat thickness and SOC stock, with RMSE and R2 values of 0.16 m and 0.85 for the peat thickness, and 59.25 t/ha 
and 0.85 for the SOC stock. However, similar performance can already be achieved by using only topographical 
data from the LiDAR sensor (for peat thickness) and a combination of peat thickness and topography (for SOC 
stock) as predictor variables. Our study bridges the gap between surface observations and the hidden carbon 
reservoir below. This not only allows us to improve our ability to assess the spatial distribution of SOC stocks, but 
also contributes to our understanding of the environmental factors associated with SOC storage in these highly 
heterogeneous landscapes, providing insights for environmental science and climate projections.

1. Introduction

Peatlands (including mires, raised bogs, and fens) are areas where an 
accumulation of dead plant material occurs in water-logged and anoxic 
conditions over centuries to millennia, forming thick layers of partially 
decomposed organic matter known as peat (Gorham, 1957; Moore, 
1989). Although peatlands cover less than 4 % of the Earth’s land 

surface (Xu et al., 2018), they store around 600 Gt of carbon (Yu et al., 
2010), which is approximately one-third of the total soil carbon pool 
(Dargie et al., 2017) and twice the amount of carbon stored in the 
biomass of global forest ecosystems (Pan et al., 2011). However, peat-
lands are vulnerable to both anthropogenic and natural disturbances 
such as land use/cover change (Tonks et al., 2017; Wang et al., 2023), 
wildfires (Wilkinson et al., 2023), and climate change (Leng et al., 2019; 
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Wang et al., 2018). For example, recent studies have suggested that 
global warming and associated changes in hydrology have the potential 
to accelerate soil heterotrophic respiration (e.g., Dorrepaal et al. (2009), 
Huang et al. (2021), Nissan et al. (2023), Zhao et al. (2017)). In Europe, 
an estimated 20 % of raised bogs (i.e., ombrotrophic bogs, fed by pre-
cipitation) are threatened by climate change and drainage, resulting in 
the release of approximately 24.2 Pg C into the atmosphere (van der 
Velde et al., 2021). Although an in-depth understanding of carbon dy-
namics within peatlands is crucial for understanding global change, 
research is confronted with several challenges in acquiring reliable es-
timates of how much carbon is stored underneath the surface of peat-
lands (Loisel et al., 2017; Minasny et al., 2019; Yu, 2012).

The spatial distribution of soil organic carbon (SOC) within peat-
lands is affected by complex interactions between environmental factors 
such as topography (Parry and Charman, 2013), hydrological conditions 
(Crezee et al., 2022), degradation/restoration trajectories (Krüger et al., 
2021; Orella et al., 2022) and vegetation species and density (Dieleman 
et al., 2017). Topography is an especially important factor governing 
peatland development (Graniero and Price, 1999) because it controls the 
movement of water, sediment, and biogeochemical fluxes from the 
hillslope to the catchment scale (Li et al., 2018). Water table dynamics 
impose a strong influence on organic carbon mineralization rates 
because peat accumulation occurs under waterlogged and anaerobic 
conditions, whereas a lowering of the water table brings in more oxygen, 
which favours microbial decomposition (Fenner and Freeman, 2011). 
Furthermore, the spatial distribution of peat-forming species, such as 
Sphagnum mosses that produce decay-resistant litter (Dorrepaal et al., 
2005; Rydin, 2013), and vascular plants, which regulate ecosystem 
water, carbon, and nutrient cycles (van der Velde et al., 2021), is 
controlled by complex hummock-hollow microtopography (Harris and 
Baird, 2019). Currently, understanding the interplay between above- 
and below-ground factors in the three dimensions (3D) of peatland 
landscapes is far from complete, which makes it difficult to identify the 
factors affecting carbon variability.

Reliable assessment of carbon storage is crucial for understanding 
the role of peatlands in the global carbon cycle and for providing in-
sights into conservation and management strategies. Traditionally, re-
searchers have relied on intensive field sampling (mainly probing and 
coring) to measure peat thickness and calculate the carbon stock at a 
given location. However, this approach is labour-intensive, time- 
consuming, and has the risk of disturbing sensitive habitats and species. 
Remote sensing (RS) enables the collection of land surface data in a 
spatially continuous manner at various spatio-temporal scales 
(Czapiewski and Szumińska, 2022; Jonard et al., 2018). So far, much 
effort has been made to map peatland extent (Dargie et al., 2017), 
peatland degradation status (Carless et al., 2019), and floristic compo-
sition (Harris et al., 2015), whereas only 11 % of these studies estimated 
carbon stock (Minasny et al., 2019). This is because peat deposits are 
hidden below the surface, and conventional RS techniques do not pro-
vide direct information on subsurface properties. To address this prob-
lem, various studies have first attempted to produce reliable peat 
thickness maps. Kriging is commonly used for interpolating peat thick-
ness from point measurements to larger scales (Akumu and McLaughlin, 
2014; Jaenicke et al., 2008), however, it requires a large number of field 
observations. Spatial modelling can achieve moderate accuracy by 
combining information on terrain attributes (e.g., elevation, slope, and 
aspect) and other environmental covariates (e.g., the distance to the 
river) (Crezee et al., 2022; Holden and Connolly, 2011; Parry et al., 
2012; Rudiyanto et al., 2016a). Ground geophysical methods such as 
ground-penetrating radar (GPR), electromagnetic induction (EMI), and 
portable gamma ray sensors have been shown to be the most precise and 
reliable tools in detecting peat soil thickness (Henrion et al., 2024; 
Koganti et al., 2023; Parry et al., 2014), and their integration with air- 
borne platforms and LiDAR sensors has great potential in spatial map-
ping of peatlands (Carless et al., 2021; Deragon et al., 2022; Gatis et al., 
2019; McClellan et al., 2017; Silvestri et al., 2019a; Silvestri et al., 

2019b). The results can then be upscaled to the landscape scale by 
applying machine learning methods that consider multiple variables (e. 
g., precipitation seasonality, distance to the peatland margin and nearest 
drainage point, elevation, or Sentinel 1 A radar images) (Crezee et al., 
2022; Fiantis et al., 2023). Most previous carbon storage estimates were 
based on models that incorporate a map of peat thickness predicted by 
satellite-derived topography and vegetation data, average peat carbon 
content, and average bulk density data from existing literature 
(Aitkenhead and Coull, 2016; Beilman et al., 2008; Chapman et al., 
2009; Jaenicke et al., 2008; Rudiyanto et al., 2018; Rudiyanto et al., 
2015; Vernimmen et al., 2020; Warren et al., 2017). However, this 
approach does not consider the spatial heterogeneity of peat properties, 
which can introduce considerable uncertainties in carbon inventory 
assessments (Anda et al., 2021).

Unmanned Aerial Vehicles (UAVs) are particularly well-suited for 
monitoring the dynamics and interactions within complex peatland 
ecosystems. The UAV technique has been successfully employed for 
peatland vegetation mapping (e.g., Beyer et al. (2019); Räsänen and 
Virtanen (2019); Räsänen et al. (2020)) and topography reconstruction 
(e.g., Czapiewski (2022); Lovitt et al. (2017)), whereas only a few 
studies have focused on peat soil thickness (Davenport et al., 2020) or 
carbon stock estimation (Fernandes et al., 2020). In a recent example, 
Lopatin et al. (2019) successfully utilized UAV-hyperspectral-derived 
vegetation attributes as proxies to evaluate the belowground carbon 
stock in conservative and anthropogenic peatlands, implying a strong 
linkage between surface- and sub-surface processes. Previous studies 
also demonstrated that microtopography has an impact on hydrologic 
conditions, biogeochemical processes, and exogenous processes, which 
in turn influence carbon distribution at small scales (Iseas et al., 2024; 
Shukla et al., 2023; Villa et al., 2019; Wang et al., 2023). For instance, 
Wang et al. (2021c) found that 56 % of the total SOC was stored in and 
under hummocks, although hummock microtopography only accounted 
for 30 % of their sedge peatland study area. Unmanned aerial vehicles 
equipped with LiDAR sensors have been demonstrated to be effective 
tools for reconstructing Digital Terrain Model/Canopy Height Model 
(DTM/CHM) at sub-centimetre resolution, making them valuable for 
characterizing microtopography (Shukla et al., 2023) and vegetation 
structure (Bates et al., 2021). However, little is known about the spatial 
scale needed to accurately represent microtopography and vegetation. 
In other words, although ultra-high-resolution sensing now provides 
information at unprecedented resolutions, the relevant spatial scales at 
which these patterns reflect underlying processes remain largely 
underexplored.

Currently, most studies tend to utilize a specific spatial scale level to 
study the relationship between environmental factors and peat depth or 
carbon storage within peatlands, which may ignore potentially impor-
tant impacts at other scales. As Räsänen et al. (2020) stated, landscape 
elements such as vegetation, topography, and moisture exhibit varia-
tions across sub-centimeter to meter scales. While some spatial differ-
ences are visible at the centimetre-scale resolution, larger-scale 
gradients manifest themselves at macro-scales (e.g., Beucher et al. 
(2020); Harris et al. (2015)). Since SOC stock is controlled by biogeo-
chemical processes operating at different spatial scales, it is necessary to 
explore these patterns in further detail. High-resolution UAV data offers 
the base conditions to perform multiresolution analysis (which provides 
multiple results for one indicator at multiple scales (Kalbermatten et al., 
2012)).

In this study, we integrate UAV RS methods with GPR technology 
and traditional field surveys to gather a comprehensive 3D picture, 
ranging from the plant canopy to the bedrock, and apply these tech-
niques in a peatland landscape in the Belgian Hautes Fagnes. Our overall 
objective is to improve our capacity to assess the spatial distribution of C 
stocks by providing insights into the factors controlling carbon storage 
in these highly heterogeneous landscapes. More specifically, our study 
aims to achieve three key objectives. First, we aim to characterize the 
spatial and vertical distribution of peat thickness and carbon stock. 
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Second, we aim to identify the factors controlling peat soil thickness and 
carbon stock spatial variability, whereby we focus specifically on a 
multiresolution analysis of metrics representing processes occurring 
both at the surface and in the subsurface. Lastly, we investigate the 
potential of mapping peat thickness and carbon stock using ultra-high- 
resolution data derived from UAV-borne sensors.

2. Materials and methods

2.1. Study site

The Belgian Hautes Fagnes plateau is part of the Stavelot-Venn 
Massif, situated in the eastern part of Belgium (Fig. 1a), with the high-
est point reaching 694 m above sea level (Goemaere et al., 2016). Due to 
the relatively high altitude, the plateau intercepts clouds and moist 
vapor from the Atlantic Ocean, resulting in a humid climate: often 
enveloped in mist and low clouds, and marked by strong winds and 
severe winters. The mean annual temperature is around 6.7 ◦C and the 
mean annual precipitation is about 1439.40 mm (Mormal and Tricot, 
2004). In addition, many depressions caused by Lithalsas—permafrost 
mounds formed by ice segregation in mineral-rich soil that occur within 
the zone of discontinuous permafrost—were formed at an elevation of 
more than 500 m during the Younger Dryas (Pissart, 2003). These 
topographical, geomorphological, climatic, and lithological factors 
created favourable conditions for the development of peatlands 
(Goemaere et al., 2016).

The peatlands in this region predominantly comprise raised bogs, 
covering 3750 ha, which have formed since the Late Pleistocene 
(Frankard et al., 1998). Our study site (50.4948 N, 6.0520 E) is a 
peatland landscape with an area of 33 ha, located in the upper valley of 
the Hoëgne River in the Hautes Fagnes (Fig. 1a). It is characterized by a 
relatively steep topographic gradient, with a clear transition from a low- 
gradient plateau in the south to steep hillslopes and the fluvial valley 
and floodplain in the north (Sougnez and Vanacker, 2011). The site was 
drained and planted with spruce in 1914 and 1918. These spruce 

plantations were subsequently cleared between 2000 and 2016; since 
2017, the site is under active restoration and hardwood species such as 
Betula pubescens and Quercus robur have been planted. Other natural 
dwarf shrubs and grasses such as Calluna vulgaris, Vaccinium myrtillus, 
Molinia caerulea, Juncus acutus, and peat mosses are also found in this 
area (Fig. 1b). There is a meteorological observation station (50.5113 N, 
6.0746 E) 3.07 km away, where the Royal Meteorological Institute of 
Belgium records rainfall and air temperature every 10 min.

2.2. Soil sampling

Disturbed soil samples for chemical analysis (sections 2.3 and 2.4) 
were collected from 42 soil profiles along three evenly spaced transects 
parallel to the main slope between July 2022 and May 2023. In total, 
298 soil samples were collected at depths ranging between 0 and 150 cm 
(Fig. 1a). The profile locations are representative of the site heteroge-
neity in vegetation and topography. After removing the litter horizon, 
soil samples were taken using four different methods (26 profiles with an 
Edelman auger, 2 profiles with a peat sampler, 6 manually inserted PVC 
tubes, and 8 soil profile pits) depending on the local soil conditions. We 
corrected soil compaction in the PVC cores by measuring the sampling 
depth in the field. In the soil profile pits, 54 undisturbed samples were 
taken at different depths with a 100 cm3 Kopecky ring for the deter-
mination of the soil bulk density. The undisturbed soil samples were 
dried at 105 ◦C for 48 h to a constant mass. Soil bulk density (BD, g 
cm− 3) was then determined by dividing the oven-dried soil mass by the 
original sample volume. An Emlid Reach RS 2 GPS device with centi-
metric precision (with RTK technology) was used to record the position 
of the soil profiles. We also recorded the dominant vegetation type 
(Plunus et al., 2013). Peat soil thickness was measured in the soil pits 
and cores (n = 36). We complemented this dataset with data from 
Henrion et al. (2024) obtained from the same site and derived from GPR 
measurements (n = 148) and manual augering (11 peat depth obser-
vations). The GPR is used to infer soil composition and structure by 
detecting contrasts in the soil’s electromagnetic properties (Doolittle, 

Fig. 1. Maps of field-sampling locations (a) and land cover types (b) in the study area. The land cover map was produced by a Random Forest model, using multi- 
sensor UAV data as predictors. For more information on land cover classification, see Table S1, Table S2, and Fig. S2 in the Appendix.
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1987), such as the transition from the peat horizon to the mineral soil 
horizon (Wastiaux et al., 2000). In 2023, a GPR survey was conducted 
along the middle transect and peat thickness data from soil cores were 
collected at 5-meter intervals, resulting in a dataset of 148 observations 
of peat thickness (Henrion et al., 2024). Based on our statistical analysis, 
the GPR-derived peat thickness and soil coring observation show good 
consistency (RMSE = 0.11 m, Lin’s concordance correlation coefficient 
= 0.96), therefore, the GPR data was also used as in-situ observations in 
this study.

2.3. Laboratory soil analysis

Disturbed soil samples including 112 samples that were air-dried and 
186 samples that were oven-dried at 80 ◦C for 48 h (Dettmann et al., 
2021), were crushed, ground, and sieved to pass through a mesh of 2 
mm. Roots and litter were removed by tweezers during the pre- 
processing procedure. A subset of samples was analysed for soil 
organic matter (SOM), carbon and nitrogen elemental composition, and 
soil texture. The soil organic matter (SOM) content of 163 samples was 
determined by the Loss on Ignition (LOI) method at 550 ◦C in a muffle 
furnace for 12 h using ~1 g homogenized subsamples of the prepared 
soil. The LOI is commonly used to determine the organic matter content 
of peat soil (Crezee et al., 2022; Farmer et al., 2014; Hribljan et al., 2017; 
Rodriguez et al., 2021). The soil texture (clay-sized fraction, silt-sized 
fraction, sand-sized fraction) for a subset of 66 samples (air-dried) was 
measured by a Laser Diffraction Particle Size Analyzer (Model LS13 320; 
Beckman Coulter Inc., Fullerton, USA). Firstly, we selected a subsample 
of around 5 g using a sample splitter and transferred it to a beaker. Then 
we wet the sample with demineralized water and added 35 % hydrogen 
peroxide (H2O2) to break down and remove organic matter (Beuselinck 
et al., 1998). Afterwards, samples were treated with ultrasound. A total 
of one hundred and twelve reference soil samples (air-dried) were finely 
ground into powder for soil organic carbon (SOC) and total nitrogen 
content (TN) analysis (Carlo Erba EA1108 Analyzer, Fullerton, USA). 
After weighing ~5–15 mg homogenized individual subsamples, we 
added one drop of 5 % HCl to each sample to test the presence of 
inorganic carbon but found that no inorganic carbon was present in the 
112 reference samples. We then used soil spectroscopy to estimate these 
parameters for the remaining samples (see below).

2.4. Spectroscopy measurements and modelling

All ground and sieved soil samples were scanned in the laboratory 
using an ASD FieldSpec 3 spectroradiometer in the VIS-NIR range 
(350–2500 nm) (Analytical Spectral Devices Inc., USA). We used the 
methods described in Zhao et al. (2023) to construct spectral prediction 
models and predicted SOC, total nitrogen, and texture (silt and clay 
content) for the samples that were not analytically processed. Prediction 
uncertainties were low with a Root Mean Square Error (RMSE) of 1.74 g/ 
100 g for SOC (mineral soil), 3.84 g/100 g for SOC (peat soil), 0.05 g/ 
100 g for total nitrogen (mineral soil), 0.19 g/100 g for total nitrogen 
(peat soil), 5.58 g/100 g for silt content and 1.31 g/100 g for clay 
content. The formula for RMSE is defined in section 2.8.1 below.

2.5. Soil organic carbon stock calculation

For those samples lacking bulk density information, multiple 
regression models were established using soil organic carbon content, 
soil type (mineral vs. peat), and sampling depth as input variables to 
predict soil bulk density (5-fold cross-validation, R2 = 0.91, RMSE = 0.1 
g/cm3). In locations where the sampling depth was less than 1 m, we 
performed linear or exponential interpolation of SOC content and bulk 
density based on peat depth and soil type. The SOC stock (t/ha) of each 
sampling site within 1-meter depth was subsequently calculated using: 

SOCstock =
∑n

i=1
SOCi*BDi*hi (1) 

where, i indicates the i layer, n indicates the number of layers, SOC in-
dicates soil organic carbon content (g/100 g), BD indicates soil bulk 
density (g/cm3), and h indicates the thickness of each layer (cm).

2.6. UAV data acquisition

We carried out UAV flights with a DJI Matrice 300 RTK over the 
study area to collect high-resolution remote sensing data with four 
different sensors: (i) an Red-Green-Blue (RGB) camera (DJI Zenmuse P1 
camera, 35 mm and 45 MP), (ii) a multispectral camera (MicaSense 
RedEdge-M camera with five discrete spectral bands: blue (475 nm), 
green (560 nm), red (668 nm), rededge (717 nm), and near infrared 
(842 nm), equipped with a downwelling light sensor), (iii) a LiDAR 
scanner (DJI Zenmuse L1, integrated with a 20-MP camera with a 1-inch 
CMOS sensor) and a thermal camera (TeAX thermal infrared camera, 
combined FLIR Tau2 cores and ThermalCapture hardware). The RGB 
and multispectral flights were conducted at above take-off point altitude 
of 90 m and a speed of 7.1 m/s. Both side and frontal overlap ratios were 
set to 80 %. In this case, the spatial resolutions of the RGB and multi-
spectral images are approximately 6 cm and 12 cm, respectively. To 
enhance the LiDAR signal penetration, we chose the triple-echo mode 
with a sampling frequency of 160 kHz, maintaining a flight height of 50 
m above the take-off point at a speed of 6 m/s. During the flight mission, 
the ground sampling distances varied between 1.16 cm and 2.18 cm per 
pixel. The IMU calibration procedures were conducted automatically at 
the beginning, during the mission, and after flight routes to ensure in-
ertial navigation accuracy. The RGB and LiDAR flights were conducted 
in RTK positioning mode using a D-RTK 2 base station (DJI, Shenzhen, 
China). The base station was set up at a known point and was used to 
provide real-time positional corrections throughout the flight. For the 
multispectral camera, nine ground control points (GCPs) were used (50 
cm × 50 cm targets). The GCPs were made of white laminated board 
stuck with aluminum foil in the diagonal area and were distributed 
across the study site during the flight mission. Their position was 
measured using an Emlid Reach RS2 GPS device, utilizing a post- 
processing RTK solution with the Belgian WALCORS network. One 
RGB and one LiDAR dataset were collected on 7th June 2023 and two 
multispectral datasets were collected on 19th April 2023 and 7th June 
2023, respectively. Two thermal datasets (19th April 2023 and 4th July 
2023) were used for land cover classification (see supplementary 
material).

2.7. UAV imagery processing

2.7.1. Image pre-processing
The multispectral images were processed with the Pix4D mapper 

software (Pix4D S.A., Lausanne, Switzerland) to generate orthophoto 
mosaics of the study area. Georeferenced reflectance maps of the five 
spectral bands were generated using the formula listed in Table 1 in 
RStudio V4.1.2 (https://www.r-project.org/). The RGB photos were pro-
cessed in DJI Terra V4.0.10 (DJI, 2023) to generate an Ortho mosaic 
photo. The raw LiDAR data was pre-processed in the DJI Terra to pro-
vide a Digital Terrain Model (DTM;.tif file) with a resolution of 15 cm 
and a Digital Surface Model (DSM;.las file) (Wood, 1996). Subsequently, 
we conducted further processing of the LiDAR data in RStudio by the 
lidR package (https://CRAN.R-project.org/package=lidR). This involved 
the extraction of vegetation canopy height (CHM).

2.7.2. Wavelet transform
The wavelet transform was applied to derive DTM maps at various 

spatial scales. This approach, which allows undiscerned phenomena at 
different scales to be detected and enables multiscale analysis, has been 
widely used in high-resolution image processing such as 

Y. Li et al.                                                                                                                                                                                                                                        Geoderma 449 (2024 ) 117009 

4 

https://www.r-project.org/
https://CRAN.R-project.org/package=lidR


geomorphological feature extraction (Lashermes et al., 2007), digital 
elevation model filtering (Kalbermatten et al., 2012), and soil surface 
noise removal (Aldana-Jague et al., 2016). Wavelet analysis is an 
extension of the windowed Fourier transform, which decomposes sig-
nals into shifted and scaled versions of a wavelet. The Haar wavelet is 
the simplest function and has been used for topography filtering (Bjorke 
and Nilsen, 2003). Besides the advantage of easy application, the two 
most important properties of the Haar wavelet are that it conserves the 
energy of the signals and performs a compaction of the energy of the 
signals (Walker, 2019). Therefore, most of the variance of the original 
data can be conserved after Haar’s transform. Here, the original DTM 
was decomposed into eight levels using the wavelet toolbox in Matlab 
2024a, with the Haar wavelet selected as the mother wavelet. During the 
decomposition process at each level, the image was divided into four 
sub-bands: the approximate image, which captures the low-frequency 
components, and three detail images that represent horizontal, verti-
cal, and diagonal high-frequency components, respectively. For our 
study, we applied the inverse wavelet transform to reconstruct the image 
using only the approximate (low-frequency) sub-band from each 
decomposition level, thereby obtaining a version of the DTM that 
highlights its low-frequency features.

2.7.3. Environmental variables
Since each decomposition of the image reduced the number of pixels 

to half of the previous level, the reconstructed DTM maps at eight scales 
were thus resampled to the corresponding resolutions (0.30 m, 0.60 m, 
1.20 m, 2.40 m, 4.80 m, 9.60 m, 19.2 m, 38.4 m) in ArcGIS 10.8. Slope 
angle (Wood, 2009) and terrain wetness index (TWI) (Böhner et al., 
2001) at different scales were subsequently calculated by SAGA GIS 
9.2.0. The Optimized Soil Adjusted Vegetation Index 2 (OSAVI2) 
(Henrich et al., 2009) was calculated in RStudio using the raster package 
(https://cran.r-project.org/web/packages/raster/index.html). Table 1 lists 
topographical and vegetation indices derived from RGB, multispectral, 
and LiDAR images.

2.8. Statistical analysis

All data analyses were then conducted in RStudio V4.1.2. To deter-
mine if there are significant differences among groups, the Analysis of 
variance (ANOVA) test was performed using the stats package. Pearson 
correlation analysis was conducted using the corrplot package (Murdoch 
and Chow, 1996). Multiple linear regression methods and Random 
Forest spatial mapping of peat thickness and SOC stock are introduced 
below.

2.8.1. Multiple linear regression models
Multiple linear regressions were performed using the lm function of 

the stats package (Wilkinson and Rogers, 1973), with peat thickness and 
SOC stock (top 1 m) as responses. The regression models were defined 
as: 

Response =
∑x

j=1
βj*Xj + β0 (2) 

where, X indicates the independent variable, j indicates the jth variable, 

x indicates the number of variables, β indicates the coefficient of the 
variable, and β0 indicates the intercept. The independent variables 
considered for peat thickness were the topographic variables and 
vegetation indices as listed in Table 1, while peat thickness, topography, 
and vegetation were selected for SOC stock. Estimates for these variables 
were extracted from the UAV-derived maps by retrieving the value of the 
in-situ observation points for peat thickness or SOC stock. Independent 
variable coefficients, coefficient of determination (R2), and modelled 
peat thickness or SOC stock values were extracted using the summary 
function after running each model. The relative importance of each 
variable was subsequently obtained using the relaimpo package. To 
assess multicollinearity in regression analysis, the car package was used 
to calculate the variance inflation factor (VIF) (Fox and Monette, 1992). 
In addition, we calculated the Akaike Information Criterion corrected 
for small sample sizes (AICc) of all models using the AICcmodavg package 
2.3-2 (MacKenzie et al., 2002), which can create model selection tables. 
The Root Mean Square Error (RMSE) was also used to assess the quality 
of the regression model fit: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

k=1
(obsk− predk)

2
√

(3) 

where m is the sample size and k indicates the kth sample. The obs and 
pred are vectors of observed and predicted values, respectively.

2.8.2. Random Forest spatial models
In addition, we used Random Forest techniques (Breiman, 2001) to 

spatially map peat thickness and carbon storage by considering different 
sources of datasets (i.e., topography, vegetation, and peat thickness) 
independently and in combination, to compare with the multiple linear 
modeling (stated in the MLR section 2.8.1). Firstly, we separated the 
dataset into a training sample (70 %) and a testing sample (30 %) using 
K-means clustering as this method could avoid biases that might occur 
with random sampling (Hair et al., 2010). Specifically, the dataset was 
converted to a matrix and then we performed Principal Component 
Analysis (PCA) to reduce dimensionality while retaining 99.9 % of the 
variance. After that, K-means clustering was applied to the PCA scores to 
cluster data into groups by performing 10,000 iterations. We then 
selected 70 % of the data points for the training set by choosing repre-
sentative samples from the center of each cluster and the remaining 30 
% were used as the test set. Secondly, we trained the models by the 5- 
fold cross-validation method (Mosteller and Tukey, 1968) and subse-
quently validated the model accuracy with the test dataset. The RMSE 
and R2 were also used to assess the quality of the random forest model 
fit. Finally, we made predictions of peat thickness and carbon stock (top 
1 m) for the study area.

In a recent review, Minasny et al. (2019) pointed out that one of the 
notable gaps in current peat mapping is that only 19 % of studies have 
quantified uncertainty in maps. In our study, the techniques employed 
for uncertainty analysis were based on the methodologies described in 
Zhou et al. (2022) and Malone et al. (2011). Firstly, each set of training 
samples was subject to 100 bootstraps to stabilize the prediction model 
performance and to calculate the variance of the prediction. Hence, 100 
models were created, resulting in 100 prediction maps of the area. The 

Table 1 
Topographical and vegetation indices derived from LiDAR and multispectral images.

Index Definition Unit Data source

RGB orthomosaic Orthorectified image mosaicked from an RGB image collection / RGB
DSM Digital Surface Model m LiDAR
DTM Digital Terrain Model, the elevation m LiDAR
Slope angle The rate of change of the elevation. degree LiDAR
TWI Terrain wetness index: 

ln (As/tan(b)), where As is the specific contributing area and b is the slope angle in radians.
/ LiDAR

CHM Canopy height model: DSM – DTM. m LiDAR
OSAVI2 Optimized Soil Adjusted Vegetation Index 2: 1.16*(near infrared-red)/(near infrared + red + 0.16) / Multispectral
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mean value of the 100 maps were calculated as the final prediction map. 
The variance (VARboot) of the 100 predictions and the mean squared 
error from the testing data (MSEvali) were used to quantify the uncer-
tainty for each pixel. Subsequently, we calculated an overall prediction 
accuracy (VARall) for all pixels of the study area, which is the sum of 
VARboot and MSEvali. The prediction interval range was calculated by: 

PIR = 2*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VARall

√
*Z (4) 

where PIR indicates the prediction interval range and Z indicates the z- 
score value that corresponds to the 90 % probability (Z=1.64). Finally, 
the relative uncertainty of the peat thickness and SOC stock estimates 
was expressed as ±half of the PIR as a percentage of the mean 
prediction. 

Uncertainty = 0.5*PIR/Meanpred (5) 

where Uncertainty indicates the relative uncertainty of predictions and 
Meanpred indicates the mean value of the 100 prediction maps.

3. Results

3.1. Exploratory data analysis

3.1.1. Soil bulk density and SOC content
In our study case, peat soil is defined as soil with an SOM content 

≥30 % according to the digital soil map of Southern Belgium (Veron 
et al., 2005) and Joosten and Clarke (2002). Fig. 2 presents soil bulk 
density and SOC content of both peat and mineral soil samples. As ex-
pected, the bulk density of mineral soil was significantly greater than 
that of peat soil (ANOVA, p < 0.05), with mean values (±standard de-
viation (SD)) of 1.06 g/cm3 (±0.35 g/cm3) and 0.22 g/cm3 (±0.11 g/ 
cm3), respectively (Fig. 2a). Soil bulk density increases significantly with 
soil depth (ANOVA, p < 0.05), from 0.26 g/cm3 (±0.17 g/cm3) in the top 
20 cm to 0.40 g/cm3 (±0.35 g/cm3) in the ~20–40 cm soil, and then to 

0.85 g/cm3 (±0.53 g/cm3) in the subsoil (Fig. 2c). Peat soils are rich in 
organic carbon as illustrated in Fig. 2b and Fig. 2d, with an average SOC 
content of 37.47 g/100 g (±7.26 g/100 g), which was around 8 times 
greater than that found in mineral soils (4.55 ± 4.02 g/100 g). The 
vertical distribution of SOC content showed an opposite pattern to that 
of bulk density, with SOC content decreasing from 35.25 g/100 g 
(±9.80 g/100 g) in the top 20 cm to 28.75 g/100 g (±16.13 g/100 g) in 
the ~20–40 cm soil, and then to 14.43 g/100 g (±16.77 g/100 g) in the 
~40–60 cm (Fig. 2d). Other soil properties including SOM content, clay 
content, and silt content can be found in Table S2 of the appendix.

3.1.2. Peat soil thickness
Fig. 3 shows the peat horizon thickness along the middle transect as 

derived from the GPR data (Henrion et al., 2024). We used a GSSI GPR 
system (Geophysical Survey Systems, Inc., Nashua, NH, USA) with a 
200-MHz center frequency antenna. The system was operated on-ground 
to provide detailed subsurface images down to depths of more than 2 m. 
From the top of the hill to the floodplain, peat soil thickness widely 
varied at small scales, ranging from 0.2 m to 2.1 m. Statistical results of 
both GPR-derived and soil-sampling-derived peat thickness (Fig. 4a) 
indicate that peat thickness in the foot slope area was significantly 
greater (1.04 ± 0.55 m) than that in any other slope positions (ANOVA, 
p < 0.05), followed by the shoulder (0.63 ± 0.28 m), the summit (0.61 
± 0.18 m), and the backslope (0.60 ± 0.23 m). The shallowest peat layer 
was found on the top slope of the hill and floodplain, with an average 
value of 0.37 ± 0.20 m and 0.36 ± 0.14 m, respectively. By performing a 
comparison among different vegetation types (Fig. 4b), we found that 
the peat horizon under dwarf shrub vegetation was the thickest with a 
value of 0.70 ± 0.41 m, followed by Molinia caerulea (0.62 ± 0.41 m), 
which, however, was not significantly deeper than the other two types 
(Juncus acutus 0.52 ± 0.25 m, and trees 0.55 ± 0.24 m) (ANOVA, p <
0.05).

Fig. 2. Histogram and depth distribution of soil bulk density (a and c) and SOC content (b and d) from soil sampling. The colour indicates different soil types (mineral 
or peat soil). The dashed line indicates the mean value and n indicates the number of in situ observations.
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3.1.3. SOC stock
As shown in Fig. 3 and Fig. 4c, SOC stock for the 1 m soil profile was 

highly heterogeneous across the landscape, ranging from 176.13 t/ha to 
856.57 t/ha. Overall, the SOC stock at the top slope area (375.17 ±
83.41 t/ha) and floodplain (371.93 ± 41.81 t/ha) were significantly 
lower compared to the summit and shoulder positions in the hillslope- 
floodplain system (ANOVA, p < 0.05). Abundant carbon was observed 
at the shoulder and summit of the hill, with an average storage of 671.71 
± 55.66 t/ha and 615.83 ± 149.45 t/ha, respectively. There was no 
significant difference between the backslope (469.13 ± 150.15 t/ha) 
and the footslope (604.28 ± 148.48 t/ha) (ANOVA, p < 0.05). In the 
vertical direction, SOC stock at the soil surface was significantly larger 
than that of subsoil (ANOVA, p < 0.05), except for at the shoulder and 
summit (Fig. 4e). The carbon storage under different vegetation types 
also exhibited heterogeneity (Fig. 4d), with trees (664.45 ± 126.56 t/ 
ha) having the highest mean SOC stocks, followed by dwarf shrubs 
(563.22 ± 124.177 t/ha), Juncus acutus (477.87 ± 189.91 t/ha), and 
Molinia caerulea (535.32 ± 176.66 t/ha). Additionally, Fig. 4f indicated 
that carbon stocks in soils under trees do not vary significantly with 
depth, while carbon stocks under other vegetation cover types decrease 
with depth (ANOVA, p < 0.05).

3.2. Factors contributing to spatial variability in peat thickness and SOC 
stock

3.2.1. Micro vs macro-scales
To quantify the contribution of environmental factors to the spatial 

heterogeneity of peat thickness and carbon stocks, multiple linear re-
gressions were performed using topographic variables (i.e., elevation, 
slope, TWI), vegetation height (CHM), and vegetation index OSAVI2 as 
input variables. At the original scale (resolution: 0.15 m), topographic 
and vegetation factors explained 27 % of the spatial variability in peat 
thickness (Fig. 5a), while these factors combined with peat thickness 
explained 64 % of the spatial heterogeneity in carbon stocks (Fig. 5b). To 
explore the impact of variation in topographic scale on the regression 
models’ explanatory power, wavelet transform was utilized to derive 
topographic variables at different scales (Fig. 5c-5e present examples for 
TWI). As illustrated by Fig. 5f, the peat thickness prediction performance 

improved at larger scales, with R2 increasing from 0.27 to 0.47 to level 6, 
and then decreasing at level 7 and level 8. However, the SOC storage 
model performs better at the fine scales, with the model’s R2 decreasing 
and RMSE increasing with larger scales (Fig. 5g).

3.2.2. Relative contribution of environmental factors at relevant scales
Fig. 5f and g illustrate that the optimal topographic scale for the peat 

thickness regression model is level 6, whereas for the carbon stock 
regression model it is level 2. Hence, we quantified the relative contri-
bution of environmental factors by considering the relevant topographic 
scales. As shown in Table 2, topography alone can explain 46 % of the 
observed variance in peat thickness. Vegetation factors (CHM and 
OSAVI2) have a prediction power of 3 %, whereas combining both types 
of variables did not improve the model explanation capacity, with 
topography and vegetation accounting for 44.5 % and 2.5 %, respec-
tively. In addition, the AICc increased slightly by the presence of vege-
tation variables (Table 2), which further suggests that the current 
vegetation distribution does not explain the spatial distribution of peat 
thickness.

Multiple linear regressions were also performed to identify control-
ling factors for SOC stock. The regression analysis of peat thickness and 
topographic attributes with carbon storage (Table 2) showed that they 
had a prediction power of 46 % and 21 %, respectively. The contribution 
from vegetation was limited, at only 16 %. When all environmental 
factors were taken into account, the regression model yielded the best 
explanation capacity of carbon stock variance (R2 = 0.64), although the 
AICc increased slightly due to the inclusion of vegetation.

3.3. Mapping using UAV data

3.3.1. Peat thickness maps
The peat thickness spatial model, based on the random forest algo-

rithm and UAV-derived input variables, showed robust performance in 
both scenario 1 (i.e., considering only topographic variables: elevation, 
TWI, and slope) and scenario 3 (i.e., considering both topographic 
(elevation, TWI, and slope) and vegetation variables (CHM and 
OSAVI2)) (Table 3). In contrast, the model performance was poor when 
only the vegetation factors were considered (scenario 2). The R2 values 

Fig. 3. The GPR-derived peat horizon and UAV LiDAR-derived elevation along the middle transect (a), modified from Henrion et al. (2024). Slope positions were 
classified by elevation: Floodplain (elevation < 643 m), Footslope (643 m ≤ elevation < 650 m), Backslope (650 m ≤ elevation < 660 m), Shoulder (660 m ≤
elevation < 670 m), Topslope (670 m ≤ elevation < 673 m), Summit (elevation ≥ 673 m). The brown colour indicates the peat horizon. Figure (b), the spatial 
distribution of SOC stock and peat thickness with 10 m elevation contour lines in black colour. The colour of the circle indicates peat thickness, and the size indicates 
the magnitude of the carbon stock.
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Fig. 4. The peat thickness (n = 190) and SOC stock (top 1 m, n = 35) of different slope positions (a) (c) and different vegetation types (b) (d). Figures e-f illustrate the 
depth distribution of SOC stock within five soil depth intervals (0 ~ 20 cm, 20 ~ 40 cm, 40 ~ 60 cm, 60 ~ 80 cm, and 80 ~ 100 cm) across different slope positions 
and vegetation types, respectively. The box edges represent the first quartile (Q1) and the third quartile (Q3), and the line inside the box shows the median. Whiskers 
extend from the box to the smallest and largest values within 1.5 times the interquartile range. Points outside the whiskers are considered outliers. The ANOVA tests 
were conducted within each class with boxes of the same letters indicating no significant difference in the peat thickness or SOC stock.
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were 0.94 and 0.88 for the training dataset and the test dataset, 
respectively, when considering only topographic variables. In the third 
scenario, the high R2 (0.94 and 0.85) and relatively small RMSE values 
(0.09 m and 0.16 m) on both datasets implied that the model was well- 
fitted.

The predicted peat thicknesses range from 0.27 m to 1.67 m (Fig. 6a), 
with a mean ± SD value of 0.65 ± 0.22 m, which is relatively similar to 
the range of values observed (range: 0.1–2.1 m, mean ± SD: 0.62 ± 0.37 
m). The deepest peat layer was located at the foot of the slope, especially 
at elevations between 644 and 645 m, with an average peat thickness of 
around 0.88 ± 0.25 m. Another thick peat horizon was found on the 
shoulder of the hill, located at elevations between 666 and 668 m, with 
an average thickness of about 0.85 ± 0.14 m. Peat thickness predicted at 
the backslope were subsequently deeper (0.65 ± 0.12 m), which were 
consistent with our measurements (0.60 ± 0.23 m). The predicted peat 
soil thickness at the summit (0.50 ± 0.31 m) were shallower than the 
depth measured by auger and GPR (0.56 ± 0.06 m), while the estimated 
thickness at the topslope (0.47 ± 0.13 m) was higher than our mea-
surements (0.37 ± 0.20 m). In addition, the peat thickness at the 
floodplain (0.84 ± 0.34 m) were overestimated compared to our mea-
surements (0.36 ± 0.14 m), with values ranging from 0.34 m to 1.56 m. 
Large relative prediction uncertainty occurs in the topslope and summit 
areas, as shown in Fig. 6b.

3.3.2. SOC stock maps
The Random Forest model used for predicting SOC stock also showed 

good performance metrics. When using terrain attributes (elevation, 
slope, TWI) and vegetation (CHM and OSAVI2) as predictors separately, 
the high R2 values on the training set indicated a strong agreement be-
tween observed and predicted SOC stock (Table 3). However, on the test 
set, the R2 below 0.48, the larger RMSE (110.17–163.94 t/ha) suggests a 
reduced predictive performance, potentially due to the model’s chal-
lenges in extrapolation to sites with other environmental characteristics. 
This situation improved significantly when three types of factors (i.e., 
peat depth, elevation, slope, TWI, CHM, OSAVI2) are considered 
simultaneously (R2 = 0.85, RMSE=59.25 t/ha).

The predicted SOC stock map shows great heterogeneity (Fig. 6c). As 
revealed in the map, higher carbon storage was observed at the summit 
with an average value ± SD of 609.60 ± 23.20 t/ha. A large SOC stock is 

also found in the shoulder, with a mean estimated stock of 596.58 ±
30.13 t/ha. In contrast, less SOC is stored at the floodplain (570.67 ±
26.92 t/ha) and the backslope positions (568.47 ± 26.28 t/ha), while 
both predictions overestimated the SOC stock when compared with the 
measurements. In particular, the predicted SOC stock in the floodplain is 
~200 t/ha higher than the observations. Overall, the mean predicted 
SOC stock (590.22 ± 32.85 t/ha) across the landscape is close to our 
field measurements (539.14 ± 160.98 t/ha). Although large un-
certainties could be seen in the floodplain and topslope, most of the 
relative uncertainties were less than 30 % (Fig. 6d), suggesting that the 
carbon stock estimates were robust.

4. Discussion

4.1. Peat thickness across the landscape

4.1.1. Spatial variability of peat thickness and its associated environmental 
factors

Peat thickness shows great variability across the landscape, with 
thicker peat deposits occurring on flatter areas such as the footslope of 
the hill and shallower peat developing at the topslope area (Fig. 3 & 
Fig. 4a). Consistent with other studies, our findings indicate that 
topography plays a critical role in shaping peat thickness (Cobb et al., 
2024; Holden and Connolly, 2011; Illés et al., 2019; Parry et al., 2014; 
Rudiyanto et al., 2018). However, the contribution from surface 
topography varies with scale, with macro-topography explaining more 
of the variation in peat thickness than micro-topography (Fig. 5f). This is 
likely because peat is formed over thousands of years on pre-existing 
landscapes (Frankard et al., 1998), whereas the evolution of the 
micro-topography of peat surfaces is more influenced by recent bio- 
geomorphological processes and human activities operating at much 
shorter timescales (Li et al., 2018). Additionally, peat accumulation is 
highly correlated with spatial patterns in soil hydrology (Minasny et al., 
2023), which are controlled by processes operating at the macro scale, 
as opposed to micro scale processes such as microbial activity and 
temperature.

When considering the respective relevant scales for the 3 terrain 
attributes— i.e., elevation, slope and TWI—, ca. 46 % of peat thickness 
variance was explained, whereas the inclusion of vegetation did not 

Fig. 4. (continued).
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Fig. 5. Figures a-b show the observed versus predicted peat thickness (a) and SOC stock (b) at the original scale (resolution: 0.15 m) by performing multiple linear 
regression. Figures c-e show examples of terrain wetness index (TWI) at different wavelet transform scales: original (c), level 3 (d), level 6 (e). Figures f–g show the 
impact of topography from the original scale to level 8. The colour and shape indicate R2 and RMSE of the multiple linear regression models at different wavelet 
transform levels.
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significantly improve the model prediction capacity (Table 2). Elevation 
was the most important factor in controlling the spatial distribution of 
peat thickness (Table 2). This may be because large amounts of partly 
decomposed plant debris first filled depressions or flat ground and then 
expanded laterally (Wastiaux et al., 2000). As a result, thicker peat is 
observed in the footslope, shoulder, and summit areas (Fig. 4a). The 
shallow peat depth in the floodplain can be attributed to the influence of 
colluvial or alluvial deposits originating from the Polleur River 
(Houbrechts et al., 2018). However, the contribution from elevation 
(around 23 %) was less than that found in previous studies (e.g., Ver-
nimmen et al. (2020) (83 ~88 %); Rudiyanto et al. (2016b) (variable 
usage: 79.7 ± 6.9 %)), implying peat distribution might be affected by 
other terrain attributes, hydrological conditions, or human impacts (e. 
g., drainage and past vegetation) along the elevational gradient.

Parry et al. (2012) suggested that models using only slope and 
elevation as input parameters could account for more than 50 % of the 
variance of peat thickness. This is because the slope imposes an 
important control on water movement and retention, and thereby on 

peat erosion and deposition (Graniero and Price, 1999). However, un-
like Gatis et al. (2019), who identified slope as a more influential pre-
dictor than elevation, our study found a weak relationship between 
slope and peat thickness (Table 2). Terrain wetness index (TWI)—a 
measurement that considers both the drainage basin on the downslope 
and the water contribution from the upslope (Moore et al., 1993)— 
exhibited a positive correlation with peat soil thickness in our study case 
(Table 2), likely because waterlogged conditions create ideal environ-
ments for peat accumulation. However, it should be noted that 
numerous ditches have been dug in the study area for drainage in the last 
century, which may have altered the original hydrologic patterns and 
accelerated peat erosion and peat in situ subsidence (Holden et al., 
2004), weakening the linkage between surface conditions and peat 
thickness.

Vegetation attributes can be an indicator of waterlogged conditions 
and peatland status (Beyer et al., 2021; Harris et al., 2015; Palozzi and 
Lindo, 2017; Sutton-Grier and Megonigal, 2011). However, our regres-
sion analysis implied that current vegetation could only explain around 
3 % of peat thickness variability (Table 2). Gatis et al. (2019) demon-
strated that land management at the margin of peatlands has led to 
changes in vegetation cover, disrupting the connection between the 
vegetation and the underlying peat. In our study area, anthropogenic 
disturbances such as drainage, spruce planting, and logging have altered 
the vegetation type, which in turn affects its correlation with peat.

Approximately 53 % of the variability in peat thickness remained 
unexplained by the multiple linear regression, suggesting peat soil 
thickness may be influenced by other factors such as subsurface topog-
raphy or variations in the lithology of the parent material and associated 
variations in deep drainage. Soil coring surveys (Henrion et al., 2024) 
showed the presence of a grey clay-rich horizon beneath the peat soil, 
whereas a yellow silt horizon with rock fragments can be seen at the top 
slope of the hill. This silty soil horizon is characterized by better 
drainage conditions compared to clay-rich horizons, which may explain 
the shallower peat thickness on the top slope.

4.1.2. Peat thickness mapping and uncertainties
Previous studies have shown that peat thickness can be mapped 

using only surface topographic covariates (Parry et al., 2012; Rudiyanto 
et al., 2015) or with the additional consideration of other environmental 

Table 2 
Coefficients and relative contributions of input variables (peat thickness, elevation, TWI, slope, CHM, OSAVI2) of multiple linear regression models for predicting peat 
thickness and SOC stock of the top 1 m. The Topo. indicates that the input variables include elevation, TWI, and slope. The Vege. indicates that the input variables 
include CHM and OSAVI2. The Topo. + Vege. indicates that the input variables include both topographic and vegetation variables. Model performance was evaluated 
by AICc, R2, and RMSE.

Models Response: Peat thickness Response: SOC stock

Topo. Vege. Topo. +
Vege.

Peat 
thickness

Topo. Vege. Topo. +
Vege.

Peat thickness + Topo. 
+ Vege.

Input variables: coefficient 
(contribution)

Peat 
thickness

/ / / 326.04*** 
(46 %)

/ / / 289.54*** 
(39 %)

Elevation − 0.02*** 
(23 %)

/ − 0.02*** 
(21 %)

/ 1.68 
(3 %)

/ 2.08 
(3 %)

3.02 
(5 %)

TWI 0.23*** 
(19 %)

/ 0.25*** 
(19 %)

/ − 25.07* 
(12 %)

/ − 22.72* 
(11 %)

− 15.98 
(8 %)

Slope − 0.02 
(5 %)

/ − 0.02 
(5 %)

/ − 20.08 
(6 %)

/ − 15.53 
(5 %)

− 13.40 
(4 %)

CHM / − 0.02 
(0.07 
%)

− 0.06 
(0.5 %)

/ / 64.20 
(5 %)

26.18 
(2 %)

0.48 
(1 %)

OSAVI2 / − 0.46 
(3 %)

− 0.14 
(1 %)

/ / − 473.01* 
(11 %)

− 433.72* 
(11 %)

− 228.85 
(7 %)

Model performance Intercept 13.05*** 0.92*** 12.08*** 354.17*** − 364.95 802.54*** − 413.26 − 1352.59
AICc 58.09 163.07 60.33 438.89 457.64 457.33 458.78 439.99
R2 0.46 0.03 0.47 0.46 0.21 0.16 0.32 0.64
RMSE 0.28 0.37 0.27 116.07 140.67 145.63 131.07 95.48

Significance level: *** P < 80.001, ** P < 0.01, * P < 0.05.

Table 3 
Random Forest model performance for peat thickness and SOC stock (top 1 m) 
spatial mapping. The numbers in parentheses in the first column on the left 
indicate the sample sizes of training and testing datasets. The Topo. indicates 
that the input variables include elevation, TWI, and slope. The Vege. indicates 
that the input variables include CHM and OSAVI2. The Topo. + Vege. indicates 
that the input variables include both topography and vegetation variables.

Response Input variables Training 
dataset

Testing dataset

RMSE R2 RMSE R2

Peat thickness 
(133, 57)

Topo. 0.09 0.94 0.14 0.88
Vege. 0.20 0.74 0.34 0.03
Topo. + Vege. 0.09 0.94 0.16 0.85

SOC stock (24, 11) Peat thickness 69.79 0.81 74.47 0.76
Topo. 84.23 0.73 110.17 0.48
Vege. 84.20 0.69 163.94 0.10
Peat thickness + Topo. 60.11 0.86 59.75 0.85
Peat thickness + Topo. 
+ Vege.

51.76 0.90 59.25 0.85
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variables, such as vegetation and soil type (Young et al., 2018), the 
distance to the river (Rudiyanto et al., 2016b), radiometric dose (Gatis 
et al., 2019; Koganti et al., 2023), and disturbance (Holden and Con-
nolly, 2011). Here, we demonstrated that peat thickness across a 
hillslope-floodplain transition is affected by various types of environ-
mental factors. However, the multiple linear regression models achieved 
only a modest fit (R2 = 0.47, RMSE = 0.27 m), similar to the model 
performance of Young et al. (2018). Given the heterogeneous nature of 
the landscape, we therefore developed a Random Forest spatial model to 
estimate peat thickness. The tree-based model is capable of capturing 
complex nonlinear relationships and has proved to be more suitable for 
depicting the intricate interactions between environmental factors and 
peat thickness (Rudiyanto et al., 2016b; Rudiyanto et al., 2018).

We found that the Random Forest spatial model with only three 
terrain variables performed very well in the testing dataset (R2 = 0.88, 
RMSE = 0.14 m), outperforming Parry et al. (2012) who mapped peat 
thickness based on a functional relationship with elevation and slope 
derived from airborne radar data. Theoretically, using data from 
different sources could improve peat thickness mapping accuracy, as 
they provide information on different aspects of peatland structure and 
function (Minasny et al., 2023). However, our study found that the in-
clusion of vegetation decreased the predictive power by 3 % (Table 3), 
suggesting the limited contribution of the multispectral sensor in our 
study. Overall, our approach yielded a more robust estimation compared 
to those studies that utilized airborne LiDAR data (e.g., Gatis et al. 
(2019) (R2 = 0.55–0.66, RMSE = 0.31–0.35 m)), or that were based on 

Fig. 6. Maps of predicted peat thickness, SOC stock, and relative uncertainty across the landscape. Figure (a), mean prediction of peat thickness (m) from 100 
random forest models with five predictors: elevation (level 6), TWI (level 6), slope (level 6), CHM (original scale), and OSAVI2 (original scale). Figure (b), relative 
uncertainty of peat thickness prediction, expressed as ± half of the prediction interval range as percentage of the mean prediction. Figure (c), mean prediction of SOC 
stock (t/ha) of top 1 m from 100 random forest models with six predictors: mean prediction of peat thickness, elevation (level 2), TWI (level 2), slope (level 2), CHM 
(original scale), and OSAVI2 (original scale). Figure (d), relative uncertainty of SOC stock prediction, expressed as ± half of the prediction interval range as per-
centage of the mean prediction. The black lines on all maps indicate elevation contour lines (m).
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coarse satellite images (e.g., Fiantis et al. (2023) (R2 = 0.44, RMSE =
1.41 m), Rudiyanto et al. (2018) (R2 = 0.5–0.7, RMSE = 1.8–2.8 m)). 
This might be explained by the utilization of UAV-LiDAR, which enables 
the characterization of heterogeneous landscapes above the surface with 
very high spatial resolution. Additionally, the application of wavelet 
transform allows us to identify the relevant scale to analyze relation-
ships between peat thickness and topographical features.

However, interpreting peat thickness only from surface conditions 
may bring uncertainties (Silvestri et al., 2019b). Direct information on 
peat thickness derived from airborne gamma-ray data from the radio-
active decay of K, U, and Th in the underlying mineral soil has been 
proven to be useful in optimizing peat thickness mapping (Gatis et al., 
2019; Keaney et al., 2013). However, because gamma radiation is 
severely attenuated when peat soil thickness is greater than 0.6 m, 
greater peat depths are difficult to resolve (Gatis et al., 2019). Also, 
preprocessing of the raw UAV data (i.e., georeferencing, wavelet 
transform, resampling) to produce the topography and vegetation var-
iables may have introduced errors in the model. In addition, our sam-
pling strategies for peat thickness modelling may be another source of 
uncertainty. The training and testing data was from a mixed dataset 
obtained by both GPR and manual probing approaches. Peat thickness in 
42 sites of three transects were determined by augering, but it should be 
noted that more sampling sites were in the middle transect (Fig. 1a). A 
dataset of 148 samples resulting from the GPR survey was collected at 
the middle transect as well. Consequently, we have fewer samples 
distributed on the edges of the peatlands, thereby generating higher 
uncertainties in these places. To obtain a better representation, the 
transect cross clusters sampling approach proposed by Rudiyanto et al. 
(2016b) could be considered. Larger uncertainty occurs at the topslope 
and summit (Fig. 6b), implying that other factors besides surface 
topography and vegetation control peat development in this area. The 
results emphasize that factors such as water table depth, permeability of 
the underlying deposits or bedrock, and peat bottom morphology play a 
role in the formation and storage of peat in these areas.

4.2. SOC storage across the landscape

4.2.1. Spatial variability of SOC storage and its associated environmental 
factors

Our field measurements indicate that around 539.14 ± 160.98 t/ha 
organic carbon is stored within the top 1 m profile across the landscape, 
which is approximately 5.33 times higher than the mean carbon stored 
in aboveground live tree biomass of Belgian forests (~101 t/ha) (Walle 
et al., 2005), 3.65 times higher than grasslands (~147.7 t/ha) 
(Mestdagh et al., 2009), and 6.45 times higher than croplands (~83.64 
t/ha) (Sleutel et al., 2003). We also observe that the carbon stock is 
spatially organized, showing considerable variability in both horizontal 
and vertical directions (Fig. 3 & Fig. 4). Although peat thickness could 
explain more variance of SOC stock in the MLR analysis (Table 2), here 
we do not discuss its contribution considering the fact that SOC content 
of peat soil is significantly higher than that of mineral soil (Fig. 2b).

The predictive ability of topographic metrics varies from micro to 
macro scales (Fig. 5g). This can be attributed to the fact that micro- 
topography, such as hummocks and hollows, creates heterogeneity in 
hydrologic and thermal conditions as well as soil properties (e.g., 
moisture, enzyme activity, bulk density, or respiration), thereby influ-
encing SOC stocks at a small scale (Iseas et al., 2024; Sullivan et al., 
2008; Wang et al., 2021b; Wang et al., 2021c). We observed a negative 
correlation between terrain wetness index (TWI) and carbon stock 
(Table 2). In areas with high TWI, the soil is often saturated, creating 
anaerobic conditions that slow down carbon decomposition (Fenner and 
Freeman, 2011). While this can lead to peat formation over the long 
term, in the short term, it might mean that less new organic matter is 
added to the soil surface because the environment is less favourable for 
many types of plants that contribute to the surface carbon stock. Addi-
tionally, areas with higher TWI might experience more leaching or water 

flow, which could transport soluble organic carbon away from the 
topsoil, reducing the carbon stock. Elevation and slope control the water 
flow path, flow velocity, water accumulation, and runoff depth, which in 
turn affects carbon redistribution (Wiesmeier et al., 2019). For instance, 
steep slopes lead to higher water discharge and flow velocity, acceler-
ating peat erosion and thus carbon redistribution (Graniero and Price, 
1999). Therefore, the relatively smaller carbon stocks at the backslope 
may result from stronger erosion and hydrological dynamics due to the 
steeper slope.

Our results revealed a limited correlation between vegetation and 
carbon stocks across the landscape, which can be potentially attributed 
to the dual role of vegetation in carbon dynamics. This dual role en-
compasses the function of vegetation as a fresh carbon producer through 
photosynthesis (Pearson et al., 2013; Qian et al., 2010; Ward et al., 
2013), as well as an old carbon promoter by altering peat soil nutrients 
and stimulating microorganism growth (Hartley et al., 2012; Lopatin 
et al., 2019; Walker et al., 2016). As a consequence, the interplay of fresh 
carbon production, old carbon decomposition, and water saturation 
level dynamics leads to a relatively complex or inconspicuous relation-
ship between vegetation and carbon stocks in the short term (Lopatin 
et al., 2019). Moreover, their interactive effects may be modulated by 
vegetation types due to differences in net primary production, plant 
litter chemistry, and root biomass (Wiesmeier et al., 2019). In the Hautes 
Fagnes, peat Sphagnum moss produced decay-resistant litter that could 
reduce soil respiration (Dorrepaal et al., 2005) and thus played a crucial 
role in the rapid peat accumulation during the Atlantic, sub-boreal, and 
Sub-Atlantic periods (Frankard et al., 1998). However, owing to deep 
rooting and high transpiration, the invasion of Molinia disturbed the 
Hautes Fagnes peatland environment by increasing humic acid con-
centration and mineral content (Frankard et al., 1998). Consequently, it 
enhanced carbon decomposition and peat degradation processes (Ward 
et al., 2013), and led to the disappearance of typical peat-forming 
communities like Sphagnum. From our observations, Molinia has colo-
nized almost everywhere except for the summit, in which vegetation 
cover is dominated by Betula pubescens and Vaccinium myrtillus (Fig. 1b). 
This can partly account for the large carbon inventory at the summit 
area.

Approximately 36 % of the spatial variation in SOC stock is not 
explained by existing factors, which we hypothesize may be due to 
spatial patterns of parent material. The impact of bedrock (e.g., 
permeability, mineral inputs, or soil texture) on soil carbon inventories 
has been reported in previous peatland studies (Chimner and Karberg, 
2008; Hribljan et al., 2016; Shimada et al., 2001; Wang et al., 2021a). 
From our observations, the soils at the topslope positions developed on 
weathered quartzites are characterized by coarser soil texture (Table S3) 
and relatively high permeability (Henrion et al., 2024). However, soils 
in other areas, especially at the shoulder, developed on weathered shales 
or schists have fine texture (Table S3), smaller pore spaces, as well as a 
stable water table depth throughout the year. In addition, human 
disturbance may also play an important role. Drainage and conversion of 
peatlands to agriculture and forestry or other uses has led to a loss of 
capacity to store carbon (Leifeld and Menichetti, 2018; Minasny et al., 
2023). In our study site, the long-term drainage for afforestation since 
the early 20th century might have influenced carbon storage. One of the 
most obvious effects of drainage is the increased aerobic decomposition 
of SOM in the drained layer, which subsequently leads to a rapid loss of 
peat and CO2 emissions to the atmosphere, turning peatlands from 
carbon sinks into carbon sources (Minasny et al., 2023). Moreover, the 
presence of many ditches leads to a faster runoff flow rate and channel 
bank collapse, supplying large amounts of peat materials to the stream 
channel system (Holden et al., 2004). So far, many studies have reported 
that ditch erosion contributed to peat loss and increased suspended 
sediment yields (e.g., Li et al. (2018); Stenberg et al. (2015); Tuukkanen 
et al. (2016)). Erosion might be enhanced at the beginning of tree har-
vesting as vegetation cover plays a significant role in protecting peat 
from wind and water erosion (Li et al., 2018). These various processes 

Y. Li et al.                                                                                                                                                                                                                                        Geoderma 449 (2024 ) 117009 

13 



may have caused peat subsidence and carbon loss leading to an average 
SOC content within the peat horizon (37.47 ± 7.26 g/100 g) that is 
lower than that observed in western Canada (45.0 ± 4.3 g/100 g), the 
United States (48.9 ± 3.7 g/100 g), and the western European islands 
(54.0 ± 2.5 g/100 g) (Loisel et al., 2014).

4.2.2. SOC storage mapping and uncertainties
Model and variable selection is a critical step in the spatial prediction 

of SOC reservoirs. Crezee et al. (2022) mapped peat carbon stocks of the 
central Congo Basin by applying linear regressions between peat soil 
thickness and carbon stock (R2 = 0.86, n = 80), which, however, is not 
suitable for our study case (Table 2). This is because they only consid-
ered the carbon stock within the peat horizon, while we estimated car-
bon storage of both the peat and mineral substrate within 1 m of the 
surface. Consequently, peat thickness could only explain 46 % of SOC 
stock variance in the multiple linear regressions (Table 2). A study 
conducted in an anthropogenic peatland in Chile showed that UAV- 
borne vegetation attributes such as vegetation height, species richness, 
and aboveground biomass were good predictors for carbon stock esti-
mates (Lopatin et al., 2019). However, our findings indicate that current 
vegetation contributed only 16 % to the carbon stock spatial variability 
(Table 2). Hence, more environmental variables including peat thick-
ness, three topographical features (elevation, TWI, and slope), and two 
vegetation attributes (CHM and OSAVI2) were considered as predictors. 
The random forest model was applied for mapping as it performed very 
well in the testing dataset (R2 = 0.85, RMSE = 59.3 t/ha) when all 
variables were taken into account. We also tested the use of the multiple 
linear regression models for predictions. However, their performance in 
terms of R2 and RMSE were not as good as the Random Forest model, 
hence the results are not presented here.

Our results suggest that micro-topography explains more of the 
spatial variability in carbon stocks than macro-topography (Fig. 5g), and 
thus the use of high-resolution environmental variables enables carbon 
storage spatial mapping with high accuracy (Table 3, Fig. 6d). In a 
recent study, Fiantis et al. (2023) mapped carbon stocks using envi-
ronmental variables derived from DEM (DEMNAS) data and Sentinel 1A 
satellite data, achieving only moderate prediction power (R2 = 0.39). 
While satellite-derived data enables carbon storage estimation at large 
scales, the coarse resolution of satellite images smooths the heteroge-
neous surface at the landscape scale, thereby increasing the uncertainty 
of model predictions. In addition, our approach achieved robust carbon 
stock estimates across the landscape, which provides new insights for 
accurately mapping carbon inventories. Since subsurface carbon cannot 
be seen directly by traditional remote sensing technology, most previous 
studies relied on a predicted peat thickness map to estimate carbon 
stocks (e.g., Rudiyanto et al. (2016b), Rudiyanto et al. (2018), Akumu 
and McLaughlin (2014), Holden and Connolly (2011), Vernimmen et al. 
(2020)). Their carbon storage (in Mg) was calculated by multiplying the 
peat volume with carbon density. Peat volume was determined by 
summing the predicted peat thickness at all raster cells multiplied by cell 
area. Carbon density was based on average values of soil bulk density 
and carbon content from the literature. This methodology may introduce 
large uncertainties (Hribljan et al., 2017), as the carbon content and 
bulk density can vary significantly within the peat horizon, particularly 
in mountain peatlands (Hribljan et al., 2016).

However, peat thickness is the most important factor in our Random 
Forest model and, therefore, the largest source of uncertainty. Thus, the 
relatively large uncertainty of SOC stock prediction at the topslope and 
the floodplain is partly due to the uncertainty in peat thickness pre-
dictions at these slope positions (Fig. 6b, d). One way to improve 
mapping accuracy is to take more samples where these uncertainties are 
high (Bourgeau-Chavez et al., 2017). The GPR technology is a good 
option to accomplish this, as it allows for rapid determination of peat 
thickness with high spatial resolution (Henrion et al., 2024). Another 
source of uncertainty may arise from our sampling strategy. We took 
mixed soil samples within a 3 m diameter at 16 sites, while individual 

samples were collected at another 19 sites. Furthermore, when calcu-
lating carbon stocks of the top 1 m, we interpolated soil properties at 
sites sampled at depths of less than 1 m, which may have introduced 
bias.

5. Conclusions

In our study, the use of multi-sensor UAV data to map topography 
and vegetation, combined with a detailed characterization of the sub-
surface peat soil properties, enabled us to obtain a detailed 3D picture of 
peat thickness and SOC stocks at very high spatial resolution. Addi-
tionally, GPR provided key information regarding the continuous vari-
ation of peat thickness along a topographical gradient. By performing 
multiscale resolution analysis and multiple linear regressions, we suc-
cessfully identified the relevant scales of topography to establish con-
nections between surface and subsurface properties. To summarize, the 
main findings of our study are listed below:

(1) Peat thickness (range: 0.10–2.10 m, mean ± SD: 0.62 ± 0.37 m) 
and SOC stocks (range: 176.13–856.57 t/ha, mean ± SD: 539.14 
± 160.98 t/ha) show great spatial heterogeneity across the 
landscape.

(2) Peat thickness is strongly related to topographical features at 
macro-scales, which can explain more than 40 % of peat thickness 
spatial variability. The current vegetation types are a weaker 
predictor for peat thickness.

(3) In contrast, the SOC stock is more strongly controlled by micro- 
topography (21 %). Together, peat thickness, topography and 
vegetation can explain approximately 64 % of carbon storage 
variance.

(4) The different relevant spatial scales reflect the underlying pro-
cesses. Macro-scale topographical features primarily influence 
peat thickness, shaping the large-scale accumulation of peat. 
Meanwhile, micro-topography affects SOC distribution by 
creating localized variations in moisture and temperature that 
influence decomposition rates. Understanding these scale- 
dependent processes is crucial for accurately modelling peat-
land carbon dynamics and predicting their responses to climate 
change.

(5) The UAV remote sensing data can yield robust spatial mapping of 
peat thickness and SOC stock, with RMSE and R2 values of 0.16 m 
and 0.85, respectively, for the peat thickness, and 59.3 t/ha and 
0.85 for SOC stock. However, similar performance can also be 
achieved without considering data from the multispectral sensor. 
This demonstrates the great potential of UAVs for mapping, and 
eventually monitoring, peatland carbon reservoirs, but suggests 
that other types of sensors beyond LiDAR may offer minimal 
additional benefit.
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in the páramo of Ecuador. Global Change Biol. 23 (12), 5412–5425. https://doi.org/ 
10.1111/gcb.13807.

Huang, Y., Ciais, P., Luo, Y., Zhu, D., Wang, Y., Qiu, C., Goll, D.S., Guenet, B., 
Makowski, D., De Graaf, I., Leifeld, J., Kwon, M.J., Hu, J., Qu, L., 2021. Tradeoff of 
CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. 
Climate Change 11 (7), 618–622. https://doi.org/10.1038/s41558-021-01059-w.
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