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Full Waveform Inversion (in the frequency
domain)

Figure: Slowness squared of the Marmousi model, a common geophysics benchmark for
FWI (Target above, initial guess below)
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Full Waveform Inversion (in the frequency
domain)

Figure: Imaginary part of permittivity in the brain. Tournier et al., 2019, Microwave
tomographic imaging of cerebrovascular accidents by using high-performance
computing
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Full Waveform Inversion (in the frequency
domain)

Problem statement: For a model m(x), a wavefield u(x), data d, excitation f
and a measurment operator R, find m that minimizes J(m) = ‖Ru(m) − d‖2

2
under constraint A(m)u = f , where A(m) where A represents the wave
equation.

Main cost: solve A(m)u = f for different f and m.

Computing J(m) and ∇J(m) requires solving 2 wave propagation problems.
Then, local optimization (l-BFGS, Newton) is performed.
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Domain Decomposition Methods

At large-scale, direct solvers don’t scale and iterative methods are necessary.
With Domain Decomposition Methods (DDM) we can either:

• Build a preconditioner made of local solves.
• Solve an interface problem to glue local solutions together.

Efficient handling of all sources ? Of related models ?
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Substructured DDM

Let g be the vector of interface fields and b the physical sources. The Additive
Schwarz Method leads to a fixed-point scheme.

gn+1 = Ãgn + b

New outgoing wave

Propagated incoming wave

Local excitation

Instead, solve with a Krylov solver (e.g. GMRES, GCR) Ag = b with
A = I − Ã.
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Substructured DDM

Some properties of the interface problem:
• Significantly lower number of unknowns than the volume problem
• Eigenvalues are in the unit ball centered on 1.
• One matrix-vector product involves solving each subproblem once

Solving all subproblems is the most computationally expensive part.
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Efficient FWI

Possible optimizations:
• Handle multiple sources (10, 100, 1000 ?)
• Recycle information when the model changes ?
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Example problem

Figure: Test case: 120 sources close to the top. 8x3 subdomains.
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Sequential Subspace Recycling

1. Solve Ag1 = b1 with a solver like GCR.
• Build an A∗A orthonormal basis of K(A, b1) : AU = C, C∗C = I.
• Approximation is g1 = UC∗b1.

2. Reuse this basis and expand it to solve Ag2 = b2.
3. Carry on and accumulate all these search directions.
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Results
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Block Krylov Methods

• Solve everything at once, and use the subspace of each RHS in all
resolutions.

• Expensive in memory...
• ... But the substructuring makes this bearable!
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Influence of block size

Block size 1 10 20 30 60 120
4 Hz 15 580 10 120 7940 6990 5460 3480
6 Hz 12 886 9 930 7700 6810 5580 3600
8 Hz 13 871 11 250 8760 7560 6060 3840

Table: Number of local solves to solve 120 sources on the Marmousi initial model
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Results

Table: Number of local solves to solve 120 sources on the Marmousi initial model

Reference Recycling Block Block deflated
4 Hz 15580 2785 3480 2991
6 Hz 12886 3337 3600 3032
8 Hz 13871 4039 3840 3118
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Varying operator

Output of GCR after k steps: directions U, C ∈ Cn×k with AU = C, C∗C = I.
→UC∗ is a rank-k approximation of A−1

How to reuse data for a new model ? Use this approximate inverse as
preconditioner (+ correction to make it non-singular)

M−1 = (I − CC∗) + UC∗ = I + (U − C)C∗.
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Varying operator: Results

Table: Number of local solves to solve 120 sources on 4 similar models.

Reference Recycling only Preconditioner (from 1st)
4 Hz 57 956 12 475 9 496
6 Hz 55 415 16 363 13 759
8 Hz 60 969 20 630 17 440
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Truncated Newton methods

Inexact Newton: minimize J(m) by solving with Conjugate Gradients :

H∆m = −∇J.

H is the Hessian, and computing Hv for a given v requires 2 additional solves.
The operator is constant but right hand sides are not all available at
once
→More work on the same operator = better recycling
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Truncated Newton methods

Perturbed Forward Problem: for a given δA and previously computed u, find δu
such that

Aδu = −δAu.

It’s the derivative of the the wavefield with respect to a perturbation.
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Truncated Newton methods - Results

For a given model and 5 perturbations: 6 sequences of 120 RHS.

Table: Number of local solves to solve 120 sources and 120 × 5 perturbations on the
Marmousi reconstructed model (3rd iteration)

Reference Recycling Block of 120
4 Hz 94 519 4 246 20 280
6 Hz 78 787 5 778 21 840
8 Hz 87 566 7 362 25 080
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Conclusion and future work

• Substructured DDM allows for greedy subspace recycling, yielding fast
convergence.

• Newton methods could become more competitive than l-BFGS in this
context.

Future work:
• Efficient implementation.
• Further research on changing operator.
• Extension to 3D, more complex equations (Maxwell!).
• Comparison with “DDM as a preconditioner” methods.
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