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Figure: Slowness squared of the Marmousi model, a common geophysics benchmark for
FWI (Target above, initial guess below)
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Figure: Imaginary part of permittivity in the brain. Tournier et al., 2019, Microwave
tomographic imaging of cerebrovascular accidents by using high-performance
computing
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Full Waveform Inversion (in the frequency
domain)

Problem statement: For a model m(x), a wavefield u(zx), data d, excitation f

and a measurment operator R, find m that minimizes J(m) = ||Ru(m) — d||3
under constraint A(m)u = f, where A(m) where A represents the wave
equation.

Main cost: solve A(m)u = f for different f and m.

Computing J(m) and V.J(m) requires solving 2 wave propagation problems.
Then, local optimization (I-BFGS, Newton) is performed.
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Domain Decomposition Methods

At large-scale, direct solvers don’t scale and iterative methods are necessary.
With Domain Decomposition Methods (DDM) we can either:

e Build a preconditioner made of local solves.
e Solve an interface problem to glue local solutions together.

Efficient handling of all sources 7 Of related models 7
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Substructured DDM

Let g be the vector of interface fields and b the physical sources. The Additive
Schwarz Method leads to a fixed-point scheme.

Instead, solve with a Krylov solver (e.g. GMRES, GCR) Ag = b with
A=1-A.
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Substructured DDM

Some properties of the interface problem:
e Significantly lower number of unknowns than the volume problem
e Eigenvalues are in the unit ball centered on 1.
e One matrix-vector product involves solving each subproblem once

Solving all subproblems is the most computationally expensive part.
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Efficient FWI

Possible optimizations:
o Handle multiple sources (10, 100, 1000 ?)

e Recycle information when the model changes ?
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Example problem

Figure: Test case: 120 sources close to the top. 8x3 subdomains.
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Sequential Subspace Recycling

1. Solve Ag; = by with a solver like GCR.

e Build an A* A orthonormal basis of K(A,b1) : AU =C,C*C = 1.
e Approximation is gy = UC™b;.

2. Reuse this basis and expand it to solve Agys = bs.

3. Carry on and accumulate all these search directions.

10
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Results

Number of iterations vs. RHS for different Hz values
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Block Krylov Methods

e Solve everything at once, and use the subspace of each RHS in all
resolutions.

e Expensive in memory...

e ... But the substructuring makes this bearable!

12
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Influence of block size

Block size 1 10 20 30 60 120
4 Hz 15580 10120 7940 6990 5460 3480
6 Hz 12886 9930 7700 6810 5580 3600
8 Hz 13871 11250 8760 7560 6060 3840

Table: Number of local solves to solve 120 sources on the Marmousi initial model

13
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Table: Number of local solves to solve 120 sources on the Marmousi initial model

Reference Recycling Block Block deflated

4 Hz 15580 2785 3480 2991
6 Hz 12886 3337 3600 3032
8 Hz 13871 4039 3840 3118

14
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Varying operator

Output of GCR after k steps: directions U, C' € C*** with AU = C,C*C = 1.
—UC* is a rank-k approximation of A~}

How to reuse data for a new model 7 Use this approximate inverse as
preconditioner (+ correction to make it non-singular)

M =(I—-CC)+UC* =1+ (U-C)C.

15
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Varying operator: Results

Table: Number of local solves to solve 120 sources on 4 similar models.

Reference Recycling only  Preconditioner (from 1st)

4 Hz 57 956 12 475 9 496
6 Hz 55415 16 363 13 759
8 Hz 60 969 20 630 17 440

16
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Truncated Newton methods

Inexact Newton: minimize J(m) by solving with Conjugate Gradients :
HAm = -V J.

H is the Hessian, and computing Hv for a given v requires 2 additional solves.
The operator is constant but right hand sides are not all available at

once
—More work on the same operator = better recycling

17
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Truncated Newton methods

Perturbed Forward Problem: for a given d A and previously computed u, find du
such that
Adu = —dAu.

It's the derivative of the the wavefield with respect to a perturbation.

18
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Truncated Newton methods - Results

For a given model and 5 perturbations: 6 sequences of 120 RHS.

Table: Number of local solves to solve 120 sources and 120 x 5 perturbations on the
Marmousi reconstructed model (3rd iteration)

Reference Recycling Block of 120

4 Hz 94519 4 246 20 280
6 Hz 78 787 5778 21 840
8 Hz 87 566 7 362 25 080

19
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Conclusion and future work

e Substructured DDM allows for greedy subspace recycling, yielding fast
convergence.

e Newton methods could become more competitive than I-BFGS in this
context.

Future work:
o Efficient implementation.
o Further research on changing operator.
o Extension to 3D, more complex equations (Maxwell!).

e Comparison with “DDM as a preconditioner” methods.

20
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