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Abstract. Overhead electrical transmission line conductors are prone to aeolian vibrations,
resulting from the alternate shedding of vortices in the wake of the cable. Aeolian vibrations are
characterized by small-amplitude high-frequency flexural oscillations and, whenever not properly
controlled, can induce wear damage and fatigue failures of the conductor. The standard technical
approach to the assessment of aeolian vibrations and residual life of overhead conductors is based
on the Energy Balance Method (EBM) and the Poffenberger-Swart formula for bending stresses.
This approach relies on the main simplifying assumption of mono-modal oscillations. Typical
aeolian vibration records, however, clearly show that several modes can be simultaneously
excited due to wind variations in time and along the span. In this work a new approach is
proposed for the prediction of aeolian vibrations of conductors within a probabilistic framework.
The proposed approach allows to account both for non-linearities typical of internal damping
of metallic cables and multi-modal contributions to aeolian vibrations in a straightforward
and mechanically sound way. The proposed approach paves the way to a full probabilistic
description of the Poffenberger-Swart bending stresses, making a further step towards a more
refined definition of the expected life of overhead conductors.

1. Introduction
Overhead electrical transmission line (OHL) conductors are prone to vortex induced vibrations
(VIV), also known as aeolian vibrations. These vibrations can occur under a wide range of wind
velocities, and are characterized by small-amplitude (typically less than one cable diameter) and
frequencies in the range of 3-200 Hz, depending on the geometry and axial load of the cable.
Whenever not properly controlled, aeolian vibrations can induce wear damage and fatigue failures
of the conductor (see e.g. [16, 6]).

The standard technical approach to assess the severity of aeolian vibrations and the residual
life of overhead conductors is based on the Energy Balance Method (EBM) and the Poffenberger-
Swart (PS) formula for dynamic bending stresses (see e.g. [16, 23]). This approach relies on the
main simplifying assumption of mono-modal oscillations, introduced by the EBM. Typical aeolian
vibration records, however, clearly show that several modes can be simultaneously excited due
to wind turbulence and wind velocity variations along the span [3]. Aiming at overcoming the
mono-modal vibration assumption of the EBM, a stochastic model was recently proposed by the
authors [7], inspired by the work of Hagedorn and coworkers [14]. In that model wind forces



were modeled as a narrow band stochastic process, centered around the Strouhal frequency of the
conductor, and with an arbitrary cross-correlation in space. The conductor dynamic response
was obtained by exploiting the properties of Green functions of a taut string with linear viscous
damping. The adopted damping model, however, is open to criticism, as it is not fully physically
coherent with experimental results showing that internal damping in metallic cables depends non
linearly on the vibration frequency, the vibration amplitude and the cable tension (see e.g. [9]
and references therein).

In the present work a different approach is proposed to model aeolian vibrations of OHL
conductors. The equations of motion are projected in the modal base, the damping term is
linearized, and a fixed-point iterative scheme is adopted to find the modal amplitudes of vibration.
The taut-string model is used to evaluate the response far from the supports (far-field response),
while the approximate equation by Poffemberger and Swart is employed to estimate the maximum
dynamic bending stress in the wires of the outermost layer of the conductor at a conventional
distance xp = 89 mm from the last point of contact of the supporting clamp edge.

The proposed formulation and solution strategy allows for several improvements over the
current technical approach based on the EBM: a sound mechanical model of damping is included
in a probabilistic approach for the cable response; the contributions of more modes to the VIV of
conductors is accounted for in a simple and mechanically sound way; the proposed approach paves
the way to a full probabilistic description of the Poffenberger-Swart bending stresses, making a
further step towards a more refined definition of the expected life of overhead conductors.

2. Formulation of the problem
2.1. Governing equations
Let us consider a cable suspended to horizontal rigid supports, with length L and linear density γ,
subject to a distributed dynamic load fE = fE (x, t) where x ∈ [0, L] and t denote, respectively,
an abscissa spanning the length of the cable and the time. The external force fE describes the
action of a space- and time-variable lift force induced by the alternate shedding of vortices in the
wake of the cable cross sections. Focusing on overhead electrical line conductors, small planar
vibrations can be described with a sufficiently good level of approximation by resorting to the
classic taut-string model [13], i.e. by introducing the equation of motion:

γ∂2tw − T∂2xw + fD = fE , w = w (x, t) , x ∈ (0, L) , t ∈ R+ (1)

where w = w (x, t) is the transverse displacement of the cable centerline, T is the constant axial
force, which can be conveniently expressed as a fraction η of the Rated Tensile Strenght (RTS)
of the cable (i.e. T = η RTS), and fD is a distributed damping force. The equation of motion
(1) can be integrated under suitable initial conditions and boundary conditions:{

w (x = 0, t) = 0

w (x = L, t) = 0
, ∀t (2)

Damping is mainly due to internal energy losses within the vibrating cable (also known as
cable self-damping). Generally speaking, the damping term may depend on cable displacements
through a non-linear and non-holonomic functional relation, which can be formally stated by
introducing a non-linear operator D acting on the displacement function w, i.e.:

fD = D [V ] (3)

The distributed lift force fE can be described, within the framework of “externally forced
models” for VIV [19], as:



fE =
1

2
ρDU2q (x, t) . (4)

where ρ is the density of the air, D is the diameter of the cable, U is the mean wind velocity
and q (x, t) is a space- and time-variable lift coefficient. By following a classic approach of
the literature (e.g. [22, 17, 1]), the lift coefficient is modeled as an incompletely homogeneous
bidimensional random process with cross power spectral density function:

Sq (x1, x2, ω) = Coh (x1, x2)S (ω) , x1, x2 ∈ [0, L] , ω ∈ R (5)

with the following definitions:

S (ω) =
c̃ls

2
√
πBωs

exp

−
1−

∣∣∣ ωωs

∣∣∣
B

2
 , ω ∈ R (6)

Coh (x1, x2) = exp

(
−|x1 − x2|

l D

)
, x1, x2 ∈ [0, L] (7)

where c̃ls is the root mean square (rms) of the lift coefficient, B is a non-dimensional spectral
bandwidth parameter, ωs is the Strouhal circular frequency: ωs = 2π SU

D , S is the Strouhal
number and l denotes a correlation length in diameters D of the cable.

The undamped natural circular frequencies (ωn) and associated mode shapes (φn (x)) of the
cable can be easily evaluated by setting fD = fE in Eq. (1) and read:

ωn = nπωc, n ∈ N+ (8)

φn =
√
2 sin

(
nπ

x

L

)
, n ∈ N+ (9)

where ωc = 1
L

√
T
γ .

Whenever the rotations of the end sections are restrained, as it is typically the case in overhead
electrical line applications, boundary layers develop in the neighborhoud of the supports due to
the effect of the cable bending stiffness (see e.g. [5, 4]) EI. Within this context, the outcomes
of the taut-string model provide a good approximation (also known as far-field solution) of the
cable response everywhere except in the boundary layers close to the supports, whose extent can
be estimated as: ε = 1

L

√
EI
T � 1.

The maximum values of the bending stresses occur within the boundary layers and can be
evaluated through classic perturbation techniques or resorting to the exact solution of a taut
beam model as long as the bending behavior of the cable cross sections is assumed to be linearly
elastic. The moment-curvature relation of metallic cables, however, is far from being linearly-
elastic. Whenever a cable is bent, indeed, an axial force gradient is generated within the helical
wires of the cable. This axial force gradient gives the wires the trend to slip. At small curvature
values, internal friction forces are large enough to avoid any relative displacement between the
wires, which can be considered as perfectly stuck together (full-stick state). The bending stiffness
of the cable in full-stick state attains its maximum theoretical value EImax . By increasing
the curvature values, the effect of internal friction may be overcome leading to the onset and
propagation of relative sliding between the wires. Progressive sliding of the wires is associated to
a reduction of the tangent bending stiffness of the cable, which attains its minimum theoretical
value EImin when all wires of a cross section are in sliding state (full−slip state). The transition
from the full-stick to the full-slip state is a non-linear and non-holonomic phenomenon.



Several models have been proposed in the literature to characterize the nonlinear moment-
curvature behavior of overhead line conductors (see e.g.[8] and references therein). A first attempt
to investigate the characteristics of the cable boundary layers fully accounting for a realistic
nonlinear moment-curvature relation has been presented in [10]. The most popular technical
solution currently adopted to estimate the maximum bending stress close to the end sections of
a vibrating conductor, however, relies on the approximate approach proposed by Poffenberger
and Swart in 1965 [20].

Focusing on mono-modal vibrations with circular frequency ωn and amplitude An, the peak-
to-peak vibration amplitude Ybn measured at the conventional reference distance xp = 89 mm
from the last point of contact of the supporting clamp edge is calculated through the approximate
equation (cf. [18]):

Ybn = Anυn, υn = 2

{
sin (βnxp)−

βn
αn
{sinh (αnxp) + tanh (αnL) [cos (βnxp)− cosh (αnxp)]}

}
(10)

with the definitions:

αn =

√√√√ T

2EImin
+

√
γω2

n

EImin
+

(
T

2EImin

)2

(11)

and

βn =

√√√√− T

2EImin
+

√
γω2

n

EImin
+

(
T

2EImin

)2

(12)

The maximum dynamic bending stress in the wires of the outermost layer (σa,n) is then
evaluated through the approximate equation:

σa,n = KpsYbn (13)

where Kps is a coefficient depending on the axial force T and on the mechanical properties of the
cable cross section. Focusing on the widespread case of Aluminum Conductors Steel Reinforced
(ACSR), and denoting with Ea and da, respectively, the Young modulus and the diameter of the
aluminum wires, the following approximate equation can be used to evaluate Kps:

Kps =
Eadap

2

4 [exp (−xpp)− 1 + xpp]
(14)

with p =
√

T
EImin

.

2.2. Cable self-damping
Accurate modeling of the cable self-damping is essential to get reliable estimates of the VIV
severity in overhead electrical line conductors. The most widespread technical approach to
characterize self-damping relies on forced and/or decay vibration tests, which are performed
on short laboratory spans (span length in the order of 30-90 m) according to international
standards. Experimental evidences (see e.g. [2, 16, 6, 9]) allows to state that: (1) cable self-
damping is a “proportional” or “classical” type of damping (i.e. no modal coupling is induced
by the damping force); (2) the power dissipated per unit of length (Pd,n) during steady-state
mono-modal vibrations of the cable is a non-linear function of the vibration frequency fn = ωn

2π ,



of the modal vibration amplitude An (please notice that the subscript n refers to the number
of the mode) and of the axial force T . Experimental measurements of the dissipated power are
interpolated through the empirical power law:

Pd,n = K
Alnf

m
n

Tn
(15)

where exponents l, m and n are typically in the ranges l = 2− 2.5, m = 4− 6, n = 2− 2.8, while
K is a proportionality coefficient that should be determined from tests.

Theoretical expressions to evaluate the dissipated power Pd,n have also been proposed in the
literature. Without loss of generality, in the present work the following expression derived by
Foti and Martinelli [9] under the assumption of micro-slip conditions on the contact surfaces
between adjacent wires of the vibrating cable will be adopted:

Pd,n = Kms
A3
nf

7
n

T 4
(16)

where Kms is a proportionality coefficient that only depends on the mechanical and geometric
properties of the conductor cross section (interested readers are referred to [9] for further details).

The equivalent viscous n-th modal damping ratio (ζeqn ) can be easily calculated starting from
the knowledge of the dissipated power Pd,n (both from the empirical (15) or from the theoretical
power law (16)). The equivalent modal damping ratio turns out to be, in general, a function of
the modal vibration amplitude An (i.e. ζn = ζn (An)) for an assigned value of axial force T , and
can be expressed as:

ζeqn =
2

γω3
nA

2
n

Pd,n (An, ωn, T ) (17)

3. Proposed solution strategy
A normal-mode approach is adopted to evaluate the dynamic response of the cable model defined
in the previous Section. A spectral expansion of the cable displacement function is introduced
as: w (x, t) =

∑N
n=1 φn (x) pn (t) , where N and pn are, respectively, the truncation mode number

and the nth modal displacement. Substitution of this series expansion in Eq. (1) yields after
some standard manipulations the following set of equations of motion in the modal basis of the
structure:

p̈n + ω2
npn +

1

γL

L̂

0

fD (x, t)φn (x) dx =
1

γL

1ˆ

0

fE (x, t)φn (x) dx, n = 1, 2, ..., N (18)

where a prime and a dot denote, respectively, derivation with respect to x and t.
By recalling the experimental evidences on cable self-damping and exploiting Eqs. (17), a

linearized form of the n-th equation of motion (18) can be introduced as:

p̈n + 2ωnζ
eq
n ṗn + ω2

npn =
1

γL

1ˆ

0

fE (x, t)φn (x) dx, n = 1, 2, ..., N (19)

where the equivalent modal damping ratio ζeqn = ζeqn
(
Ãn

)
is assumed to depend on the standard

deviation Ãn of the modal amplitude, which is linearly related to the standard deviation p̃n of
the n-th modal displacement through the equation: Ãn =

√
2p̃n.



Once the linearized equations of motion (19) are defined, the response can be calculated
through an iterative solution strategy. At each iteration, the variance of the n-th modal
displacement is first calculated as:

p̃2n =

(
ρDU2

2γ

)2

2ρnn

+∞ˆ

0

|Hn (ω)|2 S (ω) dω (20)

where S (ω) is the power spectral density function of the lift coefficient (see Eq. (6)), Hn =(
−ω2 + j 2ζeqn ωnω + ω2

n

)−1 and ρnn is defined as:

ρnn =

1ˆ

0

1ˆ

0

Coh (x1 (ξ1) , x2 (ξ2))φn (x1 (ξ1))φn (x2 (ξ2)) dξ1dξ2, ξi =
xi
L
, i = 1, 2 (21)

Once the variance of the modal coordinates is known, the standard deviation of the n-th
modal amplitude Ãn can be easily computed and substituted back in Eq. (17) to have a new
estimate of the equivalent modal damping ratio ζeqn . Within the framework of a standard fixed-
point algorithm, iterations are repeated until convergence on Ãn is obtained within a prescribed
tolerance.

After convergence is achieved, the standard deviation of any response quantity of interest can
be calculated, by approximately neglecting modal correlation, through a simple application of
the SRSS modal combination rule. Focusing on the standard deviation of the cable displacements
and of the Poffenberger-Swart dynamic bending stress, the following equations can be introduced:

w̃ (x) =

√√√√ N∑
n=1

p̃2nφ
2
n (x) (22)

σ̃a = Kps

√√√√ N∑
n=1

Ã2
nυ

2
n = 2Kps

√√√√ N∑
n=1

p̃2nυ
2
n (23)

Should these be needed, higher-order statistics of the response parameters can also be
calculated through standard techniques (e.g. [21]).

4. Application example
In this section, the proposed modeling approach and iterative solution strategy are applied to
investigate the dynamic response of a benchmark overhead electrical line span already studied
elsewhere [12, 11, 7]. The cable is a long ACSR Bersfort conductor (diameter D = 0.0356 m,
linear density γ = 2.375 kg/m, Rated Tensile Strength RTS = 180 kN). The cable length and
axial force are respectively equal to L = 450 m and T = 0.2RTS = 36 kN.

In order to characterize the wind input, the following assumptions have been made. The
Strouhal number is set equal to S = 0.185, as usual for Reynolds numbers and wind conditions
typical of overhead electrical lines. The values of the rms lift coefficient c̃ls and of the non-
dimensional bandwidth parameter B are site dependent and have not been explicitly reported in
the literature with reference to OHL applications, at the best of authors’ knowledge. Reference
values for these parameters are herein defined by looking at the values reported by Vickery and
Clark [22]for a slightly tapered cylindrical stack model, i.e.: c̃ls = 0.2 and B is defined in the
range B = [0.08, 0.32], with smaller values associated to laminar flow conditions and the larger
ones to a turbulence intensity of the order of 10%. The correlation length is assumed in the order
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Figure 1: ACSR Bersfort strung at T = 0.2RTS. (a) Standard deviation of the non-dimensional displacement at
midspan. Experimental data are from [15]. (b) Standard deviation of the Poffenberger-Swart dynamic bending
stress. Results are plotted for a non-dimensional bandwidth parameter B = 0.1 and two different values of
correlation length in diameters, i.e. l = 3 and l = 9.
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Figure 2: ACSR Bersfort strung at T = 0.2RTS. (a) Standard deviation of the non-dimensional displacement at
midspan. Experimental data are from [15]. (b) Standard deviation of the Poffenberger-Swart dynamic bending
stress. Results are plotted for a non-dimensional bandwidth parameter B = 0.2 and two different values of
correlation length in diameters, i.e. l = 3 and l = 9.

of few diameters of the cable, i.e. l is taken in the range l = [1, 10]. A more detailed calibration
of the input parameters of the wind input model could be obtained through in-situ experimental
measurements or wind tunnel tests on scaled models.

Figures 1 and 2 report the standard deviation of the non dimensional displacement at midspan
(Figs. 1(a) and 2(a)) and the standard deviation of the Poffemberger Swart dynamic bending
stress (Figs. 1(a) and 2(a)) for two different values of the bandwidth parameter B and correlation
length l. The vibration amplitudes obtained from the proposed procedure are compared to
experimental data recorded in the field by Hardy and Van Dyke [15] for a Bersfort conductor
strung at the same tension T = 0.2RTS tension considered in the numerical applications. The
agreement on the predicted vibration amplitude can be considered as good, taking also into
account that some of the parameters that describe the wind input are affected by a degree of
uncertainty.



5. Conclusions
In this work a new theoretical and computational stochastic framework is proposed for the
prediction of aeolian vibrations of OHL conductors. The proposed approach, which includes
a sound mechanical model of damping, can easily take into account the contributions of more
modes to the cable vibrations and dynamic stresses induced by vortex shedding phenomena.
This is a main difference with respect to current technical approaches based on the EBM.

The qualitatively and quantitatively good predictions for the standard deviation of the
midspan displacement obtained for a Bersfort conductor, whenever confirmed by more extensive
comparisons to experimental data, would pave the way to a full probabilistic description of
the Poffenberger-Swart dynamic bending stresses, allowing to advance toward a more refined
definition of the expected life of overhead conductors.
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