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Helicoidal Transformation Method for Finite
Element Models of Twisted Superconductors

Julien Dular, François Henrotte, André Nicolet, Mariusz Wozniak, Benoît Vanderheyden, and Christophe Geuzaine

Abstract—This paper deals with the modelling of supercon-
ducting and resistive wires with a helicoidal symmetry, subjected
to an external field and a transport current. Helicoidal struc-
tures are three-dimensional, and therefore yield computationally
intensive simulations in a Cartesian coordinate system. We show
in this paper that by working instead with a helicoidal system of
coordinates, the problem to solve can be made two-dimensional,
drastically reducing the computational cost. We first introduce
the state-of-the-art approach and apply it on the h-ϕ-formulation
with helicoidally symmetric boundary conditions (e.g., axial
external magnetic field, with or without transport current), with
an emphasis on the function space discretization. Then, we
extend the approach to general boundary conditions (e.g., trans-
verse external magnetic field) and we present numerical results
with linear materials. In particular, we discuss the frequency-
dependent losses in composite wires made of superconducting
filaments embedded in a resistive matrix. Finally, we provide
outlook to the application of the generalized model with nonlinear
materials.

I. INTRODUCTION

LOW-TEMPERATURE superconducting composite wires
usually consist of a large number of superconducting

filaments embedded in a conducting matrix. This matrix helps
in redistributing current between filaments, but has the side
effect of coupling the filaments in the presence of an external
transverse time-varying magnetic field. This coupling can
however be reduced by twisting the composite wire [1], [2].
The resulting geometry is not invariant along the wire axis and
leads to a computationally intensive three-dimensional (3D)
modelling [3], [4], [5], [6].

Approximate models exploiting the multifilamentary struc-
ture of this kind of wires have been investigated to reduce
the computational cost, such as in [7] and [8], where coupling
currents in the conducting matrix are accounted for in a 2D
finite element model by introducing equivalent resistances
between the filaments. Alternatively, a Frenet frame is used
in [9] to simplify the definition of the 3D geometry, and
AC losses are approximated by considering a fraction of
the pitch length of the wire in a 3D model, or a cross
section of the wire in a 2D model. Homogenization techniques
involving anisotropic materials have also been considered [3].
Finally, parallelization methods are considered to reduce the
computational time [6].

Whenever possible, it is always recommended to exploit
existing symmetries. In particular, the dimension of a prob-
lem presenting a helicoidal symmetry, i.e., a combination of

J. Dular and M. Wozniak are with CERN, Geneva, Switzerland. A. Nicolet
is with the Aix-Marseille University, France. F. Henrotte, B. Vanderheyden,
and C. Geuzaine are with the University of Liège, Belgium.

translational and rotational symmetries with the same axis,
can be reduced from 3D to 2D without loss of accuracy if the
calculations are performed in a helicoidal coordinate system.
Methods based on this coordinate transformation have first
been introduced in optical waveguide simulations [10], [11],
[12], and since then applied to electrostatic problems [13],
[14], linear magnetodynamic problems [15], [16], [17], and
nonlinear magnetodynamic problems with superconducting
filaments or tapes [18], [19], [20], [21].

An exact helicoidal symmetry is rarely encountered in prac-
tical applications, but different kinds of deformed geometries,
curved wires, or conductor organized, e.g., into layers with
distinct twist pitch lengths, may exhibit an approximate or par-
tial helicoidal symmetry. Working with helicoidal coordinate
systems can still be very useful in such cases, especially in the
context of a multi-scale or a sub-problem approach, to compute
homogenized parameters that account for the twisting of the
filaments (e.g., Rutherford multistrand cables). Furthermore,
the 2D helicoidal approach is more accurate than an equivalent
3D approach, as the latter is usually limited in accuracy
by non-conformities at element interfaces in unstructured
3D meshes. Extensions and improvements of the helicoidal
method are therefore currently being investigated, e.g., in [16],
to quantify helicoidal effects in the context of Litz wires.

This paper focuses on the helicoidal transformation method.
We start the analysis in Section II by applying the change of
coordinates to the h-ϕ-formulation [22], which is an efficient
formulation for systems with superconductors [23], and we
then state the mathematical conditions for reducing the prob-
lem dimension from 3D to 2D. We will refer to the equations
resulting from this analysis as the 2D-ξ model, in order to
emphasize the fact that it is solved in helicoidal coordinates.
As will be shown, a feature of the 2D-ξ model, compared to
a conventional 2D model in Cartesian coordinates, is that it
solves for fields with three independent components, instead
of two.

Depending on the symmetry of the boundary conditions
(BC), the study is decomposed in two cases. If the magnetic
field excitation is axial and uniform, the BC then also verify
the helicoidal symmetry, irrespective of whether there is a
transport current or not. The dimension of this problem
(geometry plus BC), being helicoidally symmetric, can be
reduced from 3D to 2D by simply applying the coordinate
transformation method. This approach is not new in the
context of superconducting wires [18], [19], [20], but it has
not yet been presented with the efficient h-ϕ-formulation. In
Section III, the implementation details of this formulation are
reviewed with an emphasis on the discretization of a curl-free
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magnetic field in non-conducting domains. In Section IV, the
implementation is verified by comparison with a 3D model in
Cartesian coordinates.

If the magnetic field excitation is transverse, then the BC
are no longer helicoidally symmetric. A generalization of
the method is proposed in Section V for this case. It still
results in a 2D model in some situations. To the best of our
knowledge, this generalization is a novelty compared to state-
of-the-art methods. Attention is again paid to the curl-free
property of the magnetic field in non-conducting domains. The
generalized model is applied to linear materials in Section VI,
and it is shown that it reproduces the predictions of analytical
models for the coupling currents [2]. We finally provide a brief
prospect about the application of the generalized method in the
presence of nonlinear materials.

All presented models are implemented in and solved by
GetDP [24]. Geometry and mesh generation are performed by
Gmsh [25]. All codes are open-source and available in the
Life-HTS toolkit1.

II. HELICOIDAL CHANGE OF COORDINATES

Let (x, y, z) be a Cartesian coordinate system. The heli-
coidal change of coordinates x → ξ and its inverse ξ → x
read [11] 

ξ1 = x cos(αz) + y sin(αz),

ξ2 = −x sin(αz) + y cos(αz),

ξ3 = z,

(1)

and 
x = ξ1 cos(αξ3)− ξ2 sin(αξ3),

y = ξ1 sin(αξ3) + ξ2 cos(αξ3),

z = ξ3,

(2)

respectively, with (ξ1, ξ2, ξ3) the helicoidal coordinate system.
The twisting parameter α ∈ R is the unique parameter of the
coordinate transformation, and the pitch length is p = 2π/α.

With this transformation, helices of pitch length p around
the z-axis in the Cartesian coordinate system are mapped into
straight lines parallel to the ξ3-axis in the helicoidal coordinate
system. This is illustrated in Fig. 1 with p = 1. A geometry
is said to be helicoidally symmetric, or to have a helicoidal
symmetry, if there exists a value α for which its description in
helicoidal coordinates is ξ3-invariant, i.e., independent of ξ3.

The Jacobian matrix J of the coordinate transformation
Eq. (2) reads

J =
∂xi

∂ξj
=

c −s −αξ1s− αξ2c
s c αξ1c− αξ2s
0 0 1

 , (3)

with s = sin(αξ3) and c = cos(αξ3). We have detJ = 1. The
inverse transposed Jacobian matrix J−T, written in terms of
the ξ-coordinates, then reads

J−T =
∂ξj
∂xi

=

 c −s 0
s c 0

αξ2 −αξ1 1

 . (4)
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Fig. 1: Transformation of two helicoidal curves with the change of
coordinates Eq. (1) with α = 2π.

A. Helicoidal transformation of fields

The Jacobian matrix describes the mapping of vector com-
ponents with the transformation. Components of one-forms,
such as the magnetic field h, follow the transformation [10],
[26]

hx = J−T hξ, (5)

where hx and hξ denote the components of the field h in the
Cartesian and helicoidal coordinate systems, respectively.

Components of two-forms, such as the current density j
(= curlh), follow the transformation [10], [26]

jx =
J

detJ
jξ, (6)

where jx and jξ denote the components of the field j in the
Cartesian and helicoidal coordinate systems, respectively.

B. Problem definition and h-ϕ-formulation

The eddy current problem is governed by the following
magnetodynamic (or magneto-quasistatic) equations and con-
stitutive laws [27]:

div b = 0,

curlh = j,

curl e = −∂tb,

and

{
b = µh,

e = ρ j,
(7)

with b, h, j e, µ, and ρ, the magnetic flux density (T), the
magnetic field (A/m), the current density (A/m2), the electric
field (V/m), the permeability (H/m), and the resistivity (Ωm),
respectively. In non-conducting materials, ρ → ∞ and j = 0,
and Ampère’s law reads

curlh = 0. (8)

In this paper, special attention is paid to satisfy this condition.
Type-II irreversible superconductors are characterized by

a nonlinear electric response. Assuming isotropy for low-
temperature superconductors, their resistivity is given by the
power law [28],

ρSC =
ec

jc

(
∥j∥
jc

)n−1

, (9)

where ec = 10−4 V/m is an electric field threshold defining
the critical current density jc (A/m2), and n (-) describes the
sharpness of the transition to flux flow. The norm of j is
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denoted by ∥j∥, with ∥j∥2 = j2x + j2y + j2z in the Cartesian
coordinates. Finally, all materials are assumed to be non-
magnetic, so that one has µ = µ0 = 4π × 10−7 H/m in all
domains.

The magnetodynamic problem defined above is solved in a
computational domain Ω. Let Ω be a helicoidally symmetric
domain. It consists of a conducting domain Ωc made of N
connected subdomains, Ωc = ∪i∈CΩci , with C = {1, . . . , N},
surrounded by a non-conducting domain ΩC

c . The external
boundary of Ω is noted Γout. Via boundary conditions (BC), the
system can be subjected to a given axial magnetic field haxial
and/or a given transverse magnetic field htrans. A transport
current Īi is imposed to the subdomains Ωci for i ∈ CI ⊂ C,
and a voltage V̄i is imposed on the subdomains Ωci for
i ∈ C \CI = CV . We shall call global conditions (GC) these
electric conditions imposed to the conductors of the system.
Fig. 2 represents a typical cross section of the problem at hand.

êx

êy

Γout

ΩC
c

Ωc1
Ωc2

êz

haxial

Ī1, V1

I2, V̄2O

htrans

Fig. 2: 2D cross section of the problem. Boundary conditions (BC) are
axial magnetic field haxial and transverse magnetic field htrans imposed
on Γout. Global conditions (GC) are applied transport current Ī1 on
Ωc1 , and applied voltage V̄2 on Ωc2 . In this example, C = {1, 2},
CI = {1}, and CV = {2}. The 3D geometry is the rotated extrusion
of the represented 2D cross section.

We solve the problem defined above with the finite element
method. Among the existing finite element formulations, we
choose the h-ϕ-formulation [22]. It involves the power law
written in terms of the resistivity, which has been shown to
lead to robust and efficient numerical resolutions for prob-
lems involving superconductors characterized by the power
law [23]. Also, the h-ϕ-formulation strongly verifies the curl-
free condition on h in ΩC

c , Eq. (8), by expressing the magnetic
field as the gradient of a scalar potential. This leads to a
lower number of degrees of freedom compared to the h-
formulation [30], that uses instead a spurious non vanishing
resistivity to limit the current density in ΩC

c .
The 3D h-ϕ-formulation reads [23]: from an initial solution

at t = 0, find h ∈ H(Ω) such that, for t > 0 and ∀h′ ∈ H0(Ω),
we have(

∂t(µh) ,h′)
Ω
+
(
ρ curlh , curlh′)

Ωc
=

∑
i∈CV

V̄iIi(h′).

(10)

The integral over Ω of the inner product of f and g is denoted
by (f , g)Ω, whereas the operator Ii(h) gives the circulation
of h around conductor i, which is the net current Ii flowing

in the conductor. The associated voltage is noted V̄i. The
function space H(Ω) is the subspace of H(curl; Ω) containing
functions that are curl-free in ΩC

c and verify the essential BC
and the GC [21]. The space H0(Ω) is the same space as
H(Ω) but with homogeneous essential BC and homogeneous
GC. For simplicity, we assumed homogeneous natural BC in
Eq. (10).

C. The h-ϕ-formulation in helicoidal coordinates

As shown in [31], [32], in order to express the h-ϕ-
formulation Eq. (10) in helicoidal coordinates, it is sufficient
to replace the scalar material parameters µ and ρ by the tensors
µ̃ and ρ̃:

µ̃ = µ J−1J−T det(J) = µT−1, (11)

ρ̃ = ρ
1

det(J)
JTJ = ρT, (12)

with the auxiliary tensor T, defined by

T =
JTJ

det(J)
=

 1 0 −αξ2
0 1 αξ1

−αξ2 αξ1 1 + α2(ξ21 + ξ22)

 , (13)

and its inverse T−1 by

T−1 = det(J) J−1J−T

=

1 + α2ξ22 α2ξ1ξ2 αξ2
α2ξ1ξ2 1 + α2ξ21 −αξ1
αξ2 −αξ1 1

 . (14)

This is a consequence of substituting Eqn. (5) and (6) into
Eq. (10) and adding a detJ factor in the volume integral terms.
Beyond these modifications, all calculations can be performed
exactly as in Cartesian coordinates [32].

The components of the curl operator in helicoidal coordi-
nates are given by

(curlh)ξ =

∂ξ2hξ3 − ∂ξ3hξ2

∂ξ3hξ1 − ∂ξ1hξ3

∂ξ1hξ2 − ∂ξ2hξ1

 . (15)

They have the same expression as in Cartesian coordinates,
but in terms of the helicoidal coordinates.

D. Conditions for reducing the dimension from 3D to 2D

In the continuous setting, the problems expressed with
Cartesian or helicoidal coordinates are equivalent. Indeed, no
approximation is introduced and the change of coordinates is
regular. For helicoidally symmetric geometries, there are how-
ever clear advantages in working with helicoidal coordinates.

First, it involves integrals over domains with ξ3-independent
sections.

Second, T and T−1 are also ξ3-independent, as shown in
Eqn. (13) and (14). As a consequence, both the integrand coef-
ficients and the domains of integration in the weak formulation
are ξ3-independent.

Finally, if the BC on Γout are also ξ3-independent when
expressed in helicoidal coordinates, then, the solution h of the
h-ϕ-formulation is ξ3-independent as well. Hence, the integra-
tion along the ξ3-direction is trivial and the problem dimension
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can be reduced from 3D to 2D with a considerable decrease
of the computational burden compared to the equivalent 3D
problem.

BC are helicoidally symmetric (HS) in the case of a
uniform axial magnetic field excitation. In Section III, we
describe how the associated 2D problem can be discretized
and implemented. We verify the implementation in Section IV.

By contrast, a transverse magnetic field excitation, i.e., a
magnetic field in the x-y-plane in the Cartesian coordinate
system, does not transform into a ξ3-independent field in
helicoidal coordinates (see Eq. (25)). In this case, the dimen-
sion cannot be directly reduced from 3D to 2D. However,
simplifications are still possible, eventually also leading to a
2D problem in some situations. We present a novel method for
such a situation in Sections V and VI. This method generalizes
the case of HS BC, which just becomes a particular case of
the general approach.

III. PRACTICAL IMPLEMENTATION OF A FULL
h-ϕ-FORMULATION — HS-BC

Starting from Eq. (10) with material tensors in Eqn. (11),
one could be tempted to implement the h-ϕ-formulation
directly as a classical 2D problem with in-plane magnetic
field, with the only differences of (i) working in helicoidal
coordinates, and (ii) having anisotropic tensors instead of
scalar material parameters. But this would not be correct: the
fact that the problem is ξ3-independent does not imply that
the involved magnetic field has only two non-zero (helicoidal
or Cartesian) components.

Due to the full anisotropy of tensors µ̃ and ρ̃, one really
has to consider three independent components for the magnetic
field h in the h-ϕ-formulation. To emphasize this, we refer to
the resulting formulation as a full h-ϕ-formulation in 2D, and
we call the associated model the 2D-ξ model.

In this section, we present a practical implementation of
this full h-ϕ-formulation. First, we propose a convenient
decomposition of the magnetic field, which allows us to reuse
the usual function spaces of classical 2D problems. Then, we
discuss the discretization of these function spaces. Finally, we
explain how to impose the GC and BC.

A. Decomposition of the magnetic field

In the h-ϕ-formulation, the magnetic field h can be decom-
posed into two parts: an in-plane contribution h∥, containing
the ξ1 and ξ2-components of h, and an out-of-plane contribu-
tion h⊥, containing only the ξ3-component. We write

h(ξ1, ξ2) = h∥(ξ1, ξ2) + h⊥(ξ1, ξ2), (16)

or, explicitly in terms of their helicoidal components,hξ1(ξ1, ξ2)
hξ2(ξ1, ξ2)
hξ3(ξ1, ξ2)

 =

hξ1(ξ1, ξ2)
hξ2(ξ1, ξ2)

0

+

 0
0

hξ3(ξ1, ξ2)

 , (17)

where h = h(ξ1, ξ2) because the solution is ξ3-independent.
Note that the vectors h∥ and h⊥ are not orthogonal.

Because the Jacobian is non-singular, the curl-free condition
Eq. (8) reads, in the helicoidal coordinate system:

(curlh)ξ =

 ∂ξ2hξ3

−∂ξ1hξ3

∂ξ1hξ2 − ∂ξ2hξ1

 = 0, (18)

from Eq (15) using ∂ξ3 = 0. With the decomposition defined
in Eq. (16), the third component of Eq. (18) implies that
curlh∥ = 0, which is the same condition as for a classical
2D formulation in which a two-component magnetic field is
considered. Then, for the first two components of Eq. (18) to
be equal to zero, the out-of-plane magnetic field h⊥ must be
uniform in ΩC

c .
These conditions are introduced in the function space def-

initions, i.e., they are strongly enforced. They will be made
explicit at the space discretization step.

With the explicit decomposition h = h∥ + h⊥, the h-ϕ-
formulation reads as follows. From an initial solution at time
t = 0, find h∥ ∈ H∥(Ω) and h⊥ ∈ H⊥(Ω) such that, for
t > 0, ∀h′

∥ ∈ H∥,0(Ω) and ∀h′
⊥ ∈ H⊥,0(Ω),(

∂t(µ̃ (h∥ + h⊥)) ,h
′
∥

)
Ω
+
(
ρ̃ curl (h∥ + h⊥) , curlh′

∥

)
Ωc

=
∑
i∈CV

V̄iIi(h′
∥), (19)(

∂t(µ̃ (h∥ + h⊥)) ,h
′
⊥
)
Ω
+

(
ρ̃ curl (h∥ + h⊥) , curlh′

⊥
)
Ωc

= 0, (20)

where the vectors h∥ and h⊥ are coupled by tensors µ̃ and
ρ̃. Note that Ii(h′

⊥) = 0. The function spaces H∥(Ω) and
H⊥(Ω) will be defined in the space discretization step.

For the resistivity in superconducting materials, the power
law Eq. (9) leads to ρ̃ = ρSC(∥j∥) T. Using Eq. (6) and
detJ = 1, we have, in terms of the components: ∥j∥2 =
jT
xjx = jT

ξJ
TJjξ = jT

ξTjξ, which is ξ3-independent.

B. Space discretization of the magnetic field

Let us consider a finite element mesh for the discretization
of the 2D domain Ω, and let us denote by N (Ωi) and E(Ωi),
the set of nodes and edges, respectively, of the mesh in a given
(sub-)domain Ωi, including entities on the boundary of Ωi.

In practice, we can discretize the in-plane magnetic field
h∥ exactly as the two-component magnetic field in a classical
2D h-ϕ-formulation with in-plane magnetic field [23]. We
use Whitney forms [33]: gradient of node functions wn and
cohomology functions ci (cut functions) [34] in ΩC

c , and edge
functions we in Ωc\∂Ωc:

h∥ =
∑

e∈E(Ωc\∂Ωc)

h∥,e we+
∑

n∈N (ΩC
c )

ϕn gradwn+
∑
i∈C

Ii ci, (21)

where coefficients h∥,e, ϕn, and Ii are the degrees of freedom
(DOFs) defining h∥ in the discrete function space H∥(Ω).

We choose to discretize the out-of-plane magnetic field h⊥
with perpendicular edge functions wn = wnêξ3 , associated
with nodes. To account for the fact that h⊥ must be uniform
in each region of ΩC

c , we introduce global functions in ΩC
c . Let
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K be the number of connected regions in ΩC
c . We describe the

out-of-plane magnetic field with the expansion

h⊥ =
∑

n∈N (Ωc\∂Ωc)

h⊥,n wn +

K∑
i=1

Di pi, (22)

with wn the perpendicular edge function associated with node
n in N (Ωc \ ∂Ωc), and pi a global shape function defined as
the sum of all perpendicular edge functions associated with
nodes in the ith connected region of ΩC

c , including those on
its boundary, for i ∈ {1, . . . ,K}. The support of the shape
function pi is therefore not restricted to ΩC

c : it is non-zero on
a layer of one element adjacent to ∂Ωc in Ωc. This defines
the discrete function space H⊥(Ω), with DOFs h⊥,n and Di.
Both h∥ and h⊥ are described by discrete 1-forms, and so is
their sum, h.

For simplicity, in the following, we assume that there is
only one connected non-conducting region ΩC

c , the exterior of
the wire, such that K = 1, and we rename D1 = D.

C. Global conditions and boundary conditions

For the GC, a current Īi, for i ∈ CI , can be imposed exactly
as in a classical 2D h-ϕ-formulation with in-plane magnetic
field, i.e., strongly via the degree of freedom Ii associated with
the cut function ci for the corresponding conducting domain
Ωci . Alternatively, an applied voltage V̄i, for i ∈ CV , can be
imposed weakly in the global term of the formulation Eq. (19).

For the BC, we consider a circular external boundary Γout,
placed in ΩC

c sufficiently far from the conductors such that we
can assume ∂tb · n|Γout = 0, with n the outer normal vector.
This condition is implicitly imposed for h∥ in Eq. (19) with
homogeneous natural BC on Γout. This lets the z-component of
the magnetic field, hz , undetermined on Γout. It corresponds to
the axial magnetic field, that we can freely impose. We derive
below how to translate this into a BC on h⊥|Γout in helicoidal
coordinates.

Let us first consider the situation with a zero axial magnetic
field. At a sufficiently large distance Rout from the center of
conductors carrying a total net current intensity I , the magnetic
field tends to be purely azimuthal and axisymmetric. We have
hx = I

2πRout
(− sin θ cos θ 0)T, with θ = atan2(y, x). In

terms of the helicoidal coordinates, on the plane ξ3 = 0, it
reads

hξ = JT|ξ3=0 hx =
I

2πRout

 − sin θ
cos θ

αξ2 sin θ + αξ1 cos θ


=

I

2πRout

− sin θ
cos θ
αRout

 , (23)

using ξ2 = Rout sin θ and ξ1 = Rout cos θ for ξ3 = 0.
Consequently, to satisfy hz|Γout = 0, one has to impose that
hξ3 |Γout = Iα/2π. This can be done by fixing the degree
of freedom D associated with the basis function p in ΩC

c in
Eq. (22) to the value D = Iα/2π. Note that this value does
not depend on Rout.

By superposition, if one wants to impose a non-zero axial
magnetic field haxial on the external boundary Γout in addition

to a net current intensity I , we can impose the following
condition:

D =
Iα

2π
+ haxial, (24)

because the axial magnetic field Cartesian components hx =
(0 0 haxial)

T transform into hξ = JT hx = (0 0 haxial)
T

in helicoidal coordinates.

IV. VERIFICATION AND APPLICATION — HS-BC

In this section, we first compare the solution of the 2D-ξ
model in helicoidal coordinates to the solution of a classical
3D h-ϕ-formulation on a simple problem in order to verify
the implementation. We also quantify the computational gain
offered by reducing the dimension from 3D to 2D. Then,
we apply the 2D-ξ model on a more involved geometry to
illustrate the capabilities of the approach.

A. Verification problem

We consider a wire made of six identical Nb-Ti supercon-
ducting filaments, twisted and embedded in a copper (Cu)
matrix, as illustrated in Fig. 3. In order to simplify the
geometry, the cross sections of the filaments are assumed to
be disks, and the 3D geometry is generated by a helicoidal
extrusion of them. This is of course an approximation of a
realistic geometry. If needed, cross sections of round twisted
filaments can be computed accurately using envelope theory
as in [15] or CAD tools [25] as in [17].

êξ1

Rw

Rℓ

Rf

O

Copper

Nb-Ti

Air
êξ2

êx

êy

z = 0

(a) Wire geometry in 2D.

p/6

êz
êy êx

(b) Wire geometry in 3D.

Fig. 3: Wire geometry for the verification of the helicoidal trans-
formation consisting of six twisted Nb-Ti filaments embedded in a
copper matrix. (a) Geometry in a ξ1-ξ2 plane (or in the x-y plane
for z = 0). (b) One-sixth of a pitch length. The copper matrix in (b)
is not represented, for clarity.

The filaments have a radius of Rf = 35 µm and their centers
are at a distance Rℓ = 98 µm from the center of the wire.
The wire has a radius of Rw = 155 µm and a pitch length of
p = 1 mm. The air is modelled outside of the wire up to a
distance Rout = 500 µm.

We assume that Nb-Ti resistivity is characterized by Eq. (9)
with constant and uniform jc = 7×109 A/m2 and n = 50, and
that the copper resistivity is ρCu = 1.81×10−10 Ωm. There is
no insulation between the filaments and the matrix, so that the
wire behaves as a single conducting cylinder. A net transport
current I(t) = 0.5 Ic sin(2πt/T ) is imposed in the wire, with
T = 0.1 s and Ic = 162 A, and we impose haxial = 0 A/m.
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B. Implementation of the 3D model

We consider the 3D geometry represented in Fig. 3(b). It
represents a periodic cell of one-sixth of a whole pitch length
p. Note that building and meshing the 3D model represented
in Fig. 3(b) is not a trivial task. To account for the periodicity
of the problem, the mesh must be identical on the top and
bottom boundaries of the domain; as an h-ϕ-formulation is
used, cohomology basis functions must also be periodic. The
quality of the mesh inside the filaments plays an important
role for the accuracy of the resulting numerical solution. We
observed that better results are obtained with a structured
mesh inside the filaments. Generating the mesh with such
constraints is possible with Gmsh [25]. The periodic support
for the cohomology basis function is generated as described
in [34], [35] and illustrated in Fig. 4.

êz êy
êx

O

Fig. 4: Periodic support for the cohomology basis function to impose
a transport current I(t) in the 3D verification model. The red curve
in the filaments is a portion of the helicoidal fiber along which the
solution is represented in Fig. 5.

We set a homogeneous natural BC on the external boundary
Γout, so that ∂tb · n|Γout = 0 is weakly enforced. For the top
and bottom boundaries Γup and Γdown, which are topologically
identical, the periodic condition h× n|Γup = −h× n|Γdown is
imposed. On conducting boundaries ∂Ωc∩(Γup∪Γdown), this is
done by forcing the equality of the degrees of freedom associ-
ated with topologically identical edges of these boundaries. On
non-conducting boundaries ∂ΩC

c ∩ (Γup ∪ Γdown), the periodic
constraint is enforced via the magnetic scalar potential. We
impose ϕ|Γup = ϕ|Γdown + haxial p/6. The total current intensity
flowing in the conducting domain made up of the filaments
and matrix is imposed via the (periodic) cohomology basis
function whose generating edges are highlighted in Fig. 4.

Note that in the present case of HS-BC (transport current
or axial field), the 3D reference model could be defined on
a length shorter than p/6 along z, if one adapts the periodic
mesh and the periodic cut accordingly. We chose a length
of p/6 so that the reference model will also be valid in the
transverse field case.

Before comparing the results, we first verify that the 3D
model indeed produces a helicoidally symmetric solution. For
illustration, from the 3D numerical solution, we extract the
magnetic field h and the current density j along the helicoidal
fiber of pitch length p passing at point x =

(
a, b, 0

)
, with a =

180 mm and b = 11 mm, from z = 0 to z = p (see Fig. 4). We
exploit the periodicity of the problem to obtain values for z >

p/6. The Cartesian and helicoidal components of vectors h and
j are represented in Fig. 5 for a relatively fine tetrahedral mesh
(144 870 DOFs), at time t = T/4. Helicoidal components are
obtained using the one and two-forms transformation relations,
Eqn. (5) and (6).
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h
x
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µ
0
h
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i
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)

µ0hx
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µ0hz

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1
jξ1
jξ2
jξ3

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

ξ3 (mm)

µ0hξ1

µ0hξ2
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Fig. 5: Current density (up) and magnetic field (down) components
along a helicoidal fiber from z = 0 to z = p. (Left) Cartesian
components of the vectors. (Right) Helicoidal components of the
vectors. Solution at t = T/4.

The oscillations and spikes along the fiber represent inter-
element non-conformities, which are expected with lowest-
order tetrahedral Whitney shape functions. These oscillations
decrease in amplitude with mesh refinement. Up to these
inter-element variations, the 3D solution correctly presents a
helicoidal symmetry. It is also interesting to notice that the
current density has non-zero ξ1 and ξ2-components, and that
the ξ3-component of the magnetic field is not equal to zero.
This illustrates the need for a three-component magnetic field
in the 2D helicoidal model.

C. Comparison of the results from the 3D and 2D-ξ models

We now compare the results of the 2D-ξ problem in he-
licoidal coordinates with the reference 3D problem described
above. Note that for the 2D-ξ model, in this particular case, we
could further exploit the symmetry and model only one-sixth
of the circular region depicted in Fig. 3(a) using periodic BC
on the symmetry boundaries as well as an adapted cohomology
function in ΩC

c , hence reducing the computational cost even
more. We however choose to model the full 2D cross section.

The solution of the 2D-ξ model on a medium mesh res-
olution (4 700 DOFs) is represented in Fig. 6. The current
mostly flows in the superconducting filaments, as shown by
the different scales for the middle and right subfigures. On the
left subfigure, one can see that the current flow in the twisted
filaments induces a non-zero z-component hz of the magnetic
field at the center of the wire.
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0 00.15µ0h (T) j (A/m2) 7× 109

êx

êy

0 j (A/m2) 3× 105

Fig. 6: Magnetic field (left), current density in the filaments (middle),
and current density in the matrix (right) at time t = T/4 for the 2D-
ξ problem solved with the helicoidal coordinate system. The arrows
represent the in-plane x and y-components of h and j, whereas the
triangular elements are colored as a function of the out-of-plane z-
component of h and j. The dashed red line in the left figure is the
cut along which the magnetic field is represented in Fig. 7.

A comparison of the local magnetic field of the 2D-ξ model
with that of the reference 3D model is given in Fig. 7, along the
dashed red line highlighted in Fig. 6, for two mesh resolutions.
The solution of the 3D model is taken on the plane z = ξ3 = 0,
but this choice is arbitrary: as was shown in Fig. 5, up to the
inter-element variation, the solution of the 3D model is also
ξ3-independent. Solutions of the 2D-ξ and 3D models match
locally. We verified and this is also the case for the current
density (not represented in the figures).
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Fig. 7: Magnetic field along the dashed red line represented in Fig. 6,
for the 3D and 2D-ξ models, at time t = T/4, with coarse (up) and
fine (down) mesh resolutions.

A comparison of the AC loss is given in Fig. 8. The AC loss
per unit length along êz in both the superconducting filaments
and the conducting matrix are compared for the two models,
and for two mesh resolutions. For the 2D-ξ model in helicoidal
coordinates, the AC loss is computed as

(
ρ̃ jξ , jξ

)
Ωc

, where
Ωc is either restricted to the filaments, or to the matrix. For
the 3D model, the integral (ρ jx , jx)Ωc

is computed over the

3D domain with Cartesian coordinate system, and the result
is divided by p/6, to obtain the AC loss per unit length as
well. Note that both models include all loss contributions
by construction: hysteresis losses in the filaments, as well as
coupling and eddy current losses in the matrix [36].
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Fig. 8: AC losses in the superconducting filaments (up) and in the
conducting matrix (down) for a transport current I(t), as a function
of time, for two mesh resolutions, with the 2D-ξ model in helicoidal
coordinates and the 3D verification model.

Meshes for the coarse resolution in the z = ξ3 = 0 plane
are similar for the 2D-ξ and 3D models, as well as meshes
for the fine resolution. However, we observed that the 2D-ξ
model solution is less sensitive to the mesh resolution. This
is due to the inter-element non-conformities in a tetrahedral
3D mesh, which should be made significantly lower (by mesh
refinement) to ensure an accurate evaluation of the quadratic
quantity representing the AC losses. Meshes with prisms, i.e.,
extruded triangles, in the filaments were also tested. They give
slightly better results, but also increase the complexity of the
meshing step, as pyramids must be used as transition elements
between prisms in the filaments and tetrahedra outside of them.

The local and global quantity agreement shows the validity
of the 2D-ξ model in helicoidal coordinates. The dimension
reduction allows for a very large reduction of the computa-
tional cost. This is demonstrated in Table I, which compares
the performance of the 2D-ξ and 3D models on meshes with
similar characteristic length for the finite elements (triangles
in 2D-ξ and tetrahedra in 3D). The fine 2D-ξ model is more
than two orders of magnitude faster to solve than the fine 3D
model.

D. Application to a 54-filament wire

As a more realistic geometry, we consider a wire with 54
filaments arranged in a hexagonal lattice with filament center
spacing of d = 110 µm, as represented in Fig. 9. Filament
radius is Rf = 45 µm, wire radius is Rw = 500 µm, and
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Model & mesh # DOFs # it. Time/it./DOF Total time

3D
Coarse 16 556 1 645 110 µs 50 m
Medium 85 605 2 893 260 µs 17 h 53 m
Fine 144 870 3 255 315 µs 41 h 23 m

2D-ξ
Coarse 1 797 1 299 72 µs 3 m
Medium 4 481 1 948 71 µs 10 m
Fine 6 002 2 258 76 µs 17 m

TABLE I: Performance comparison for the 3D and 2D-ξ models with
imposed current and no axial magnetic field, computed with 150 time
steps from t = 0 to t = 5T/4 on a single Intel Core i7 2.2 GHz
CPU. DOF: degree of freedom. It.: iteration (Newton-Raphson).

the pitch length is p = 10 mm. We keep the same material
parameters as before for the Nb-Ti and the copper matrix and
we impose a transport current I(t) = 0.8 Ic sin(2πt/T ), with
T = 1 s and Ic = 2.4 kA.

dRw

Rf

êx

êy

O

Fig. 9: Cross section of the 54-filament Nb-Ti/Cu wire.

Fig. 10 shows the time evolution of the current in the
filaments depending on their position. As expected, the current
density progressively penetrates into inner layers of the wire.
Due to the twist, the current flowing in the outer filaments
generates a non-zero hz component inside the wire. Circulat-
ing in-plane currents therefore appear in the inner layers to
shield this axial magnetic field, as illustrated in Fig. 11.
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Fig. 10: Distribution of the current among the filaments, as a function
of their distance to the center O, for the 54-filament geometry.

Note that during the first transport current increase (for
t < T/4), no filament carries a negative current. This is in
contradiction to what was obtained in [37] with an alternative
method on a similar problem, where a critical state model is
considered and the current density is assumed localized along a
line within every filament, which therefore leads to neglecting
the spatial extension of the filaments.

0 j (A/m2) 7× 1090 µ0hz (T) 0.15

0 µ0hx,y (T) 0.6

êx
êy

êx
êy

Fig. 11: Magnetic field (left) and current density (right) for the 54-
filament wire at time t = 0.1 s. Only one quarter of the geometry is
shown. Arrows represent the in-plane components and the elements
are colored as a function of the value of the z-component of the
vectors. Note that two different scales are used for the magnetic field
for clarity.

V. EXTENSION TO NON-HELICOIDALLY-INVARIANT
BOUNDARY CONDITIONS — GENERAL BC

When BC are not HS, the dimension of the problem cannot
be directly reduced from 3D to 2D on basis of the geometrical
symmetry only. This is the case when a wire is subjected to
a uniform transverse magnetic field. For an applied magnetic
field hx = (0 1 0)T, we have

hξ = JT hx =

 sinαξ3
cosαξ3

αξ1 cosαξ3 − αξ2 sinαξ3

 , (25)

which is not ξ3-independent, see Fig. 12. As a consequence,
the solution of the magnetodynamic problem will not be ξ3-
independent either. The periodic structure of the problem can
however be exploited by expressing the solution as a series of
periodic functions with respect to ξ3.

In this section, we present this approach and show that it
generalizes the method described in Section III. In particular,
we show that it also leads to a 2D model in helicoidal
coordinates, which has the potential of considerably reducing
the computational cost compared to a 3D model.

êξ2

êξ3
êy

êz

p

Fig. 12: Uniform magnetic field along êy for the six-filament geom-
etry represented in Fig. 3. (Left) In the physical space on the plane
x = 0. (Right) In the helicoidal coordinate system represented as an
orthogonal system on the plane ξ1 = 0.
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A. Fourier decomposition of the magnetic field

Given the p-periodicity with respect to ξ3, by separation of
variables, we can expand the magnetic field h = h(ξ1, ξ2, ξ3)
in the following series:

h(ξ1, ξ2, ξ3) =

∞∑
k=−∞

hk(ξ1, ξ2)fk(ξ3), (26)

with the modes fk = fk(ξ3) that are functions of ξ3 only and
that are defined as

fk(ξ3) =


√
2 cos(αkξ3), k < 0,

1, k = 0,
√
2 sin(αkξ3), k > 0,

(27)

and with the spatial Fourier coefficients hk = hk(ξ1, ξ2) that
are three-component vector functions of ξ1 and ξ2.

The modes fk are mutually orthogonal and have a unit
norm, denoted as ∥fk∥ = 1, in the sense of the following
inner product:

⟨fk1 , fk2⟩ =
1

p

∫ p

0

fk1fk2 dξ3 = δk1k2 , ∀k1, k2 ∈ Z. (28)

They also satisfy the following property:

dfk
dξ3

= αkf−k, ∀k ∈ Z. (29)

Introducing a decomposition of the magnetic field into its
in-plane and out-of-plane components as in the HS case of
Section III for each Fourier coefficient hk, we can rewrite
Eq. (26) as

h =

∞∑
k=−∞

(
h∥,k(ξ1, ξ2) + h⊥,k(ξ1, ξ2)

)
fk(ξ3), (30)

with the h∥,k containing the ξ1 and ξ2-components of hk, and
the h⊥,k containing its ξ3-component. Equation (30) actually
generalizes the decomposition in Eq. (16) for the case of HS
BC. Indeed, in the case of HS BC, the only mode that is
involved is f0(ξ3) = 1, with coefficients h∥,0 = h∥ and
h⊥,0 = h⊥, and the coefficients of the other modes, h∥,k
and h⊥,k, ∀k ∈ Z0, are all equal to zero.

B. Space discretization with curl-free functions in ΩC
c

The curl of decomposition (30) reads

curlh =

∞∑
k=−∞

(
fk curlh∥,k +

dfk
dξ3

êξ3 × h∥,k

+fk curlh⊥,k

)
, (31)

where êξ3 is the unit vector in the ξ3-direction.
The only term in Eq. (31) contributing to the ξ3-component

of the curl involves the curl of h∥,k. We can therefore keep
the same discrete function space for the h∥,k as for h∥ in
Section III, however without the

∑
i Iici term of Eq. (21) for

k ̸= 0, as transport currents only contribute to the fundamental
mode with f0(ξ3) = 1.

As in the ξ3-independent case, we express the out-of-plane
magnetic field h⊥,k as a sum of perpendicular edge functions.

But now, the h∥,k functions also contribute to the ξ1 and ξ2-
components of the curl of h for k ̸= 0 in Eq. (31) via the
cross product term. Therefore, the curl-free condition in ΩC

c
is no longer met with a uniform out-of-plane magnetic field
in ΩC

c , for k ̸= 0. Instead, as is shown below, the curl-free
condition induces a coupling between the in-plane and out-
of-plane magnetic field contributions in ΩC

c . For simplicity, as
was done before, we assume that there is only one connected
non-conducting region ΩC

c .
Using curl-free in-plane functions h∥,k in ΩC

c and Eq. (31),
the curl-free condition on h in ΩC

c reads

∞∑
k=−∞

(dfk
dξ3

êξ3 × h∥,k + fk curlh⊥,k

)
= 0. (32)

Using the mode property Eq. (29), this yields

∞∑
k=−∞

(
curlh⊥,k − αkêξ3 × h∥,−k

)
fk = 0, (33)

which results in the following condition, ∀k ∈ Z:

curlh⊥,k − αkêξ3 × h∥,−k = 0. (34)

For k = 0, we retrieve the same condition as in the helicoidally
symmetric problem, that is, h⊥,0 must be uniform in ΩC

c , with
a value given by Eq. (24). For k ̸= 0, the condition can be
enforced via the independent degrees of freedom of the in-
plane and out-of-plane magnetic field contributions. Indeed,
in ΩC

c , we have the expansions

h⊥,k =
∑

n∈N (ΩC
c )

h⊥,k,n wnêξ3 , (35)

h∥,−k =
∑

n∈N (ΩC
c )

ϕ∥,−k,n gradwn, (36)

where wnêξ3 = wn is the perpendicular edge function of node
n, with wn the usual node function. In terms of the individual
degrees of freedom, Eq. (34) reads

∑
n∈N (ΩC

c )

(
h⊥,k,n + αk ϕ∥,−k,n

) ∂ξ2wn

−∂ξ1wn

0

 = 0. (37)

This equation is valid over the whole domain ΩC
c if and only if

the first parenthesis is constant. This is the case if, for k ̸= 0,

h⊥,k,n + αk ϕ∥,−k,n = 0, ∀n ∈ N (ΩC
c ). (38)

That is, to ensure a curl-free magnetic field in ΩC
c , the degrees

of freedom of the mode h⊥,k must be linked directly to those
of the mode h∥,−k in ΩC

c (or vice-versa).
This link between the degrees of freedom strongly ensures

that curlh = 0 in ΩC
c and allows for a significant reduction

of the number of unknowns, hence a reduction of the compu-
tational cost of the resolutions.
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C. Boundary conditions for a transverse magnetic field

The transverse magnetic field defined in Eq. (25) applied
as a BC on Γout only involves the modes f−1(ξ3) and f1(ξ3).
We have, in helicoidal components:

(h∥,−1)ξ =

√
2

2

(
0 1 0

)T
, (39)

(h⊥,−1)ξ =

√
2

2

(
0 0 αξ1

)T
, (40)

(h∥,+1)ξ =

√
2

2

(
1 0 0

)T
, (41)

(h⊥,+1)ξ =

√
2

2

(
0 0 −αξ2

)T
. (42)

We can verify that they satisfy Eq. (34).

D. Derivation of the h-ϕ-formulation with linear materials

With linear materials, orthogonality allows solving modes
with different values of |k| (i.e., including −k and k) in-
dependently. For each value of |k|, the integration along ξ3
gives an independent set of equations, written in terms of the
unknown Fourier coefficients h∥,−k, h⊥,−k, h∥,k, and h⊥,k.
These coefficients are functions of ξ1 and ξ2 only, and hence
the problem is 2D. The formulation is derived in the Appendix.

For nonlinear materials, the modes are no longer decoupled.
We provide observations and comments on how to handle this
situation in Section VI-C.

VI. VERIFICATION AND APPLICATION — GENERAL BC

In this section, we first verify the implementation of the
generalized 2D-ξ method by comparing its results with those
of a 3D reference model, for linear materials. We then apply
the method on a 54-filament wire and discuss the different
contributions to the total AC loss, still with linear materials.
Finally, we comment on the application of the method in the
case of nonlinear materials.

A. Verification with linear materials

The validity of the approach with linear materials is verified
by comparing the results of the 2D-ξ model with those
obtained with a classical 3D model. We consider the same
geometry as in Section IV, but with a constant resistivity in
the filaments, and with a uniform transverse magnetic field
instead of an imposed transport current.

The filaments have a constant resistivity ρSC = 3.3×10−14

Ωm (dummy value chosen for verification), and the matrix has
a constant resistivity ρCu = 1.81× 10−10 Ωm. The system is
subjected to a transverse magnetic field along y, increasing
from 0 T to 0.1 T with a constant ramp-up rate of 18 T/s.

Boundary conditions for the 2D-ξ model are imposed on
Γout so as to satisfy Eqn. (39) to (42). Only modes f−1(ξ3) =√
2 cosαξ3 and f+1(ξ3) =

√
2 sinαξ3 are therefore excited

so that the full magnetic field reads

h =
(
h∥,−1(ξ1, ξ2) + h⊥,−1(ξ1, ξ2)

)
f−1(ξ3)

+
(
h∥,+1(ξ1, ξ2) + h⊥,+1(ξ1, ξ2)

)
f+1(ξ3). (43)

The result of the linear 2D-ξ model is illustrated in Fig. 13.

Comparisons with the solution of the 3D problem are given
in Figs. 14 and 15, along a characteristic line in the z = ξ3 = 0
plane and along a helicoidal fiber of pitch length p, passing
at point x =

(
r, 0, 0

)
, with r = Rℓ + 0.8Rf, from z = 0 to

z = p. Both models agree with each other.

µ0J
−T(h∥,−1 + h⊥,−1) µ0J

−T(h∥,+1 + h⊥,+1)

êy
êx

êy
êx

0 µ0hplane (T) 0.15 0.05−0.05 µ0hz (T)

Fig. 13: Solution of the 2D-ξ model with linear materials, on the
z = 0 plane, for a transverse field of 0.1 T. The arrows represent
µ0h, and the triangular elements are colored as a function of the
value of µ0hz , using the color map on the top. The dashed red line
is where the field is taken for Fig. 14, and the red dot along that
line represents the intersection with the plane z = 0 of the helicoidal
fiber along which the field is taken for Fig. 15. (Left) Mode with
f−1(ξ3) (see Eq. (43)). (Right) Mode with f+1(ξ3) (see Eq. (43)).
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Fig. 14: Magnetic field components along the dashed red line
represented in Fig. 13, at z = 0, for the 3D and 2D-ξ models with a
fine mesh resolution for µ0hy = 0.1 T.

As in the HS-BC case, exploiting the geometrical symmetry
allows for a strong reduction of the computational work.
It should however be mentioned that the 2D-ξ model with
transverse field BC involves double number of degrees of
freedom compared to the same model with HS-BC, as two
modes are needed to represent the transverse field (−k and k,
compared to k = 0 only).

The 2D-ξ model still leads to a considerable reduction of
DOFs compared to the 3D model. Indeed, taking values of
the fine mesh resolution from Table. I, the 3D model involves
145k DOFs whereas the 2D-ξ model with two modes only
involves 12k DOFs.
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Fig. 15: Magnetic field along the helicoidal fiber of pitch length p,
passing at point x =

(
r, 0, 0

)
, with r = Rℓ + 0.8Rf (represented

by the red dot in Fig. 13), from z = 0 to z = p, for the 3D and
2D-ξ models for µ0hy = 0.1 T. (Left) Cartesian components of the
vectors. (Right) Helicoidal components of the vectors.

B. Application on a 54-filament wire with linear materials

We now consider the 54-filament geometry defined in Fig. 9
but with a linear material in the filaments. We fix the resistivity
in the filaments to ρSC = 1.81× 10−15 Ωm and in the matrix
to ρCu = 1.81× 10−10 Ωm.

Choosing such a low resistivity in filaments leads to an ap-
proximated model for superconducting wires at low magnetic
fields (below filament saturation). We will see that this linear
model reproduces the coupling current dynamics observed in
the copper matrix of superconducting wires. The validity of
the linear model is however limited to this. It does not describe
superconducting hysteresis effects in filaments, and hence does
not allow for superconducting loss calculation. Instead, in the
following, the computed losses in the filament region will be
those of a normal resistive material.

We compute the AC loss induced by a time-varying trans-
verse magnetic field µ0h = bmax sin(ωt)êy , with bmax = 0.1 T,
as a function of the frequency f = ω/2π. As in the previous
section, BC are such that only the modes f−1(ξ3) and f+1(ξ3)
are excited (see Eqn. (39) to (42)).

Moreover, because the materials are linear and the excitation
is harmonic, the problem can be solved in the frequency
domain. To this end, we write the problem in terms of the
auxiliary complex quantity ĥ(ξ), the phasor of the magnetic
field. The phasor is related to the physical magnetic field by
h(ξ, t) = ℜ

(
ĥ(ξ)eiωt

)
, with i =

√
−1, and we replace all

time derivatives in the formulation by a multiplication by iω.
The time-average instantaneous loss density, in W/m3,

reads, in terms of Cartesian and helicoidal components of the
phasor ĵ for the current density:

1

2
ĵ
⋆

x

(
ρ ĵx

)
=

1

2
ĵ
⋆

ξ ρ̃ ĵξ, (44)

where ĵ
⋆

denotes the tranposed complex conjugate of ĵ. Note
that both sides of Eq. (44) are real since ρ is a scalar and ρ̃ is
a hermitian tensor. The total loss per unit length is obtained
by integrating Eq. (44) over the whole wire cross section.

We decompose this total loss into separate contributions,
which allows for an easier interpretation of the results. The

filament loss is the integral of Eq. (44) on the filament region
only. The coupling loss is the integral of Eq. (44) on the
matrix region only, taking only the in-plane components of
ĵx into account (the x and y Cartesian components). Finally,
the eddy current loss is the same but with only the out-of-plane
component ĵz .

We present the results for frequencies ranging from 10−2 Hz
to 105 Hz in Fig. 16 for a pitch length p = 10 mm. Values
from a 3D reference model are also given for comparison,
the agreement with the 2D-ξ model is very good. The current
distribution at two distinct frequencies is shown in Fig. 17.
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Fig. 16: AC loss as a function of the frequency of an external
transverse magnetic field for linear materials and p = 10 mm. The
total loss as well as separate contributions (filament, coupling, eddy)
are shown. The legend is valid for both subfigures. The markers
denote the total loss obtained by a 3D model, for verification.
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êy

êx
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Fig. 17: Real part of the current density distribution in the matrix in
transverse magnetic field in harmonic regime. Arrows represent the
in-plane x-y-components, and elements are colored as a function of
the out-of-plane z-component.
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Fig. 18: Real part of the current distribution in the filaments in
transverse magnetic in harmonic regime. Arrows represent the in-
plane x-y-components, and elements are colored as a function of the
out-of-plane z-component.

Figure 16 shows that the dominant loss contribution depends
on the frequency. This can be interpreted as follows.

Neglecting the effect of the twist, we expect the peak value
of the filament loss to arise when the diffusion skin depth
δSC =

√
2ρSC/ωµ is comparable with the radius of the wire

Rf. We have δSC/Rf = 1 for the frequency f = 0.22 Hz,
which is not too far from the peak in Fig. 16(b).

A change of regime for the eddy current loss per cycle
should arise when the skin effect starts to play a role in the
matrix. This is expected to happen when the diffusion skin
depth δCu =

√
2ρCu/ωµ is comparable with the thickness

of the outer sheath of the matrix Dos ≈ 80 µm. Here, we
have δCu/Dos = 1 for the frequency f = 7.2 kHz, which
coincides with the peak in Fig. 16(b). Below this frequency,
in the 0.1 kHz to 5 kHz range, most of the field is shielded
by currents in the filaments, that are coupled via coupling
currents, as discussed below.

Coupling losses are due to currents flowing between the
filaments, known as the coupling currents [38]. They are
represented by the arrows in Fig. 17. It is worth mentioning
that they are on average flowing anti-parallel to the applied
magnetic field, as predicted by analytical models [38], [36].
Their dynamics is that of an RL-circuit governed by a time
constant τc and they contribute to a loss per cycle and per unit
length qcycle (J/m). Simplified models propose [36]:

τc =
µ0

2ρeff

( p

2π

)2

, qcycle = πR2
w
b2max

2µ0

πωτc

(ω2τ2c + 1)
(45)

with ρeff the effective resistivity of the matrix, accounting
for the presence of the filaments [2]. In the present case in
which we assume no insulation between the filaments and the
matrix, assuming the filaments have negligible resistivity, we
can estimate ρeff as follows [39]:

ρeff = ρCu
1− λ

1 + λ
, (46)

with λ the filling factor of the filaments in the wire. Here,
λ = 0.44 so that τc = 23 ms. The associated frequency is fc =

(2πτc)
−1 = 7 Hz, which roughly corresponds to the position

of the peak value of the coupling loss per cycle in Fig. 16(b).
Below the peak frequency, the filaments are mostly decoupled,
as the magnetic field does not change fast enough for large
coupling currents to appear. Above the peak frequency, they
get more and more coupled, as illustrated in Fig. 18.

As an illustration of the effect of p on the coupling losses,
we give in Fig. 19 the total and coupling losses for different
values of the pitch length. We can verify the agreement with
the analytical prediction Eq. (45): the peak position of the
coupling losses scales quadratically with p, affecting the total
loss significantly. The curve for a pure copper cylindrical con-
ductor of the same radius Rw, with ρSC = ρCu = 1.81×10−10

Ωm, is given for comparison.
Note that for the pure copper case, we have δCu/Rw = 1

for f = 183 Hz, which roughly corresponds to the position of
the peak of AC loss per cycle.
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Fig. 19: AC loss as a function of the frequency of an applied
transverse magnetic field for linear materials and different pitch
lengths. Solid curves represent the total loss. Dashed curves represent
the coupling loss only. The main effect of the twist is to shift the
coupling loss curves to higher frequencies for decreasing values of p.
The total loss for a wire made of copper only (2D model) is given for
comparison (dotted curve). The legend is valid for both subfigures.

Figure 19 clearly shows the beneficial effect of twisting
the filaments at low frequencies. Wires with smaller pitch
length indeed have shorter time constants and are less subject
to coupling current losses at low frequencies. It must be
mentionned that the twist however does not reduce loss for
all frequencies, which is in agreement with experimental
measurements, e.g., in [40].

The simple linear model discussed here allows for a quali-
tative description of coupling current losses that are represen-
tative of real superconducting wires for low applied magnetic
field only. With superconducting filaments, saturation effects
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change the coupling current dynamics for higher field am-
plitudes [2]. Such effects cannot be reproduced with a linear
model.

As already said, the analysis of this linear model must
therefore be carried out with caution. Total loss evaluations for
superconducting wires cannot be extracted from this model as
hysteresis losses of superconducting filaments are not part of
the linear model. The inclusion of nonlinear material properties
is necessary for such analysis. In the next section, we present
the challenges that such an inclusion brings to the helicoidal
transformation approach with general BC.

C. Comments for nonlinear materials

In the presence of nonlinear materials, such as supercon-
ducting filaments with a power law resistivity described by
Eq. (9), mode decoupling is no longer possible with general
BC. As derived in the Appendix, the eddy current term of
the formulation expands as a double sum on k, k′ ∈ Z of the
terms given by Eq. (51). And each term in Eq. (51) involves the
tensor ρ̃. For a superconducting filament, this tensor depends
on the full local current density, which couples the modes with
different values of |k|. A large number of modes in Eq. (30)
is therefore likely to be excited by a transverse magnetic field.

As the integral along the ξ3-direction can no longer be
computed a priori, the resulting problem is no longer two-
dimensional, which makes it qualitatively different from the
2D-ξ model with linear materials.

To assess the importance of this mode coupling, we can
use the 3D model. We show in Fig. 20 the evolution of the
magnetic field and the current density along one helicoidal
fiber, obtained with the 3D model with the same material
parameters as in Section IV, but subject to a transverse
magnetic field. As can be seen on the bottom-right plot, the
magnetic field in helicoidal coordinates cannot be described
only with the two modes f−1(ξ3) and f+1(ξ3) as in the linear
case. Higher modes are excited.

The amplitude of the different modes can be quantified by
a discrete Fourier transform of the magnetic field evolution
along this helicoidal fiber. This is illustrated in Fig. 21. Small,
but non-negligible contributions are brought by modes |k| > 1.

Whether a description with a limited number of modes
would lead to satisfying evaluations of losses or not is not an
obvious question; knowing a priori how many modes should
be considered on a new geometry remains an open question.
Further investigations in that direction are necessary.

VII. CONCLUSION

In this work, we applied a change of coordinates on the
h-ϕ-formulation for modelling multifilamentary wires pre-
senting a helicoidal symmetry. This led to a reduction of
the geometrical dimension from 3D to 2D, hence allowing
for a substantial gain in terms of computational effort. We
separated the study in two steps, depending on the helicoidal
symmetry of the boundary conditions (BC). In both cases, we
described in details the spatial discretization of finite element
fields in helicoidal coordinates. In particular, we emphasized
the necessity of using three independent components for the
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Fig. 20: Current density (up) and magnetic field (down) along the
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(
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)
,

with r = Rℓ +0.8Rf from z = 0 to p, for a transverse applied mag-
netic field along êy and Nb-Ti filaments. (Left) Three components of
the vectors in the x-space. (Right) Three components of the vectors in
the ξ-space. Solution of the 3D model on a fine mesh with prismatic
element in the filaments.
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Fig. 21: Amplitudes of the mode contributions for the evolution of the
three components of h in the ξ-space, along the same helicoidal fiber
as in Fig. 20. Values are obtained via a fast Fourier transform. Modes
for even numbers of k are not excited by a transverse magnetic field.

unknown fields. We then successfully verified our implemen-
tation against standard 3D models.

In the case with no external field (e.g. transport current
situation only) or with an axial magnetic field, BC are heli-
coidally symmetric and the method can be directly applied
to nonlinear materials. The approach is exact in the sense
that no approximation is introduced in the continuous setting.
The proposed method can be directly applied on single-layer
CORC® cables [41] or twisted stacked-tape conductors [42].

In the case of a transverse magnetic field, BC are no longer
helicoidally symmetric, but the approach was generalized and
applied to linear materials. We presented a study of coupling
current induced losses in the harmonic regime, and we finally
commented on a possible extension to nonlinear materials. For
nonlinear materials with general BC, further investigations are
necessary.
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APPENDIX

The full h-ϕ-formulation expressed in helicoidal coordinates
reads: from an initial solution at t = 0, find h ∈ H(Ω) such
that, for t > 0 and ∀h′ ∈ H0(Ω),(

∂t(µ̃ h) ,h′)
Ω3D

+
(
ρ̃ curlh , curlh′)

Ωc,3D

=
∑
i∈CV

V̄iIi(h′), (47)

with µ̃ and ρ̃ two tensors defined in Eqn. (11) and (12). This
formulation is written in the 3D domain Ω3D, not yet reduced
to a 2D problem. In the case of non-helicoidally symmetric
boundary conditions, the solution h is not ξ3-invariant, and
the dimension reduction is not immediate.

Below, we expand the two integral terms of this formulation
when the magnetic field h(ξ1, ξ2, ξ3) is decomposed with
Eq. (30) and the modes fk(ξ3) defined in Eq. (27). We remind
that these modes are orthonormal in the sense of the inner
product defined in Eq. (28).

Flux variation term (linear case)

The first term of Eq. (47) expands as the double sum
∞∑

k=−∞

∞∑
k′=−∞

(
∂t(µ̃ h∥,kfk) ,h

′
∥,k′fk′

)
Ω3D

+
(
∂t(µ̃ h⊥,kfk) ,h

′
∥,k′fk′

)
Ω3D

+
(
∂t(µ̃ h∥,kfk) ,h

′
⊥,k′fk′

)
Ω3D

+
(
∂t(µ̃ h⊥,kfk) ,h

′
⊥,k′fk′

)
Ω3D

. (48)

Because the decomposition in Eq. (30) separates the variables,
we can integrate each individual term along the geometry in-
variant ξ3-direction over one pitch length p. The orthogonality
of the modes induces that terms with k ̸= k′ vanish (provided
that µ is not a function of the magnetic field). Dividing the
integral by p and using ∥fk∥ = 1, we get,

∞∑
k=−∞

(
∂t(µ̃ h∥,k) ,h

′
∥,k

)
Ω
+
(
∂t(µ̃ h⊥,k) ,h

′
∥,k

)
Ω

+
(
∂t(µ̃ h∥,k) ,h

′
⊥,k

)
Ω
+
(
∂t(µ̃ h⊥,k) ,h

′
⊥,k

)
Ω
,

(49)

where integrals now only have to be performed on a 2D
domain. Equations for different values of |k| are uncoupled.
In ΩC

c , the degrees of freedom for h⊥,k and h∥,−k are linked
with each other using Eq. (38).

Eddy current term (linear case)

The second term of Eq. (47) expands as the double sum
∞∑

k=−∞

∞∑
k′=−∞

(
ρ̃ curl (h∥,kfk) , curl (h′

∥,k′fk′)
)
Ωc,3D

+
(
ρ̃ curl (h⊥,kfk) , curl (h′

∥,k′fk′)
)
Ωc,3D

+
(
ρ̃ curl (h∥,kfk) , curl (h′

⊥,k′fk′)

)
Ωc,3D

+
(
ρ̃ curl (h⊥,kfk) , curl (h′

⊥,k′fk′)
)
Ωc,3D

. (50)

Using Eq. (31) for the curl, we get the following lengthy
expression for each pair of values (k, k′) ∈ Z× Z,(

ρ̃ fk curlh∥,k , fk′ curlh′
∥,k′

)
Ωc,3D

+

(
ρ̃
dfk
dξ3

êξ3 × h∥,k , fk′ curlh′
∥,k′

)
Ωc,3D

+

(
ρ̃ fk curlh∥,k ,

dfk′

dξ3
êξ3 × h′

∥,k′

)
Ωc,3D

+

(
ρ̃
dfk
dξ3

êξ3 × h∥,k ,
dfk′

dξ3
êξ3 × h′

∥,k′

)
Ωc,3D

+
(
ρ̃ fkcurlh⊥,k , fk′ curlh′

∥,k′

)
Ωc,3D

+

(
ρ̃ fkcurlh⊥,k ,

dfk′

dξ3
êξ3 × h′

∥,k′

)
Ωc,3D

+
(
ρ̃ fk curlh∥,k , fk′curlh′

⊥,k′

)
Ωc,3D

+

(
ρ̃
dfk
dξ3

êξ3 × h∥,k , fk′curlh′
⊥,k′

)
Ωc,3D

+
(
ρ̃ fkcurlh⊥,k , fk′curlh′

⊥,k′

)
Ωc,3D

. (51)

In the linear case in which ρ̃ is not a function of the fields,
we can integrate each term along the geometry invariant ξ3-
direction over one pitch length p, divide by p, use the mode
property Eq. (29), and exploit the mode orthonormality.

For k = 0, because dξ3f0 = 0, only terms for k′ = 0
survive, and they are decoupled from all other terms (k ̸= 0).
These terms are the same as the ones implemented in the case
of helicoidally symmetric boundary conditions (HS-BC):(

ρ̃ curlh∥,0 , curlh′
∥,0

)
Ωc

+
(
ρ̃ curlh⊥,0 , curlh′

∥,0

)
Ωc

+
(
ρ̃ curlh∥,0 , curlh′

⊥,0

)
Ωc

+
(
ρ̃ curlh⊥,0 , curlh′

⊥,0

)
Ωc

.

(52)

For k ̸= 0, only one term of the sum on k′ survives for each
term, either k′ = k, or k′ = −k. Indeed, Eq. (29) induces the
coupling of the modes k and −k. For a given value of k ̸= 0,
in Eq. (51), the only terms that remain are(

ρ̃ curlh∥,k , curlh′
∥,k

)
Ωc

+αk
(
ρ̃ êξ3 × h∥,k , curlh′

∥,−k

)
Ωc

+α(−k)
(
ρ̃ curlh∥,k , êξ3 × h′

∥,−k

)
Ωc

+α2k2
(
ρ̃ êξ3 × h∥,k , êξ3 × h′

∥,k

)
Ωc

+
(
ρ̃ curlh⊥,k , curlh′

∥,k

)
Ωc

+α(−k)
(
ρ̃ curlh⊥,k , êξ3 × h′

∥,−k

)
Ωc

+
(
ρ̃ curlh∥,k , curlh′

⊥,k

)
Ωc

+αk
(
ρ̃ êξ3 × h∥,k , curlh′

⊥,−k

)
Ωc

+
(
ρ̃ curlh⊥,k , curlh′

⊥,k

)
Ωc

. (53)

To these terms, another set needs to be added, with the
opposite value of k, k⋆ = −k. In total, this gives eighteen
individual terms for the eddy current contribution, for each
value of |k| ≠ 0.
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