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Abstract
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performance of the resulting algorithms is compared to that of the p-k method on three
examples. The analysis is performed mode-by-mode, initiated from wind-off conditions
and gradually progressing until aeroelastic instability. The research findings highlight
the efficiency of continuation methods, thanks to their ability to refine the wind speed
mesh where the system experiences local variations related to rapid aeroelastic changes.
The various versions of the proposed algorithm show faster convergence than the direct
approach, but also excellent stability performance even in critical regimes. Finally, the
mode-by-mode solution allows the use of a custom wind speed mesh for each mode sepa-
rately and prevents mode swapping.
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1. Introduction

Modern design engineering faces numerous challenges when it comes to optimizing
the material, cost, and geometries of the design products. The aim of modern design
engineering is to achieve efficient designs that are not only lightweight and cost-effective
but also highly reliable and safe. Among all the design operations that engineers carry
out when designing a wing or bridge deck, flutter analysis is recognized as one of the most
crucial tasks when assessing dynamic behavior.

Flutter is an aeroelastic instability, characterized by self-excited vibration that occurs
in various types of structures such as aircraft and bridges. It can result in dangerous os-
cillations, or even total loss of the structure, which makes it a serious concern for design
engineers. In practice, most flutter analysis methodologies result in aeroelastic equations
of motion expressed in a wind-off modal basis, and formulated as a second order differ-
ential equation with frequency-dependent coefficients to model the aerodynamic loads.
The solution of the homogeneous differential equation is obtained by solving a nonlinear
eigenvalue problem, defining a critical state at which the transfer function is singular.
This particular point may not be unique, in which case the system admits several critical
states. On the contrary, it may not exist if the system is unconditionally stable, i.e.
flutter-free.

The determination of the critical velocities is only one part of the design engineer’s
job, that must also focus on the behavior of the structure for all wind speeds prior to
flutter, ensure comfort requirements, safety against fatigue, flutter condition assessment,
etc. Beside the classical flutter safety recommendation which ensures that the critical
velocity is far enough from the design wind speed [1] or airspeed, some other serviceabil-
ity or comfort criteria may be based on the maximum allowable structural response and
can be specified for instance for an absolute displacement, acceleration or rotation [2].
For wind speeds lower than the critical speed, a forcing (buffeting) term can be added
on the right hand side of the governing equation [3, 4], so that the response amplitude
can be determined to allow verification of these serviceability conditions. One efficient
framework to determine the response of such large-scale structures is provided by the
buffeting analysis in modal basis, which, besides the knowledge of all the structural and
aeroelastic matrices required for a nodal analysis, necessitates also the establishment of a
modal basis, possibly changing with wind speed. The determination of a modal basis is an
additional task but is the price to pay for taking benefit of the large computational cost
reduction associated with modal truncation. As a result, designers carrying out modal
analysis are not only interested in the solution of the critical state, but also in all states
prior to it. These states, referred to as pre-flutter states in this paper, are generally ob-
tained by solving the nonlinear eigenvalue problem for progressively increasing airspeeds.
By extension a pre-flutter analysis refers to the modal analysis of the aeroelastic system,
consisting in computing the eigenvalues and eigenmodes of the fluid-elastic system.

For some simple models such as the pitch/plunge model, the determination of these
states is quite straightforward, but this matter is rapidly complicated when considering
more sophisticated models, as required by some modern applications in which several
dozens of modes are sometimes considered [5, 6, 7, 8]. Today, an apparent difficulty
originates from the mode tracking when solving the eigenvalue problem with frequency
dependent matrices. Indeed, when multiple modes are considered, this frequency depen-
dency may lead to mode swapping, one important inconvenience for existing solution
techniques. A brief review of solution methods is presented in the next section.

This paper considers an alternative approach by investigating an explicit solution
for the nonlinear generalized complex eigenvalue problem. This solution is carried out
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mode-by-mode and hinders therefore any mode swapping to occur. A globally convergent
algorithm is then constructed using arc-length continuation methods offering hence a
systematic and quickly converging tool for determining the pre-flutter states in the manner
of those used in structural nonlinear push-over analyses [9, 10].

The specificity of arc-length methods relies in a continuation equation that is added
to a set of algebraic equations. Since we focus on a homogeneous critical problem, the
nonlinear eigenvalue problem is first transformed into a set of algebraic equations by
adding an eigenvector normalization equation. After formalizing the problem and the
proposed solution, this article presents in detail the continuation process, and constructs
accordingly the system of equations to be solved in the case of an aeroelastic problem. The
method is then illustrated on three selected examples. The performance of the method
in terms of convergence and computational cost are then compared to reference methods.

The fundamental theory of flutter is quite general, and can be specialized to aero-
nautical applications as well as civil engineering applications, even if of course, some
characteristic quantities are intrinsically linked to each specific field. The developments
presented in this article are perfectly general, and may be applied to any flutter applica-
tion, be it a wing or a bridge deck. For this reason, a general terminology is used in the
following so that the free stream airspeed will be sometimes referred to as wind speed,
while bridge deck width may also be translated to airfoil chord.

2. Problem statement

The most fundamental equation governing the dynamic behavior of an aeroelastic
system is

Msẍ(t) +Csẋ(t) +Ksx(t) = p(x(t), ẋ(t), ẍ(t)), (1)
where Ms, Cs, Ks are the nodal structural matrices of mass, damping and stiffness,
respectively expressed in kg, Nsm−1 and Nm−1, x(t) is the nodal displacement vector,
ẋ(t) its time derivative and p is the aerodynamic nodal force vector in N. The form of
p may significantly differ depending on the application, but can generally be modeled by
an operator of the nodal displacement x(t), velocity ẋ(t) and acceleration ẍ(t). Assum-
ing a Ritz–Galerkin approach [11], the nodal displacement x(t) is expressed as a linear
combination of m mode shapes Ψi (i = 1, . . . ,m) and associated modal amplitudes yi(t).
Hence x(t) = Ψy(t), where Ψ gathers the column ordered mode shapes, and y(t) is a
column vector collecting the modal coordinates yi(t). The choice of the modal basis is not
discussed in this article as the proposed methodology is not specific to any modal basis.
For instance, it can be the normal modes of vibration obtained with a detailed finite ele-
ment model [12] of an aircraft, or the modes of a bridge deck under a reference aeroelastic
loading, or Ψ may even be chosen equal to the identity matrix, in which case the modal
basis is the same as the nodal basis. The following methodology applies regardless of the
basis in which the problem is established.

Projection of (1) in the modal basis leads to

M∗
sÿ(t) +C∗

sẏ(t) +K∗
sy(t) = p∗(y(t), ẏ(t), ÿ(t)) (2)

where the modal matrices M∗
s = ΨTMsΨ, C∗

s = ΨTCsΨ and K∗
s = ΨTKsΨ and the

generalized modal force ΨTp(y(t), ẏ(t)) are introduced. For the sake of conciseness, it is
proposed to drop the superscript ∗ to denote to modal quantities in the following.

In aeronautic applications the load vector usually admits a simple canonical form [13,
14] such that aeroelastic equations are linear and read

Msÿ(t) +Csẏ(t) +Ksy(t)−
1

2
ρU2Q(k)y(t) = 0 (3)
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where Q(k) is the complex aerodynamic force matrix, ρ is the free stream air density,
U the free stream airspeed, k = ωb/U is the reduced frequency, ω is the frequency in
rad/s, b is a characteristic length. Eq. (3) is a time–frequency domain equation. The
aerodynamic load term involves the product of time and frequency dependent variables
Q(k) and y(t), which is formally wrong from a mathematical standpoint since the problem
should be formulated in the time or frequency domain, but not both at the same time. It
needs to be interpreted as a convolution in the time domain, and not as a product of two
functions of k and t respectively. To be explicit, in the frequency domain, Eq. (3) should
be understood as (

−Msω
2 + iωCs +Ks −

1

2
ρU2Q

(
ωb

U

))
Y(ω) = 0 (4)

where Y(ω) is the Fourier transform of y(t). Therefore this set of equations exactly
corresponds to a second order differential system with airspeed and frequency dependent
properties. Despite its lack of rigor, the time–frequency notation (3) is intensively used
in aeroelasticity [4, 13, 15], where the aerodynamic loads are most often established in
the frequency domain. For aircraft, the unsteady aerodynamic model is obtained from
solutions of the potential flow equations, such as the Doublet Lattice Method [16] or
the Source and Doublet Panel Method [15]. For bridges, the aerodynamic lift and drag
forces and moment acting on a bridge deck segment are expressed by means of Scanlan
derivatives A∗

i , P ∗
i and H∗

i , see for instance [17, 18] and [4, 19]

L =
1

2
ρU2B

(
KH∗

1

ḣ

U
+KH∗

2

Bα̇

U
+K2H∗

3α+K2H∗
4

h

B

)
D =

1

2
ρU2B

(
KP ∗

1

ṗ

U
+KP ∗

2

Bα̇

U
+K2P ∗

3 α+K2P ∗
4

p

B

)
M =

1

2
ρU2B2

(
KA∗

1

ḣ

U
+KA∗

2

Bα̇

U
+K2A∗

3α+K2A∗
4

h

B

)
,

(5)

where K = 2k is a reduced frequency, α(t) is the displacement in torsion, and p(t) and h(t)
are respectively the along and cross-wind displacements. Here again, the aerodynamic
loads exhibit the time–frequency format, as discussed previously.

The formulation (5) is fully compatible with the very general formulation usually
encountered in aeronautics 1

2ρU
2Q(k)y(t) as used in (3) but without aerodynamic mass

terms. More specifically, the vector Q(k)y(t) is composed of triplets gathering the lift,
drag and moment forces at each node. Each of them is expressed as

1

2
ρU24k2

 H∗
4 + iH∗

1 0 B(H∗
3 + iH∗

2 )
0 P ∗

4 + iP ∗
1 B(P ∗

3 + iP ∗
2 )

B(A∗
4 + iA∗

1) 0 B2(A∗
3 + iA∗

2)

h
p
α

 , (6)

where the Scanlan derivatives are all functions of k and the displacements h, p, and
rotation α are written in the frequency domain.

Eq. (3) is solved for the system’s eigenvalues at different airspeeds, altitudes and, for
compressible flows, Mach number values in order to investigate the stability of the system
at all flight conditions of interest. Several methods have already been proposed and are
reviewed in the next section.
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3. Existing Solutions

The eigensolution of (3) is usually obtained by defining a Laplace variable

p =
d

dt
(7)

and substituting into (3) to obtain(
Msp

2 +Csp+Ks −
1

2
ρU2Q(k)

)
y = 0. (8)

This definition of p is entirely equivalent to guessing a solution of the form

y = ϕept (9)

where ϕ is an eigenvector of the aeroelastic system and p the associated eigenvalue, and
then substituting into (3). Consequently, p can be seen as both a Laplace variable or a
system eigenvalue with the form p = r+ iω, such that its imaginary part is the frequency
of oscillation

ω =
kU

b
. (10)

The airspeed U is treated here as an input parameter. There are two typical approaches
for calculating p. The first one is called determinant iteration and determines r and ω
such that

|Msp
2 +Csp+Ks −

1

2
ρU2Q(k)| = 0. (11)

As the determinant is complex, Eq. (11) constitutes a set of two equations with two
unknowns that can be solved using a nonlinear solver at all airspeeds of interest. The
solution is started at U = 0 where r and ω are obtained from the eigensolutions of the
wind-off structural system. A set of determinant iterations is carried out for each system
state until the critical airspeed.

The second method is called frequency matching (or frequency lining-up) where the
eigenvalues of an augmented state space matrix A are evaluated

A =

(
−M−1

s Cs −M−1
s

(
Ks − 1

2ρU
2Q(k)

)
I 0

)
(12)

such that ℑ(p) = kU/b. Several algorithms have already been formulated to solve this
problem when A is a constant matrix, such as the QZ-algorithm [20] or Cholesky de-
composition [21] based solution. The solution is started near U = 0 (but not at U = 0
because k is infinite) with initial guesses for p and k from the solution of the wind-off
system. After each eigenvalue calculation, k is updated from k = ℑ(p)b/U until the old
and new values of k are nearly identical. Again, one set of frequency matching iterations
is carried out for each mode.

The matrix Q(k) is obtained numerically at a set of predefined discrete reduced fre-
quency values ki; it is calculated at intermediate values of k by interpolation. The prob-
lem that arises is the fact that Q(k) contains aerodynamic mass stiffness and damping
information but, due to their numerical nature, it is impossible to separate these con-
tributions. Consequently, several flutter analysis methods have been developed, such as
the k method [22], the p method [23], the p-k method [24], modified versions of the p-k
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method [25, 26] and the g method [27]. For instance, in the modified p-k method, the
matrix Q(k) is separated into its real and imaginary parts. Then, Eq. (8) becomes(

Msp
2 +

(
Cs −

1

2k
ρbUℑ(Q(k))

)
p+Ks −

1

2
ρU2ℜ(Q(k))

)
Y(ω) = 0 (13)

such that ℑ(Q(k)) represents aerodynamic damping and ℜ(Q(k)) aerodynamic stiffness.
Then, the p-k solution is obtained by calculating the eigenvalues of matrix

A =

(
−M−1

s

(
Cs − 1

2kρbUℑ(Q(k))
)

−M−1
s

(
Ks − 1

2ρU
2ℜ(Q(k))

)
I 0

)
. (14)

In civil engineering, the Scanlan derivatives for a particular bridge section are usually
estimated from wind tunnel experiments [28, 29, 30]. Accounting for (5), the equation of
motion (3) may be expressed as

[Ms −Mae(k, U)] ÿ + [Cs −Cae(k, U)] ẏ + [Ks −Kae(k, U)]y = 0 (15)

where Mae(k, U) is the aerodynamic mass matrix, Cae(k, U) the aerodynamic damping
matrix and Kae(k, U) the aerodynamic stiffness matrix. As the aerodynamic load contri-
butions are already separate, the issue of separating them out of a combined aerodynamic
load matrix does not exist and there is no need to apply the modified p-k or g methods.
Determinant iteration is carried out by solving

|[Ms −Mae(k, U)] p2 + (Cs −Cae(k, U)) p+ [Ks −Kae(k, U)]| = 0 (16)

while frequency matching is achieved by calculating the eigenvalues of matrix

A =

(
−M−1 [Cs −Cae(k, U)] −M−1 [Ks −Kae(k, U)]

I 0

)
(17)

where M = (Ms −Mae(k, U)).
A common problem with both determinant iteration and frequency matching is the

fact that, as the airspeed varies, mode swapping can occur. For example, if the imaginary
part of the eigenvalue of mode 1 is lower than that of mode 2 at a higher airspeed,
the solution procedure will follow the lowest imaginary part and produce an eigenvalue
branch that is a mix of the eigenvalues of modes 1 and 2. This situation can render the
resulting stability plots difficult to interpret, especially when several modes are getting
involved. Some methods based on scalar products of mode shapes or the Modal Assurance
Criterion (MAC) [31, 32] have been proposed to alleviate the mode swapping issue and
to reorder the output of the p-k method. As shown next, these methods are not unfailing
and sometimes offer disappointing performance. Manual sorting turns out to be the last
resort, but becomes rapidly cumbersome for larger systems.

Furthermore, the problem statement as formulated by the frequency matching method
results in a waste of resources as, at every single iteration, all eigenvalues of (12) are
calculated while only one of them is of interest. The unnecessary computational burden
increases with the size of the model, and becomes significant when complex models are
employed. Alternative algorithms may be more resource efficient by specifying a priori
the mode number being tracked, but must anyway at least evaluate several eigenvalues at
a time if these are close to another. The determinant iteration approach does not suffer
from this inconvenience.
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The article has thus far reviewed two categories of methods. However, the approach
adopted in this article does not belong to either of the above methods. It relies on
an explicit solution of the generalized complex eigenvalue problem to solve the flutter
equations. It may therefore be described as an hybridization between the two approaches.
By assuming a solution of the form of (9), the proposed method solves for both p and
ϕ, such that there is no possibility for mode swapping to occur, since the eigenvectors ϕ
are orthogonal to each other at the same airspeed U . The process is initiated in wind-
off conditions, as usual, and progresses towards the critical speed by implementing an
arc-length continuation process rather than following a user predefined mesh.

4. Description of the method

4.1. Transformation of the eigenvalue problem into a nonhomogeneous problem
Since (15) is a linear problem, its solution is

y(t) =

m∑
i=1

ϕie
λit, (18)

where m is the number of aeroelastic modes considered in the analysis, ϕi is the ith
mode of the aeroelastic system and λi is used instead of pi to emphasize that this is an
eigensolution. This eigenvalue is such that λi = −ξiω0,i + iωi where ω0,i = |λi| and ξi
take the meaning of an undamped circular frequency and a damping ratio. Substituting
(18) into (15) leads to

λ2
iM(ωi, U)ϕi + λiC(ωi, U)ϕi +K(ωi, U)ϕi = 0 (19)

where M(ω,U) = Ms − Mae(ω,U), C(ω,U) = Cs − Cae(ω,U) and K(ω,U) = Ks −
Kae(ω,U). This procedure is fully compatible with aircraft flutter; for instance, if the
modified p-k approach is used,

Mae(ω,U) = 0, Cae(ω,U) =
1

2k
ρbUℑ(Q(k)), Kae(ω,U) =

1

2
ρU2ℜ(Q(k)). (20)

If n refers to the initial number of coordinates to formulate the problem —nodal or
wind-off modal—, Eq. (19) defines a set of 2n nonlinear real equations, and stages 2(n+1)
real unknowns for a given airspeed U ; two for the real and imaginary parts of λi, and 2n for
the real and imaginary parts of the complex eigenvectors ϕi. This is typical of eigenvalue
problems where the underdetermination is associated with the freedom to normalize the
eigenvectors in any desired way. Consequently, a nonlinear algebraic problem can be
obtained by supplementing two additional equations to normalize the eigenvectors. The
normalization conditions chosen here are

ℜ{ϕi} · ℜ {ϕi} = 1 and ℑ{ϕi} · ℑ {ϕi} = 1. (21)

For a chosen airspeed, Eqs. (19) and (21) form a closed set of 2(n+1) nonlinear algebraic
equations with 2(n+1) unknowns. Introducing the objective function f(x, U), the problem
may be expressed in the general form

f(xi, U) = 0, with xi =
[
ℜ(λi), ℑ(λi), ℜ(ϕi)

T , ℑ(ϕi)
T
]T

, (22)

and solved numerically for each mode and all U of interest using classical nonlinear solvers,
such as the Newton–Raphson [33], Krylov [34] or [35] methods. The convergence of such
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algorithms may be quite sensitive to the initial guess and divergence may occur for some
chosen U without apparent reason, especially when the aeroelastic system experiences
rapid changes.

Note also that since (22) corresponds to a mode-by-mode approach, its solution for
each mode can be carried out separately, possibly in parallel.

4.2. The continuation process
The continuation process is based on introducing a continuation equation to the above

system (22). In parallel, the airspeed is now considered as a variable rather than a
parameter. Introducing D, the 2n+3 dimensional space defined by the real unknowns of
the problem —namely air speed U , eigenvalues λi and eigenvectors ϕi— and starting from
a known point p0 ∈ D that is a solution of f(x, U) = 0, the chosen arc-length method
consists in finding the intersection of the objective function f(x, U) with the hypersphere
of radius r, defined in D and centered on p0 = (x0, U0). The situation is illustrated in two
dimensions in Figure 1, which plots two eigensolution branches —denoted by Mode 1 and
Mode 2. Mode 1 is being tracked. Point (x0, U0) lies on Mode 1; the two intersections of
this branch with the hypersphere centered at (x0, U0) are determined and the process is
repeated by placing the new center at the rightmost root. The equation of the hypersphere
is

r2 =

(
U − U0

Uref

)2

+

(
ℜ(λ)−ℜ(λ0)

ℜ(λref)

)2

+

(
ℑ(λ)−ℑ(λ0)

ℑ(λref)

)2

+

n∑
k=1

(
ℜ(ϕk)−ℜ(ϕ0,k)

ℜ(ϕref,k)

)2

+

(
ℑ(ϕk)−ℑ(ϕ0,k)

ℑ(ϕref,k)

)2

(23)

where the quantities with subscript ref are scaling parameters chosen to make sure that
((U −U0)/Uref)

2 and each term of the dot product in (23) have the same order of magni-
tude, so that they all bring a similar contribution to the sphere radius. In total for each
mode, there are 2n + 3 unknowns and as many equations. The physical interpretation
of the augmented system is important: in the current iteration, the solution of (22) is
searched in space D so that the solution lies precisely at a distance r from the last con-
verged point p0. The introduction of rescaling parameters relative to any direction of D
and therefore the choice of an hyperellipsoid for (23) makes this equation dimensionally
consistent; each term in the sum is dimensionless, as is the radius of the hypersphere. As
well as being very general, this form allows the user to deform the hypersphere in any di-
rection, potentially adjusting the weight relative to any direction. The freedom in choosing
the rescaling parameter is a feature discussed and illustrated later in Section 5.2. Intro-
ducing the rescaling matrix, S−1 = diag

[
ℜ(λref), ℑ(λref), ℜ(ϕref,1), . . . , ℑ(ϕref,N )

]
,

the hypersphere equation can be written as

r2 =

(
U − U0

Uref

)2

+ (x− x0)
TSTS(x− x0). (24)

The system defined by (22) and (24) may then be solved to determine a new point on
the branch. The identification of one single point, or one pre-flutter state, is referred to
as one step within the algorithm and requires several iterations to be reached.

In practice, the process is initiated in wind off conditions and progresses in the in-
creasing airspeed direction. Starting from U0 = 0, where the initial state x0 is easily
obtained from the wind-off solution, a nearby point on the branch is found by solving
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Airspeed U

Mode 1

Mode 2

Figure 1: Illustration of the arc-length procedure in 2D space. The first iteration of the current step is
investigated.

(22) and (24). For small sphere radius, there are two solutions, one at a higher one at a
lower airspeed. The intersection at the highest of the two airspeeds is retained. This new
point on the branch is then considered as the next starting point (x0, U0) and the process
is repeated until flutter conditions are reached. The step length between two consecutive
points in D is equal to r. However in a subspace E ⊂ D, the step length depends on
the gradient of f in D. For example, if the steps of length r separating three consecutive
points of a branch are (∆Uj ,∆xj) and (∆Uk,∆xk), the steps in the U -direction ∆Uj and
∆Uk may not be equal and, likewise, the step ||∆xj || may not be equal to ||∆xk||. This
is one of the advantages of arc-length methods with respect to the systematic solution of
(22) for a constant airspeed step ∆U , as the latter is smaller only where required.

The arc-length algorithm presented here is adapted from [9], whose approach consists
in solving (22) and (24) using numerical nonlinear solvers; it will be referred to in the
present work as Riks method. Furthermore, it is possible to take advantage of the fact
that the problem is quadratic in U to improve this method. Linearizing f(x, U) in (22)
around the i-th point on the branch, (xi, Ui), and solving for x gives

x = xi − J−1
x (xi, Ui) [f(xi, Ui) + JU (xi, Ui)(U − Ui)] (25)

with Jx(x, U) =
∂f

∂x
(x, U) and JU (x, U) =

∂f

∂U
(x, U). Substituting (25) in (24) results

in a quadratic equation in the sole unknown U

(1 + bTSTSb)U2 − 2(U0 − aTSTSb)U + U2
0 − (r Uref)

2 + aTSTSa = 0 (26)

with

a = xi − x0 − J−1
x (xi, Ui)

[
f(xi, Ui)− JU (xi, Ui)Ui

]
b = −J−1

x (xi, Ui)Ju(xi, Ui).

This quadratic equation in U is easily solved analytically to obtain the two intersections
with the hypersphere of radius r. As mentioned earlier, the rightmost solution is retained.
Rejecting systematically the lowest root prevents any unwanted changes in the continua-
tion direction. The new flight speed U is now used to evaluate a new x by solving (22)
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using a Newton–Raphson or Broyden method. The idea of exploiting the quadratic na-
ture of the continuation equation (24) was first raised by [36]. In the present work, this
approach will be referred to as Crisfield’s method.

It must be highlighted that both Crisfield’s and Riks’ methods are tracking strate-
gies. All continuation methods augment the nonlinear system by adding one additional
tracking equation. This larger system must be solved with a nonlinear solver. Therefore,
a continuation algorithm combines a tracking procedure and a nonlinear solver.

Note that, in regions where the curvature of the eigensolution branch is very high,
the linearization used to obtain (25) may result in an airspeed prediction that lies too far
from the branch for the Newton–Raphson calculation to converge. In such situations, the
value of r may need to be reduced, by means of an arc-length step adaptation procedure.
Note also that, as long as the solver converges, using a coarse radius r only affects the
resolution of the branch, not the accuracy, as the latter is ensured by the convergence
criterion.

As a summary of this development section, a flowchart describing the workflow of the
continuation methods is proposed in Figure B.20 of Section Appendix B. This workflow
is illustrated for a full multi-modal pre-flutter analysis, including the three loops on the
modes, the wind speed U and the iterative loop of the nonlinear solver.

4.3. Hypersphere radius adaptive refinement strategies
The choice of the radius r depends on the mesh density required by the user. It

must be chosen based on the scaling parameters Uref, λref, . . . that are calibrated on the
expected orders of magnitude desired for each component j = 1, . . . , N of the step xj−x0,j

and U − U0. The procedure for the selection of these scaling parameters is discussed in
Section 5.2. The initial radius is typically chosen of order 1, but is highly correlated to
the scaling parameters chosen by the user. After one or several iterations, the radius r
may be updated to improve the behavior of the solution: decreasing r produces a better
guess for the subsequent iterations, while increasing it will decrease the computational
cost. Different strategies for adapting the radius to the gradient of the objective function
have been proposed. One such strategy is to define an upper and a lower threshold for the
number of iterations to convergence of the previous step above or below which the current
radius is multiplied or divided by a chosen factor m ∈ R0 —for instance m = 2. One
problem with this approach is that, depending on m, either the radius becomes rapidly
very small (or very large), or it may take a long time for the radius to stabilize to the
appropriate value when m is close to unity.

Another strategy depends on the number of iterations required for the Newton–
Raphson system to converge at two consecutive points on the branch. If point i − 1
is obtained after mi−1 iterations and point i after mi, a convergence ratio can be defined
as

βi =
mi−1

mi
. (27)

Then, the value of the radius used to predict point i+ 1 is given by

ri+1 = βiri (28)

such that βi becomes an amplification or reduction factor. In practice, it is recommended
to limit the number of iterations to around 20. If convergence has not been achieved after
this number of iterations, it is possible to return to point i, or even i − 1, and reduce r
by a bigger factor, e.g. ri+1 = ri/2.
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Figure 2: Schematic representation of the flat plate used in illustration 1 and 2.

While the first strategy allows the radius to take theoretically any value in a discrete
set {r0 ·mp} with p ∈ Z, the second strategy is more flexible and allows r to take any
value in R0. It is also more reactive as it accommodates brutal changes in gradients,
and adapts in consequence the radius rapidly, while the first method would likely require
many more updates of the radius before stabilizing. The second method is used in the
following examples.

5. Illustrations

In this section, the behavior of the algorithm will be illustrated on three selected ex-
amples. The first two illustrations are both 2-mode applications; a bridge deck, and a
theoretical airfoil. The last application consists in a generic 7-mode aircraft model. The
robustness of the continuation methods introduced previously will be discussed, and their
performance in terms of computational burden and accuracy will be compared investi-
gating two criteria: the number of iterations and the number of function evaluations.

It is important to note that the number of iterations may not be appropriated to
compare the computational efficiency of two different methods, as the load associated
with an iteration is not necessarily the same for each method. The three continuation
methods have similar workloads in a given iteration, but these workloads are different
from that of the p-k method. Therefore computational efficiency can be discussed based
on the number of iterations to compare the continuation methods between themselves,
but not to compare the continuation and p-k methods. The same applies to the second
criterion, the number of function calls.

It must also be kept in mind that a fair comparison of the cumulated number of iter-
ations is not possible when two computed curves have different numbers of points; more
points require inevitably more iterations. To allow for a fair comparison, the continu-
ation methods are set to use the same refinement strategy and the same sphere initial
parameters —see Table 2. Concerning the p-k method, the number of points was chosen
to match approximately that of the other three methods.

5.1. Profiled bridge deck modeled with Scanlan’s derivatives
The first test case is a pitch/plunge model of an idealized flat plate, namely the sim-

plest model encapsulating the essential aerodynamic phenomena from which the unsteady
aerodynamics of coupled aeroelastic systems may be investigated. The simplicity of this
model makes it an ideal benchmark for validating computational tools and simulations.

11



Table 1: Parameters for the first two proposed case studies. All the parameters are measured in wind-off
conditions (U = 0 m/s). Variables ξs,α and ξs,h respectively refer to the structural damping in pitch and
plunge motion.

Parameters App. 1 App. 2 Units
Mass moment of Inertia Iα 2.46× 106 0.0703 [kg.m2/m]
Mass moment of inertia Iα 2.46× 106 0.0703 [kg m2/m]
Foil/Deck mass ms 22 470 13.5 [kg/m]
Natural frequency fs,h 0.1 5 [Hz]
Natural frequency fs,α 0.278 6.5 [Hz]
Damping ratios ξs,θ and ξs,h 0.3 / 0.3 0 / 0 [%]
Foil/Deck width c or B 31 0.25 [m]
Pitch axis xf B/2 0.46 · c [m]
Air density ρ 1.22 1.22 [kg/m3]
Aeroelastic model Theodorsen Theodorsen+Jones –

Figure 3: Application 1.Variation of natural frequencies and damping ratios with airspeed, calculated
using the p-k method. The circle markers denote the pre-selected airspeeds at which the analysis was
carried out.
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Figure 4: Application 1. Variation of natural frequencies and damping ratios with airspeed, calculated
using the three continuation methods.

In this case study, a bridge deck is modeled as a pitch/plunge model of a flat plate, as
proposed in the benchmark published by [37]. A drawing of the deck section subjected to
aeroelastic loading is shown in Figure 2, while table Table 1 summarizes all the parameter
values used in this example. Adopting Scanlan’s nomenclature for the aeroelastic loads,
the frequency domain representations of the lift l(t) and moment m(t) are described by
the aeroelastic matrices Mae = 0, Cae and Kae, obtained from equation (5),

Cae(ω,U) =
1

2
ρUBK

[
H∗

1 (K) BH∗
2 (K)

BA∗
1(K) B2A∗

2(K)

]
Kae(ω,U) =

1

2
ρU2BK2

[
H∗

4 (K)/B H∗
3 (K)

A∗
4(K) BA∗

3(K)

]
(29)

where the flutter derivatives H∗
1 (K), H∗

2 (K), H∗
3 (K), H∗

4 (K) and A∗
1(K), A∗

2(K), A∗
3(K),

A∗
4(K) are functions of the reduced frequency K = ωB/U = 2k and the wind speed U .

These functions are analytically derived from [38], neglecting the added mass effects that
are usually low in wind engineering applications. This leads to the following equations as
established by [4] for the case where the rotation axis is located at the center of the plate
(xf = c/2)

H∗
1 = −V ∗F, A∗

1 = −V ∗

4 F

H∗
2 = V ∗

4 (1 + F + V ∗G) A∗
2 = −V ∗

16

(
1− F − 2

πV
∗G
)

H∗
3 = V ∗

2π

(
FV ∗ − π

2G
)

A∗
3 = V ∗

8π

(
FV ∗ − π

2G
)

H∗
4 = π

2

(
1 + 2

πV
∗G
)

A∗
4 = V ∗

4 G,

(30)

where V ∗ = 2π/K, F and G are respectively the real and complex parts of Theodorsen’s
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Figure 5: Application 1. Number of iterations (nit) and cumulated number of iterations for Mode 1 in
(a,c) and Mode 2 in (b,d). The conclusion regarding the computational loads of the continuation methods
should be made with care, as the workload per iteration for each method is not exactly the same.
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function C(k) = F + iG, given by

C(k) =
−J1(k) + iY1(k)

−(J1(k) + Y0(k)) + i(Y1(k)− J0(k))
(31)

k = ωb/U , J0(ki), J1(ki) are Bessel functions of the first kind and Y0(ki), Y1(ki) are
Bessel functions of the second kind.

Once the aeroelastic loads are prescribed, the pre-flutter analysis can be carried out
using the four methods presented in the previous section. The first method is the p-
k method, and the others are three continuation methods: the Riks-Newton–Raphson
(Riks-NR) couples the Riks method with a Newton–Raphson solver, while the Crisfield–
Newton–Raphson (Crisfield–NR) and the Crisfield–Broyden techniques, respectively im-
plement the Crisfield method together with a Newton–Raphson and Broyden solver, see
for instance [33].

The results obtained with the p-k method are shown in Figure 3. In this figure, the
circle markers denote the pre-selected airspeeds at which the system was solved. It can
be seen that the natural frequencies of the two modes vary with airspeed, approaching
each other as the airspeed increases. Both damping ratios initially increase with airspeed
but, for U > 63 m/s, the damping of mode 1 starts to decrease while the other increases
faster. This phenomenon is the typical binary flutter mechanism, whereby one of the
modes transfers all of its energy to the other, such that the latter becomes undamped at
U = 75.8 m/s and negatively damped at higher airspeeds.

The flutter solutions obtained using the three continuation methods are shown in
Figure 4. Every single point of every curve is converged, as it satisfies the condition of
maximum required tolerance on the residual defined as the euclidean norm of the objective
function f (x, U),

Res =

√√√√ N∑
i=1

f2
i (x, U) ≤ abstol = 10−4, (32)

so that all results are the same and all curves are overlaid within the user defined tolerance.
Contrary to the p-k method, for which a uniform mesh in wind velocity U was imposed,

each of the other three methods uses different custom nonuniform meshes. This is because
of the adaptive refinement strategy of the sphere radius r, that increases or decreases the
step between two consecutive points based on the number of iterations required by the
method to converge, but also because of the gradient in D. Each analysis is however
initiated with the same algorithm parameters (see Table 2), and these are automatically
adapted depending on the method’s progress. The second refinement strategy presented
in Section 4.3 was used for all examples presented in this article.

The convergence speed of the methods may be discussed by comparing the number of
iterations required for each point to converge, depending on the chosen method. Figure 5
shows in (a) and (b) the number of iterations required by the four methods to obtain every
point of the pre-flutter curve. It is seen that the Crisfield–Broyden methods is always more
iteration demanding. This is because this method has an inexact or even no knowledge of
the Jacobian matrix. As a consequence it progresses in a sub-optimal manner to find the
solution of the system. The other two methods have equivalent performance concerning
the number of iterations. Figures (c) and (d) show the cumulated number of iterations
and depict the clear separation between the two groups of methods.

The number nfev of evaluations of the target function f(x, U) for the continuation
methods is presented in Figure 6(a) and (b), and its cumulate is shown in (c) and
(d). Clearly, Riks method requires significantly more function calls than the others with

15



Figure 6: Application 1. Number of calls (nfev) and cumulated number of calls to target function f(x, U)
for mode 1 in (a,c) and mode 2 in (b,d).

20 40 60 80

(a)

20

30

40

50

60
n

fe
v

[-
]

20 40 60 80

(b)

20

40

60

80

100

120

140

20 40 60 80

Wind Speed U [m/s]

(c)

0

200

400

600

cu
m

u
la

te
d

n
fe

v
[-

]

Crisfield-Broyden

Crisfield-NR

Riks-NR

20 40 60 80

Wind Speed U [m/s]

(d)

0

200

400

600

800

1000

1200

roughly 50 calls per point on average, as opposed to the Crisfield methods that require
approximately half of that. The Broyden technique is slightly less expensive than the
Newton–Raphson method, since it estimates the Jacobian based on the current and pre-
vious evaluations of f(x, U). For this flutter analysis, the Crisfield–Broyden method saves
approximately 30% of the total number of calls with respect to the Crisfield–Newton–
Raphson approach, and more than 130% with respect to the Riks method.

5.2. Pitch-Plunge model of an idealized flat airfoil
The second application is also a flat plate, but the lift and moment are expressed as

[13]

m(t) =

[
ρπb4

8
ω2α+ πρUec2C†(k)

(
Uα+ iωh+

(
3

4
c− xf

)
iωα

)
−
(
3

4
c− xf

)
ρπb2U iωα+

(
xf − c

2

)
ρπb2

(
−ω2h+

(
xf − c

2

)
ω2α

)]
eiωt (33)

and

l(t) =

[
ρπb2U iωα+ πρUcC†(k)

(
Uα+ iωh+

(
3

4
c− xf

)
iωα
)

+ ρπb2
(
−ω2h+

(
xf − c

2

)
ω2α0

)]
eiωt (34)
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with c referring to the chord, xf the distance from trailing edge to the pitch axis, while
b = c/2 is the half-chord and e = xf/c−1/4. The variables h and α0 represent the modal
amplitude for the pitch and plunge motions, respectively, and finally, the function C†(k)
stands for Jones’ approximation of the Theodorsen function [39],

C†(ki) = 1− 0.165

1− 0.0455
ki

i
− 0.335

1− 0.3
ki

i
. (35)

Using the definition of equation (3),

1

2
ρU2Q(k)

=


−ω2m+ πρUcC†(k)iω

−ω2ρπb2
ρπb2U iω + ρπb2

(
xf − c

2

)
ω2

+πρUcC†(k)
(
U +

(
3
4c− xf

)
iw
)

−πρUec2C†(k)iω
+
(
xf − c

2

)
ρπb2ω2

( 34c− xf )ρπb
2U iω

−πρUec2C†(k)
(
U + ( 34c− xf )iω

)
−
(
xf − c

2

)
ρπb2ω2 − ρπb4

8 ω2

. (36)

This aeroelastic model is similar to that used in Section 5.1, excepted that Jones’ approx-
imation [39] is used, and that the equations presented here accommodate the possibility
that the rotation axis is not located at the foil center xf ̸= c/2. The structural matrices
are built according to Figure 2. Introducing the plate mass ms per unit length,

Ks =

[
Kh 0
0 Kα

]
, Cs = 0, M =

[
ms S
S Iα

]
(37)

where Ia = ms

3

[
c2 − 3(x− cf )xf

]
is the mass moment of inertia of the plate per unit

length, with respect to the rotation axis and S = m
(
c
2 − xf

)
the static imbalance. The

stiffnesses Kh and Kα are evaluated from the wind-off natural frequencies fα and fh.
The pre-flutter modal analysis is first carried out using the p-k method to give the

results shown in Figure 7. There is one mode swapping around 30 m/s. This is in this case
the lesser evil knowing that those points are by far supercritical —the critical velocity is
slightly lower than 25 m/s— but illustrates well the possible shortcomings of the method.
An attempt at automating data post-processing is presented in Section Appendix A to
discard this problem of mode swapping by restoring mode shapes continuity by means of
the scalar product of computed mode shapes and mode shapes obtained at the previous
step. A detailed code snippet of the developed algorithm is proposed in Figure A.18. The
processed output corresponding to the data shown is detailed in Figure 15 is represented
in Figure A.19, illustrating a failure of the algorithm to prevent mode swapping, despite
the sorting correction.

Concerning mode swapping, the continuation methods behave much better: there
is no mode swapping because the analysis is conducted separately for each mode. In
the post-critical regime, where the p-k method requires more iterations for convergence,
the continuation methods converge without any trouble. However, the adaptive meshing
feature of the continuation methods reduces automatically the radius r in this regime, as
seen by the larger mesh density around 25 m/s in Figure 8. When the algorithm converges
less rapidly, smaller radii are chosen as discussed in Section 4.3, and, on the contrary, a
larger radius is selected when the solver converges faster. To illustrate the behavior of the
algorithm, the variation of the radius with respect to U is shown in Figure 9. For small
wind speeds, the radius is constant; it decreases significantly at around 25 m/s, only to
increase again at higher airspeeds. Methods that converge faster are more likely to use a
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Figure 7: Application 2. Variation of natural frequencies and damping ratios with airspeed, calculated
using the p-k method. Mode swapping occurs around U = 30 m/s.

Figure 8: Illustration 2. Results of the pre-flutter analysis (a) Undamped eigenvalues and (b) Damping
ratios for the first and second modes derived with the three continuation methods.
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Figure 9: Application 2. Evolution of the sphere radius with respect to the wind speed U for the 3
continuation methods.

less dense mesh. For instance, the Crisfield–NR method seems to use globally larger radii
than the other methods. The second reason for this local refinement is a consequence
of the variation in gradients Jx and JU . Indeed, the radius r2 given in equation (24) is
expressed as a weighted sum of ∆U2 = (U−U0)

2 and the squared norm of the step vector
dx = x− x0 derived from equation (25)

x− x0 = −J−1
x (x0, U0) [f(x0, U0) + JU (x0, U0)(U − U0)] . (38)

Therefore, if the component related to the norm of dx is negligible with respect to r, the
distance between two consecutive points will mostly be driven by U − U0.

The behavior of the adaptive refinement is also sensitive to the scaling parameters
provided by the user. The parameter Uref is probably the easiest to fix. For a radius
r ≈ 1, it can be chosen so that, in a given step where all variations dxj =

xj−x0,j

xref,j
are zero

for all j, the distance between two consecutive points Ui−U0,i is equal to rUref. The same
principle is used to select xref,j, which must be chosen such that the largest expected step
in the j direction dxj =

xj−x0,j

xref,j
is at most equal to r. Hence, if all variations dU and dxi

are negligible, with i ̸= j, the largest allowed step xj − x0,j is rxref,j .
The choice of the scaling parameter is also a tool for the improvement of the conver-

gence of the method. For instance, if the user is able to identify directions in D along
which no or almost no variation of the modal properties is observed, these can be dis-
carded to drive the algorithm towards preferential directions where large gradients are
observed, reducing hence the number of variables effectively contributing to the hyper-
sphere radius. Such an approach may be referred to as a cylindrical arc-length method
(see [41]), by reference to the shape of the continuity equation, initially spherical, that
degenerates into a cylinder due to large xref. The use of a cylindrical continuation scheme
is useful in large systems, where local contributions to the hypersphere radius of some
directions in D are annihilated by a much larger fraction of other directions along which
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Figure 10: Application 2. Effect of the scaling parameters related to the mode shapes ϕ1 and ϕ2. (a)
Cylindrical arc-length: xref,j = 100, and (b) spherical arc-length xref,j = 0.01.

Figure 11: Application 2, with xf/c = 0.5 instead of 0.46. Effect of the scaling parameters related
to the mode shapes ϕ1 and ϕ2. (a) Cylindrical arc-length: xref,j = 100, and (b) spherical arc-length
xref,j = 0.01. All other parameters are identical to those given in Table 2.
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Figure 12: Application 2. Number of iterations (nit) and cumulated number of iterations for mode 1 in
(a,c) and mode 2 in (b,d). The conclusion regarding the computational loads of the continuation methods
should be made with care, as the workload per iteration for each method is not exactly the same.
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Figure 13: Application 2. Number of calls (nfev) and cumulated number of calls to target function f(x, U)
for mode 1 in (a,c) and mode 2 in (b,d).

Figure 14: Schematic of the structural model of the GTA. Adapted from [40].
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Table 2: Algorithms parameters used for the 3 proposed case studies.
Parameters App. 1 App. 2 App. 3 Units
Initial radius r0 0.7 3 4 [–]
Min. Radius rmin 0.05 0.5 0.5 [–]
Min. Radius rmax 2. 7 5 [–]
Ref. Speed Uref 10 1 10 [m/s]
Ref. ℜ{λi} 1000 0.2 / 0.3 1 [rad/s]
Ref. ℑ{λi} 0.3 1 5 [rad/s]
Ref. coordinate ϕij,ref 1 100 1 [–]

no gradient is observed.
In the present case, the mode shapes exhibit a linear variation with airspeed U , and

this tendency is already well captured with a few points, as seen in Figure 10(a). Adding
more points by decreasing ℜ [ϕref] and ℑ [ϕref] will not improve the representation of
ϕi, as illustrated in Figure 10, where a comparison between the mode shapes obtained
with ℜ [ϕref] = ℑ [ϕref] = 100 in (a) and ℜ [ϕref] = ℑ [ϕref] = 0.01 in (b) is illustrated,
but where no apparent difference is observed due to the low variations of the gradients
∂ϕ
∂U . To illustrate the differences between cylindrical and spherical arc-length, the same
comparison as that made in Figure 10 is carried out in Figure 11, where the pitch axis
xf of the considered structure is set to 0.5c instead of 0.46c to observe larger gradient
variations in the modes shapes. This figure shows that the mode shapes obtained in
(b) are significantly smoother than those in (a), but a reasonably good description was
already achieved in (a). It is important to recall that each point in the curve is calculated
with the same absolute tolerance and that the density of the mesh does not influence this
accuracy. However, interpolation errors may sometimes be induced for instance if the
modes shapes in Figure 11 (a) are used instead of those in (b). Therefore, the resolution
of the resulting data must be verified to limit interpolation errors when interpolating
between two consecutive points, as is required in order to pinpointed exactly the flutter
airspeed [42, 43].

To analyze the performance of the methods, the number of iterations is compared in
Figure 12 and contrasts well the behavior of the Riks and Crisfield methods. The latter
reduce by a factor 2 or even 3 the number of iterations with respect to Riks method.
It must be noted that around 23 m/s, the Crisfield–Broyden method failed to converge
after 15 iterations — i.e. the maximum allowed number of iterations. The reason for
this is that this point is close to the critical velocity, and important variations in the
gradients of f(x, U) are expected there, affecting the performance of Broyden’s method,
which estimates the Jacobian from previous and current values of f . This particular
point requires 21 iterations in total instead of the 15 allowed. Except for this detail,
the Crisfield–Broyden and Crisfield–NR techniques perform equally well, as confirmed
by Figure 13, reducing the number of function calls per iteration by a factor of 2 or 3,
and dividing by 2 the total cumulated number of calls required for a full flutter analysis.
The Crisfield–NR method slightly outperforms the Crisfield–Broyden approach as shown
in Figure 13(c) and (d) in terms of function calls, but Newton–Raphson requires the
evaluation of the Jacobian matrix which is estimated by Broyden’s method. Hence,
because the evaluation of f potentially represents two different computational loads, a
time-based benchmarking seems to be the only way to arbitrate which method is the
most time-efficient between Broyden and Newton–Raphson, if computational time is the
governing concern.
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5.3. Benchmark of the Generic Transport Aircraft (GTA)
The last illustration is a multi-mode model of a generic transport aircraft. The in-

vestigated prototype is taken from the ZAERO manual [44], and was used in the past by
several authors [40, 45]. The model was generated using MCS-NASTRAN software and
incorporates structural information from a simplified finite element model of the aircraft,
whose mesh is schematically illustrated in Figure 14, and aerodynamic loads obtained
using the doublet lattice method.

Using Roger’s approximation [46], the aerodynamic forces Q(k) are written in the
form

Q(k) = A0 +A1k +A2k
2 +

nl∑
j=1

A2+j
k

k + γj
(39)

where Aj are nm×nm real matrices, nm is the number of modes considered in the analysis
and γj are aerodynamic lag coefficients given by

γj = −1.7kmax
j

(nl + 1)2
(40)

with kmax referring to the maximum reduced frequency at which the aerodynamic matrix
Q(k) is evaluated by NASTRAN, and with nl = 4. The number of retained modes is
chosen equal to 7.

The variation of the natural frequencies and damping ratios with airspeed is displayed
in Figure 15, revealing that the flutter mechanism is binary, while the other five modes
are only slightly affected by aerodynamic effects, except their damping ratios which vary
linearly with U . Figure 16 presents a less overloaded view of the eigenvalues, determined
using the Crisfield–Broyden method in (a) and p-k method in (b). Once again, mode
swapping can be observed at and airspeed of around 180 m/s in the predictions of the
p-k method.

As this flutter analysis is conducted on a mode-by-mode basis, the inclusion of 7 modes
in the system is not more difficult than the previous case studies involving only 2 modes.
Naturally, this expansion entails an anticipated increase in computational workload: the
single-mode analysis is now repeated 7 times instead of twice.

In addition, Figure 15 emphasizes one of the primary advantages of the arc-length
method, which is its ability to fine-tune the mesh at specific wind speeds where refinement
is necessary. In this example, modes 1 and 3 require a local refinement around 220 m/s,
but a coarse mesh may be used elsewhere. This local refinement is well captured by
continuation methods, in Figure 15(b) where the mesh density for mode 1 and 3 at
220 m/s is much higher than for speeds lower than 100 m/s. Furthermore, the mode-
by-mode analysis allows a coarser mesh to be used for all other modes whose properties
remain constant throughout the flight envelope. In this example, among the 7 modes in
total, 5 of them remain mostly constant so that the local refinement required by mode 1
and 3 must not be transposed to other modes. Here for 7 modes in total, the absolute
work load saving is not substantial. But when many modes are involved, mesh refinement
allows for an appreciable potential reduction in the global computation load with respect
to methods that use a uniform and likely fine mesh identical for all modes of the system.

The number of function evaluations is presented in Figure 17 for modes 1 and 3.
It depicts once more the same tendency as observed in the first two illustrations: the
two Crisfield methods converge more rapidly. For a full flutter analysis, the number of
function evaluations is reduced by a factor of 3 approximately for modes 1 and 3.

Modes 2, 4, 5, 6 and 7 are also good candidates to illustrate the sensitivity of the
algorithm to badly chosen scaling parameters Uref and xref. Taking a closer look, for
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Figure 15: Illustration 3 (GTA Benchmark). Results of the pre-flutter analysis (a) Undamped eigenvalues
and (b) Damping ratios derived with the 3 considered methods.

Figure 16: Illustration 3. Results of the pre-flutter analysis with (a) p-k method and with (b) Crisfield–
Broyden. A mode swapping may be seen in (a) around 180 m/s.
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Figure 17: Application 3. Number of calls (nfev) and cumulated number of calls to target function f(x, U)
for mode 1 in (a,c) and mode 3 in (b,d).

instance at the 5th mode, it is evident that it does not affected significantly by the aero-
dynamic loads, at least within the specified airspeed range. This mode exhibits constant
properties, including constant eigenvalue, almost constant damping ratio and constant
mode shape; it is insensitive to U . As a consequence, the only variation expected in
the space D will be exclusively in a direction parallel to U . In such a case, performing
cylindrical steps by discarding the U direction from the line search direction —i.e. choos-
ing Uref → ∞— results in a divergence of the algorithm. To illustrate this issue, if the
analysis is conducted for the 5th mode with Uref = 100 m/s instead of Uref = 10 m/s as
presented before, the algorithm diverges. Then, if the scaling parameters have a major
importance on the quality of the local refinement performed by the algorithm, they could
also potentially govern the stability of the solution when badly chosen. Therefore, their
selection should sometimes be approached with careful consideration, especially in cases
where gradients are unidirectional or almost unidirectional— i.e. nearly all columns of Jx

are empty. In these particular cases, the use of cylindrical arc-length methods is the most
appropriate choice to ensure stability. One of the key principles to ensure the robustness
of the method can be summarized as including in the continuation equation at least one
direction of D that affects f(x, U), and being aware that reducing the dimensions of the
hypersphere does not necessarily improve the speed of convergence.
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6. Conclusion

In this study, an arc-length continuation process was proposed as an alternative to the
classical p-k method to perform flutter analysis of aeroelastic systems. The motivation
was to construct a systematic and globally convergent tool to determine the variation of
the system’s modal properties with airspeed, providing crucial information for engineers
engaged in modal vibration analysis, designing slender structures exposed to air flows.
This process is applicable to any aeroelastic model, from bridge decks to aircraft wings.

The principle hinges on solving the nonlinear generalized eigenvalue problem for a
chosen wind speed U to determine one pre-flutter state. The critical problem is first
reformulated and transformed into a nonhomogeneous system of equations by incorpo-
rating the normalization condition. One continuity equation is then added to offer a
smart tracking process. The process is initiated at wind-off conditions, and progresses
step-by-step to the aeroelastic instability. The size of the steps are fixed by the hyper-
sphere radius. In the proposed algorithm, the solution is carried out mode-by-mode,
which means that each mode is considered separately. In that way, any undesired mode
swapping phenomenon is prevented. Whenever modes behave independently from others,
the algorithm automatically adapts and they are resolved with their own velocity mesh.

Two classes of continuation method have been described: Riks’ approach and Cr-
isfield’s technique. The first consists in solving systematically the system of equations
formed by the transformed critical problem and the continuity equation. The second
method takes advantage of the knowledge of the analytical form of the continuity equa-
tion to solve it analytically. The second approach, was seen to be significantly faster than
the first.

The continuation processes proposed here have proven to be appropriate to determine
the flutter behaviour of a system, thanks to their ability to focus on regions where high
local variations in modal properties are observed. By selecting suitable scaling parameter
and sphere radius values, the user can guarantee that the algorithm will detect local
variations that a uniformly distributed mesh —as those used with the traditional p-k
method— could inadvertently miss. The fact that the analysis is conducted mode-by-
mode brings another significant advantage regarding the use of computational resources.
A custom mesh is used for each mode, which means that in large multi-mode systems, a
coarser mesh will be chosen for modes that have mostly constant properties, resulting in
a better optimization of the total computational load.

The performance of the methods was tested on three selected examples. In total, four
techniques were assessed: the p-k method, Riks-Newton–Raphson, Crisfield–Newton–
Raphson and Crisfield–Broyden. Among the three continuation methods considered, the
Riks-Newton–Raphson was seen to be the most computationally expensive, requiring in
total approximately 3 times more function evaluations than the Crisfield-based methods.
The Crisfield–Broyden approach was the most efficient in terms of required number of calls
to the objective function. No comparison of computational efficiency could be inferred
between the p-k and continuation methods. Each continuation method demonstrated
excellent stability performance, completing the flutter solution without mode swapping
or convergence problems, even near critical points and in the post-critical regime, where
the classical p-k method was shown to experience mode swapping in two of the test cases.
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def process_pre_flutter( U, w0 , xi, phi ):

# U: wind speeds vector of size nU

# w0: matrix (2 x nU) containing eigenvalues

# xi: matrix (2 x nU) containing damping ratios

# phi: matrix (2 x 2 x nU) containing the eigen vectors

# consistently normalized

w0_ = np.zeros( (2,len(U)), dtype=’float64 ’)

xi_ = np.zeros( (2,len(U)), dtype=’float64 ’)

w0_[:,0] = w0[:,0]

xi_[:,0] = xi[:,0]

dprod = np.zeros( 2, dtype=’complex128 ’ )

for iU in range( 1, len(U) ):

dprod[0] = phi[0,:,iU-1].T @ phi[0,:,iU] \

+ phi[1,:,iU-1].T @ phi[0,:,iU]

dprod[1] = phi[0,:,iU-1].T @ phi[1,:,iU] \

+ phi[1,:,iU-1].T @ phi[1,:,iU]

idmax = np.argmax( np.abs( dprod ) )

idcmp = int(idmax == 0) # complementary index

w0_[0,iU] = w0[idmax ,iU]

w0_[1,iU] = w0[idcmp ,iU]

xi_[0,iU] = xi[idmax ,iU]

xi_[1,iU] = xi[idcmp ,iU]

return w0_ , xi_

Figure A.18: Function used to post-process the data obtained with the p-k method to prevent the mode
swapping. The eigen modes given as inputs must be consistently normalized (see for example (21)).
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Figure A.19: Application 2. Failure of the algorithm that aims at preventing mode swapping. There is
one mode swapping around 32 m/s.
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Appendix A. Prevention of mode swapping for the p-k method using eigen
mode orthogonality

The p-k method is sometimes used together with a post-treatment to discard the issue
of mode swapping. Figure A.18 shows the code that is used in order to sort modes at
a given step, after they have been computed using the eig function. The chosen mode
is the one that maximizes the dot product between the modes considered in the current
step, and that kept in the previous step.

The corresponding results for application 2 are shown in Figure A.19, where the
algorithm is seen to fail around 33 m/s.
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Figure B.20: Flowchart of a complete pre-flutter analysis. (*) If a Broyden method is used, the derivative
matrices Jx and JU are estimated using the current and previous value of f(x, U).
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Appendix B. Workflow of a pre-flutter analysis

See Figure B.20.
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