UNE CORRESPONDANCE ENTRE DEUX SURFACES DU SIXIÈME ORDRE.

Au Professeur A. Kawaguchi pour son 60° anniversaire.

Par Lucien GODEAUX.

Cette étude est une application de la théorie des involutions cycliques appartenant à une surface algébrique et n'ayant qu'un nombre fini de points unis que nous avons développée dans plusieurs mémoires ([1]¹⁰, [2], aussi [3]). Nous utilisons d'une manière précise les propriétés des involutions du troisième ordre que nous rappellerons rapidement.

Soit F une surface algébrique contenant une involution cyclique du troisième ordre n'ayant qu'un nombre fini de points unis (en des points simples de la surface) et soit T la transformation de F en soi génératrice de l'involution. Un point uni A est dit de première espèce si, dans le faisceau des tangentes à F en A, la transformation T détermine l'identité. Il est dit de seconde espèce si au contraire T détermine dans ce faisceau une involution binaire du troisième ordre; cette involution possède alors deux tangentes unies. Soit F' une surface image de l'involution, c'est-à-dire une surface telle qu'entre ses points et les groupes de l'involution il existe une correspondance birationnelle. Nous avons montré que l'on peut construire F' de telle sorte qu'à ses sections hyperplanes correspondent sur F des courbes ne passant pas par les points unis. Les points de diramation, qui correspondent sur F' aux points unis de l'involution, sont alors singuliers pour cette surface.

A un point uni de première espèce correspond sur F' un point de diramation qui est triple conique pour la surface F', le cône tangent étant rationnel. A un point uni de seconde espèce, correspond un point de diramation qui est double biplanaire ordinaire pour la surface F'.

Les courbes canoniques de F' passent simplement par les points triples de la surface, mais ne passent pas par les points doubles biplanaires. Il leur correspond sur F des courbes canoniques de cette surface passant simplement par les points unis de première espèce, mais ne passant pas par les points unis de seconde espèce.

Si l'involution possède α points unis de première espèce et β points unis de seconde espèce, entre les genres arithmétiques p_a de F et p'_a de F', on a la relation

Reçu par l'éditeur le 2 Juillet, 1962.

¹⁾ Les nombres entre crochets renvoient aux références à la fin de cet article.

$$12(p_a+1) = 3\cdot12(p_a'+1)-4\alpha-8\beta$$
.

Dans cette note, nous considérons une surface F du sixième ordre contenant deux involutions cycliques du troisième ordre engendrées par des homographies de période trois, permutables. L'involution du neuvième ordre engendrée sur F par ces deux homographies a pour image une surface du sixième ordre possédant huit points triples coniques (à cône tangent rationnel) et deux points doubles biplanaires ordinaires.

1. Considérons deux homographies cycliques de période trois

$$T_{\scriptscriptstyle 1} = \begin{pmatrix} x_{\scriptscriptstyle 1} & x_{\scriptscriptstyle 2} & \varepsilon x_{\scriptscriptstyle 3} & \varepsilon^2 x_{\scriptscriptstyle 4} \\ x_{\scriptscriptstyle 1} & x_{\scriptscriptstyle 2} & x_{\scriptscriptstyle 3} & x_{\scriptscriptstyle 4} \end{pmatrix}, \quad T_{\scriptscriptstyle 2} = \begin{pmatrix} \varepsilon x_{\scriptscriptstyle 1} & \varepsilon^2 x_{\scriptscriptstyle 2} & x_{\scriptscriptstyle 3} & x_{\scriptscriptstyle 4} \\ x_{\scriptscriptstyle 1} & x_{\scriptscriptstyle 2} & x_{\scriptscriptstyle 3} & x_{\scriptscriptstyle 4} \end{pmatrix},$$

où ε est une racine cubique primitive de l'unité. La surface du sixième ordre la plus générale transformée en soi par T_1 et T_2 a pour équation

$$\varphi_2(x_1^3, x_2^3, x_3^3, x_4^3) + x_1x_2x_3x_4(a_1x_1x_2 + a_2x_3x_4) = 0$$

où φ_2 est une forme algébrique du second degré-de ses arguments.

Sur la surface F, les homographies T_1 , T_2 engendrent une involution I_3 du neuvième ordre dont un groupe est formé des points

$$(x_1, x_2, x_3, x_4), (\varepsilon x_1, \varepsilon^2 x_2, x_3, x_4), (\varepsilon^2 x_1, \varepsilon x_2, x_3, x_4), (x_1, x_2, \varepsilon x_3, \varepsilon^2 x_4), (\varepsilon x_1, \varepsilon^2 x_2, \varepsilon x_3, \varepsilon^2 x_4), (\varepsilon^2 x_1, \varepsilon x_2, \varepsilon^2 x_3, \varepsilon x_4), (x_1, x_2, \varepsilon^2 x_3, \varepsilon x_4), (\varepsilon x_1, \varepsilon^2 x_2, \varepsilon^2 x_3, \varepsilon x_4), (\varepsilon^2 x_1, \varepsilon x_2, \varepsilon x_3, \varepsilon^2 x_4).$$

Les homographies

$$T_3 = \begin{pmatrix} x_1 & \varepsilon x_2 & x_3 & \varepsilon x_4 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix}, \quad T_4 = \begin{pmatrix} x_1 & \varepsilon x_2 & \varepsilon x_3 & x_4 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix}$$

transforment ce groupe en lui-même. Ce sont des homographies biaxiales cycliques de période trois, engendrant également l'involution $I_{\mathfrak{g}}$.

Pour obtenir une surface F' image de l'involution $I_{\mathfrak{g}}$, observons que les surfaces cubiques

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 + \lambda_3 x_3^3 + \lambda_4 x_4^3 = 0$$

sont transformées en elles-mêmes par T_1 , T_2 , T_3 et T_4 . Rapportons projectivement ces surfaces aux plans de l'espace en posant

$$X_1: X_2: X_3: X_4 = x_1^3: x_2^3: x_3^3: x_4^3$$

Elevons les deux membres de l'équation de F au cube, nous avons

$$\begin{split} \varphi_2^3(X_1, X_2, X_3, X_4) + 3\varphi_2^2x_1x_2x_3x_4 (a_1x_1x_2 + a_2x_3x_4) \\ + 3\varphi_2(x_1x_2x_3x_4)^2(a_1x_1x_2 + a_2x_3x_4)^2 \\ + X_1X_2X_3X_4 (a_1^3X_1X_2 + 3a_1^2a_2x_1^2x_2^2x_3x_4 + 3a_1a_2^2x_1x_2x_3^2x_4^2 + a_2^3X_3X_4) &= 0 \; . \end{split}$$

En tenant compte de l'équation de F, les deuxièmes et troisièmes termes deviennent

$$-3\varphi_{2}^{3}+3\varphi_{2}^{3}=0.$$

D'autre part, on a

$$\begin{aligned} 3a_1^2a_2x_1^2x_2^2x_3x_4 + 3a_2^2a_1x_1x_2x_3^2x_4^2 \\ &= 3a_1a_2x_1x_2x_3x_4\langle a_1x_1x_2 + a_2x_3x_4\rangle = -3a_1a_2\varphi_2 \ . \end{aligned}$$

L'équation de la surface F' est donc finalement

$$\varphi_{2}^{3}(X_{1},X_{2},X_{3},X_{4})+X_{1}X_{2}X_{3}X_{4}\left[a_{1}^{3}X_{1}X_{2}+a_{2}^{3}X_{3}X_{4}-3a_{1}a_{2}\varphi_{2}(X_{1},X_{2},X_{3},X_{4})\right]=0.$$

C'est une surface du sixième ordre et entre F' et F nous avons une correspondance (1,9).

2. Appelons O_i le point dont toutes les coordonnées sont nulles sauf x_i et O'_i le point dont toutes les coordonnées sont nulles sauf X_i (les points O_i , O'_i peuvent être distincts ou non).

L'homographie T_1 possède les points unis O_3 , O_4 et la droite unie O_1O_2 . Comme la surface F ne passe pas par les sommets du tétraèdre de référence, l'involution I_3 engendrée par T_1 sur F possède comme points unis les points de rencontre de la droite O_1O_2 avec F,

$$x_3 = x_4 = 0$$
, $\varphi_2(x_1^3, x_2^3, 0, 0) = 0$.

Soit A_{12} un de ces points. Le plan tangent en A_{12} à F est uni pour T_1 . Ce plan ne peut passer par la droite O_1O_2 et c'est donc le plan $A_{12}O_3O_4$. Dans ce plan, T_1 engendre une homographie non homologique, donc le point A_{12} est uni de seconde espèce pour I_3 .

L'involution I_3 possède six points unis de seconde espèce situés sur la droite O_1O_2 .

On arrive à des conclusions analogues pour l'involution I_3' engendrée sur F par l'homographie T_2 . Cette involution possède six points unis situés sur la droite O_3O_4 et le plan tangent en l'un, A_{34} , de ces points est le plan $A_{34}O_1O_2$, dans lequel T_2 engendre une homographie non homologique.

L'involution I_3' possède six points unis de seconde espèce situés sur la droite O_3O_4 .

Désignons par I_3'' l'involution d'ordre trois engendrée par l'homographie T_3 . Celle-ci est biaxiale et a comme droites unies les droites O_1O_3 , O_2O_4 . Les points d'intersection de F avec ces droites sont les points unis de l'involution.

Soit A_{13} un des points unis de I_3'' situé sur la droite O_1O_3 . Le plan tangent à F en ce point est uni pour T_3 et passe par O_2O_4 . Dans ce plan, T_3 détermine une homologie de centre A_{13} et ce point est uni de première espèce pour I_3'' . Il en est de même d'un point uni A_{24} situé sur la droite O_2O_4 .

L'involution I_3'' possède douze points unis de première espèce situés six sur chacune des droites O_1O_2 , O_2O_4 .

L'involution du troisième ordre I_2''' engendrée sur F par T_4 , qui est une homographie biaxiale d'axes O_1O_4 et O_2O_3 , possède également douze points unis de première espèce. Nous désignerons par A_{14} un des points unis situés sur O_1O_4 et par A_{23} un des points unis situés sur O_2O_3 .

L'involution I_3''' possède douze points unis de première espèce situés six sur la droite O_1O_4 , six sur la droite O_2O_3 .

3. La surface F étant dépourvue de points multiples et étant régulière, ses genres arithmétique et géométriques sont $p_a = p_g = 10$, les courbes canoniques étant découpées par les quadriques.

Désignons par F'' une surface image de l'involution I_3 engendrée sur F par T_3 . Cette involution possède six points unis de seconde espèce, par conséquent entre les genres arithmétiques $p_a=10$ de F et p''_a de F'', nous avons la relation

$$12(p_a+1) = 3\cdot 12(p_a''+1) - 6\cdot 8$$
.

On a donc $p_a^{"}=4$.

A l'involution I_9 correspond sur F'' une involution I'' d'ordre trois, cyclique, qui possède les points unis suivants:

Les six points unis situés sur la droite O_1O_3 forment deux groupes de I_3 et il leur correspond sur F'' deux points unis de première espèce pour I''.

De même, les six points unis situés sur chacune des droites O_2O_4 , O_1O_4 , O_2O_3 forment deux groupes de I_3 et il leur correspond sur F'' trois groupes de deux points unis de première espèce pour I''.

Enfin, les six points unis situés sur la droite O_3O_4 forment deux groupes de I_3 et il leur correspond sur F'' deux points unis de seconde espèce de l'involution I''.

L'involution I'' possède donc huit points unis de première espèce et deux points unis de seconde espèce, par conséquent, entre les genres arithmétiques $p''_a = 4$ de F'' et p'_a de F', nous avons la relation

$$12(p_a^{\prime\prime}+1) = 3{\cdot}12(p_a^{\prime}+1) - 8{\cdot}4 - 2{\cdot}8 \ ,$$

d'où $p'_a=2$.

4. Aux six points unis de l'involution I_3 correspondent sur F'' six points doubles biplanaires ordinaires, formant deux groupes de l'involution I''. A ces points correspondent sur F' deux points doubles biplanaires ordinaires. Ils sont donnés par

$$X_1 = X_2 = 0$$
 , $\varphi_2(0, 0, X_3, X_4) = 0$.

Aux six points unis de l'involution I'_3 correspondent sur F'' deux points

unis de seconde espèce et à ces points correspondent sur F' deux points doubles biplanaires ordinaires de F', donnés par

$$X_3 = X_4 = 0$$
, $\varphi_2(X_1, X_3, 0, 0) = 0$.

Aux huit points unis de première espèce de l'involution I'' de F'' correspondent sur F' des points triples, à cônes tangents rationnels, situés deux sur chacune des droites O_1O_3 , O_2O_4 , O_1O_4 , O_2O_3 .

On peut vérifier qu'il en est bien ainsi.

Soit A'_{12} un des deux points de la droite $O'_1O'_2$ situés sur la quadrique $\varphi_2=0$. Ce point est triple pour $\varphi_2^3=0$, quadruple pour $a_2^3X_1X_2X_2^2X_4^2=0$, triple pour le terme $3a_1a_2X_1X_2X_3X_4\varphi_2=0$, mais double pour le terme $a_1^3X_1^2X_2^2X_3X_4=0$. Le point A'_{12} est donc double pour F' et les plans tangents à la surface en ce point sont $X_1=0$, $X_4=0$.

Soit maintenant A_{13}' un des points situés sur la droite $O_1'O_3'$ et sur $\varphi_2=0$. Ce point est triple pour $\varphi_2^3=0$, le cône tangent en ce point se réduisant au plan tangent à la quadrique $\varphi_2=0$ compté trois fois. Pour le terme $a_1^2X_1^2X_2^2X_3X_4=0$, le point est triple, le cône tangent étant $X_2^2X_4=0$. Pour le terme $a_2^3X_1X_2X_3^3X_4^2=0$, le point est triple, le cône tangent étant $X_2X_4^2=0$. Enfin, pour le terme $3a_1a_2X_1X_2X_3X_4\varphi_2=0$, le point est encore triple, le cône tangent étant formé des plans $X_2=0$, $X_4=0$ et du plan tangent à la quadrique $\varphi_2=0$. Si l'on désigne par $\alpha=0$ ce dernier plan, le plan tangent en A_{13}' à F' est de la forme

$$\lambda_1 \alpha^3 + \lambda_2 X_2^2 X_4 + \lambda_3 X_2 X_4^2 + \lambda_4 X_2 X_4 \varphi_2 = 0$$

et est bien un cône irréductible.

On voit donc que la surface F' possède quatre point doubles biplanaires ordinaires et situés deux sur la droite $O'_1O'_2$ et deux sur la droite $O'_3O'_4$, et huit points triples coniques situés deux sur chacune des droites $O'_1O'_3$, $O'_2O'_4$, $O'_1O'_4$, $O'_2O'_3$.

5. Les adjointes à la surface du sixième ordre F' sont les quadriques passant par les huit points triples. Ces points n'étant pas associés, ces quadriques forment un faisceau. Parmi ces quadriques, se trouvent les quadriques $X_1X_2=0$, $X_3X_4=0$ et par conséquent les adjointes à F' ont pour équation

$$X_1 X_2 + \lambda X_3 X_4 = 0.$$

Nous pouvons retrouver autrement ce résultat.

On sait qu'aux courbes canoniques de F' correspondent sur F des courbes canoniques de cette surface passant simplement par les points unis de première espèce mais non par les points unis de seconde espèce. Il est aisé de voir que les courbes canoniques de F transformées des courbes canoniques de F' sont découpées par les quadriques

$$x_1x_2 + \mu x_3x_4 = 0$$
.

Elevons les deux membres de cette équation au cube. Nous obtenons

$$x_{\scriptscriptstyle 1}^{\scriptscriptstyle 3} x_{\scriptscriptstyle 2}^{\scriptscriptstyle 3} + 3\mu\, x_{\scriptscriptstyle 1} x_{\scriptscriptstyle 2} x_{\scriptscriptstyle 3} x_{\scriptscriptstyle 4} (x_{\scriptscriptstyle 1} x_{\scriptscriptstyle 2} + \mu\, x_{\scriptscriptstyle 3} x_{\scriptscriptstyle 4}) + \mu^{\scriptscriptstyle 3} x_{\scriptscriptstyle 3}^{\scriptscriptstyle 3} x_{\scriptscriptstyle 4}^{\scriptscriptstyle 3} = 0 \; ,$$

c'est-à-dire

$$X_1 X_2 + \mu^3 X_3 X_4 = 0$$

et il suffit de poser $\lambda = \mu^3$.

Observons que la quadrique

$$a_1^3 X_1 X_2 + a_2^3 X_3 X_1 = 0$$

découpe sur F' une courbe canonique. Si l'on introduit cette condition dans l'équation de F', on trouve qu'elle entraı̂ne $\varphi_2=0$. L'intersection de F' et de la quadrique $\varphi_2=0$ est donc une courbe canonique.

Observons en passant que les faces du tétraèdre de référence osculent la surface F' le long de coniques.

6. Pour obtenir les équations de la surface F'', rapportons projectivement les surfaces cubiques invariantes pour T_1 ,

 $\lambda_{111}x_1^3 + \lambda_{112}x_1^2x_2 + \lambda_{122}x_1x_2^2 + \lambda_{222}x_2^3 + \lambda_{134}x_1x_3x_4 + \lambda_{234}x_2x_3x_4 + \lambda_{333}x_3^3 + \lambda_{444}x_4^3 = 0$ aux hyperplans d'un espace linéaire à sept dimensions, en posant

$$pX_{ijk} = x_i x_j x_k .$$

On obtiendra les équations de F'' en éliminant les x entre ces équations et celle de F. On obtient ainsi

C'est une surface d'ordre 18.

Aux courbes canoniques $C^{\prime\prime}$ de $F^{\prime\prime}$ correspondent sur F les courbes découpées par les quadriques

$$\lambda_{11}x_1^2 + \lambda_{12}x_1x_2 + \lambda_{22}x_2^2 + \lambda_{34}x_3x_4 = 0.$$

Ces courbes ont le genre 25 et entre une de ces courbes et la courbe C'' correspondante, nous avons une correspondance (3,1) privée de points unis. Par la formule de Zeuthen, on en déduit que les courbes C'' ont le genre neuf.

Si C' est une courbe canonique de F', entre cette courbe et la courbe C'' homologue, nous avons une correspondance (1,3) possédant huit points unis. On en déduit par la formule de Zeuthen que la courbe C' a le genre un. On

voit d'ailleurs que le faisceau |C'| n'a pas de points-base simples sur la surface F'. La surface F' est, comme F, régulière.

La surface F' a les genres arithmétique et géométrique $p_a=p_g=2$ et la genre linéaire $p^{(1)}=1$.

7. Appelons F''' une surface qui représente l'involution I''_3 engendrée sur F par l'homographie T_3 , d'axes O_1O_3 , O_2O_4 .

Une droite s'appuyant sur O_1O_3 , O_2O_4 coupe F en deux groupes de l'involution I_3'' . Posons

$$x_3 = xx_2, \quad x_4 = yx_1.$$

L'équations de F donne

$$\varphi_2(x_1^3, x_2^3, x^3x_2^3, y^3x_1^3) + xyx_1^3x_2^3(a_1 + a_2xy) = 0$$
.

Posons en outre

$$x_2^3 = z x_1^3,$$

d'où

$$\varphi_2(1, z, x^3z, y^3) + xyz(a_1 + a_2xy) = 0$$
.

Interprétons x, y, z comme coordonnées des points de l'espace. A un point du plan xy correspondent deux points de la surface précédente représentant deux groupes de l'involution I''_3 . La surface F''' est donc un plan double dont l'équation de la courbe de diramation s'obtient en égalant à zéro le discriminant de l'équation précédente considérée comme une équation en z.

L'involution I_3'' ayant douze points unis de première espèce, on en déduit que la surface F''' a le genre arithmétique $p_a=4$ et le genre linéaire $p^{(1)}=5$.

Aux trois transformations T1, T2, T4 correspond l'homographie

$$x' = \varepsilon x$$
, $y' = \varepsilon^2 y$, $z' = z$.

Liége, le 23 mai 1962.

RÉFÉRENCES

- Lucien Godeaux: Les involutions cycliques appartenant à une surface algébrique, Actualités scient., 270, Paris, Hermann, (1935).
- [2] Lucien Godeaux: Mémoire sur les surfaces multiples, Mémoires in-8° de l'Académie roy. de Belgique, (1935).
- [3] Lucien Godeaux: Les involutions cyclique appartenant à une surface algébrique et applications, (en cours de publication dans la Collection de Monographies publiée par le Consiglio Nazionale delle Ricerche d'Italie.).