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Abstract

Exoplanet imaging presents significant challenges due to the extreme contrast and close
angular separation between exoplanets and their host stars. Although coronagraphs and
adaptive optics largely address these issues, high-contrast imaging instruments are still
limited by residual wavefront errors, primarily from instrumental phase aberrations. Focal-
plane wavefront sensing is appropriate to handle pupil-plane phase errors because it mea-
sures the aberrations directly at the science focal plane. The current sensing approaches
can nonetheless be slow, unstable, and often designed for specific instruments.

In this thesis, new deep learning-based methods are explored to provide a fast, robust,
and flexible solution for focal-plane wavefront sensing that can be applied to various in-
strumental designs. State-of-the-art deep convolutional neural networks are implemented
and trained in a supervised way, achieving high performance and showing good robustness
to changing aberration regimes and noise content. The problem of phase retrieval behind
vortex phase masks is notably revisited with deep neural networks and simulated data. A
new CNN-based approach that achieves a 100% science duty cycle using only focal-plane
images is developed and tested with both scalar and vector vortex coronagraphs.

Supervised learning techniques require ground-truth phase aberrations for training the
neural networks, that cannot be obtained accurately in real systems. To address this limi-
tation, an autoencoder architecture is proposed, that is composed of a convolutional neural
network as the encoder and a differentiable simulator as the decoder. As a result, the
models are trained exclusively on observed images, enforcing the latent space to represent
phase aberrations. Additionally, a variational component is introduced to predict probabil-
ity distributions and assess phase uncertainties.

The deep learning-based methods developed in this thesis are successfully tested in-
laboratory using the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instru-
ment. Pre-training on large simulated datasets enhances the performance on small in-lab
sets, and closed-loop experiments demonstrate robust convergence, effectively correcting
introduced aberrations. The simulator-based autoencoder, tested across different wave-
front aberration regimes, delivers very good PSF reconstructions and phase estimations.
Validating the method with a simple optical propagation model shows great promise, and
further developments of the simulator should improve its robustness against the varying
conditions occurring in real systems.

This thesis demonstrates that methods based on deep artificial neural networks can
offer an accurate, fast and robust solution for focal plane wavefront sensing, paving the
way for future developments and on-sky applications.
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Résumé

L’imagerie d’exoplanètes est complexe en raison des contrastes et séparations angulaires
entre les exoplanètes et leurs étoiles hôtes. Bien que les coronographes et l’optique adap-
tative atténuent grandement ces problèmes, les instruments à haut contraste sont encore
limités par des erreurs résiduelles de front d’onde dues aux aberrations de phase instru-
mentales. La détection du front d’onde au plan focal est efficace pour traiter les erreurs
de phase du plan pupille, car elle mesure directement les aberrations au niveau des images
scientifiques. Cependant, les méthodes actuelles peuvent être lentes, instables, et souvent
adaptées à des instruments spécifiques.

Cette thèse explore de nouvelles méthodes d’apprentissage profond pour offrir une
solution rapide, robuste et flexible à la détection du front d’onde au plan focal, adaptable
à divers designs instrumentaux. Des réseaux neuronaux convolutifs, entraînés sur des
données simulées, atteignent des performances élevées et montrent une bonne robustesse
face aux aberrations et au bruit. Une nouvelle méthode basée sur les coronographes vortex
est développée, permettant de résoudre l’ambiguïté de signe de la phase sans perte de
temps d’observation.

Les techniques d’apprentissage supervisé nécessitent une valeur de référence pour les
aberrations de phase afin d’entraîner les réseaux neuronaux, ce qui ne peut pas être obtenu
de manière précise dans les systèmes réels. Une architecture d’auto-encodeur est alors
proposée, composée d’un réseau neuronal convolutif suivi d’un simulateur différentiable.
Les modèles sont par conséquent entraînés exclusivement sur les images observées, ce
qui contraint l’espace latent à représenter les aberrations de phase. Une approche varia-
tionnelle est aussi introduite afin de prédire des distributions de probabilité et évaluer les
incertitudes sur l’estimation de phase.

Les méthodes d’apprentissage profond développées dans cette thèse sont testées avec
succès en laboratoire sur l’instrument Subaru/SCExAO. L’avantage de pré-entraîner les
modèles sur de nombreuses données simulées est d’augmenter considérablement les ca-
pacités de prédictions sur de petits jeux de données de laboratoire. Les expériences en
boucle fermée ont aussi démontré une convergence robuste, corrigeant efficacement les
aberrations introduites. La méthode d’autoencoder est testée à travers divers régimes
d’aberration, offrant de bonnes capacités de reconstruction d’images et d’estimation de
la phase. Développer davantage le simulateur devrait par ailleurs améliorer sa robustesse
face aux conditions variables qu’un instrument peut connaître.

Cette thèse démontre que les méthodes basées sur les réseaux de neurones artificiels
peuvent offrir une solution précise, rapide et robuste pour la détection de front d’onde au
plan focal, ouvrant la voie à de futurs développements et à des applications sur le ciel.
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Preface

Are we alone in the Universe? Are there any planet outside our Solar System that harbors
life? These are among the most exciting questions we are asking ourselves today. Search-
ing for exoplanets has been carried out for a few decades now, and thanks to impressive
technological development, a few thousand of them have already been detected. While no
signs of life has yet been found, this exciting journey is just starting.

The large majority of exoplanetary detections are obtained using indirect methods,
observing disturbances on the parent star caused by the planets. Getting direct images
of exoplanets remains of great interest because of the possibility of studying their atmo-
sphere. It is however a real challenge, because planets are extremely faint compared to
their star, which means the star glow overwhelms that of the planetary companion. On top
of it, from the Earth point of view, exoplanets appear as orbiting very close to their star due
to the interstellar distances. Exoplanet imaging can be compared to trying to spot a firefly
next to a lighthouse, more than one thousand kilometers away. In addition to this contrast
problem, the Earth’s atmosphere also disturbs the light coming from these exoplanets and
their host stars. This phenomenon, which makes stars twinkle in the night sky, hinders
ground-based observations. Fortunately, highly capable telescopes and instruments have
been built to tackle these challenges, with impressive results and discoveries. To this day,
more than sixty exoplanets have been directly observed from the ground or space.

Because of the limits set by the constraints described above, imaged exoplanets are
very massive, gaseous, located far from their star, and much larger and younger than our
Jupiter, for instance. Although such celestial bodies have great scientific interest, Earth-
like exoplanets remain the most interesting targets. To aim for such planets with direct
imaging, it is necessary to improve the instruments performance and the image processing
techniques used to extract planetary signals. Telescopes are made of imperfect optical
components, causing science images to contain not only potential planets but also noise,
which can share similar characteristics to that of exoplanets. Challenges are especially
important in the vicinity of the star, where the star glow is stronger and the noise due
to optical errors prominent. It is in these areas that faint planets orbiting closer to their
star can be found. Some optical defects that decrease telescope capabilities are not easily
corrected, and they represent one of the main obstacles to imaging small rocky planets.
Addressing the problem of optical errors with the help of artificial intelligence (AI) is
the focus of this thesis. AI has grown tremendously these last years, showing incredible
capabilities. Existing deep neural networks in particular are very relevant to our image-
based problem, and this thesis proposes to implement such architectures to mitigate optical
aberrations and help exoplanet imaging reach new heights.
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CHAPTER1
High-contrast imaging

To give proper context to this thesis, the case for exoplanet imaging is first
made, before presenting the instrumentation that is essential to detect exoplan-
ets: coronagraphy and adaptive optics. Wavefront aberrations and the methods
to correct them are then described, as well as data processing techniques used
to extract exoplanet after the observations. To conclude, the limitations of
high-contrast imaging and the importance of focal-plane wavefront sensing to
correct non-common path aberrations are highlighted.
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Chapter 1. High-contrast imaging

1.1 Science goals
By targeting very faint exoplanets close to extremely bright stars, high-contrast imaging
is full of challenges, but offers considerable scientific benefits. Before presenting the case
for exoplanet imaging, indirect detection methods are first described.

1.1.1 Indirect detection methods

In the last few decades, detecting and characterizing exoplanets has been achieved fol-
lowing complementary approaches, as shown in Table 1.1. Most of them are not based
on observing the exoplanet itself, but are rather looking at the planet’s effect on its parent
star. Among the indirect approaches that exist today, two in particular have been very suc-
cessful in detecting a large number of planetary companions: radial velocity and transit
photometry. The microlensing and astrometry methods are also briefly presented in this
section.

Radial velocity

Because the center of mass of a planetary system is always different from the geometrical
center of the parent star, during a planet’s orbit the star also experiences orbital motion.
This movement towards and away from the observer creates a tiny wavelength shift of
the star’s emission spectrum, explained by the Doppler effect. The variation of the star’s
velocity can be measured, and depending on its strength, a lower bound for the orbiting
planet’s mass can be deduced (Table 1.1). The radial velocity method has lead to the first
exoplanet detection around a Sun-like star: a Jupiter-like planet named 51 Pegasi b (Mayor
& Queloz, 1995). Since then, more than a thousand exoplanets have been detected with
this approach (Table 1.1). Spectrographs with high spectral resolution and dispersion are
required for radial velocity: to detect a hot Jupiter-like planet for instance, a resolution
R = λ

∆λ
∼ 100 000 is needed, with λ the observing wavelength. Among the most advanced

instruments, HARPS at La Silla Observatory (Mayor et al., 2003) has been particularly
successful (Bonfils et al., 2013) and characterized systems such as Gliese 581, which con-
tains two terrestrial planets in the so-called “habitable zone” (Selsis et al., 2007).

Transit photometry

When an exoplanet passes in front of its parent star, it occults part of the starlight. In
some conditions, this eclipse can be measured by transit photometry (Charbonneau et al.,
2000). This happens only if the orbital plane is edge-on with respect to the observer’s
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Discovery Number of Observational Characterization
method detections biases Orbit Mass Size Spectra

Transit 4146
close-in
edge-on

a, ε, i,T ratio

Radial velocity 1071
massive, close-in

edge-on
a, ε, ω, T min

Microlensing 204
low-mass

mid-separation
a ratio

Direct imaging 69
young, massive

far-out
a, ε, i,T

Astrometry 3
massive, far-out

pole-on
a, ε, i,Ω,T ratio

Table 1.1 Main exoplanet finding methods (11 exist in total), their number of detections as
of December 12, 2023 (source: NASA Exoplanet Archive), observational biases and pa-
rameters that can be derived with characterization. “Close-in”, “mid-separation” and “far-
out” refer to the distance of the planet from its parent star, while “edge-on” and “pole-on”
indicate the preferred inclination of the orbit with respect to the observer. The six orbital
parameters are the semi-major axis a, the eccentricity ε, the inclination i, the longitude of
the ascending node Ω, the argument of the periapsis ω, and the time of periapsis passage
T . Some of these parameters may need additional data to be recovered (e.g., the incli-
nation i with direct imaging). Other planetary characterization parameters are indicated
with a color code: green for direct estimations (often depending on stellar information) or
using “reliable” models, orange when the parameter cannot be directly retrieved or when
several models compete, and red when the parameter cannot be estimated. For instance,
it is never possible to directly find the exoplanet’s mass, but rather the mass ratio between
the planet and its star, or a minimal value (M sin(i) with radial velocity). The only methods
that allow for atmospheric spectra measurements are direct imaging and transits.

vantage point, which therefore bias transit detections to planets with short orbital periods.
Thousands of exoplanets have been detected transiting stars (Table 1.1). Confirming de-
tections is not always easy and false positives are frequent (Fressin et al., 2013), e.g., due
to another object passing in front or behind the star. Several space telescopes have focused
on transits, such as the Kepler mission (Koch et al., 2010; Batalha et al., 2013). Ground
observations have also been successful, e.g., with the TRAPPIST program (Jehin et al.,
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2011). One of the discovered planetary system is particularly exceptional: seven rocky
exoplanets around TRAPPIST-1 (Gillon et al., 2017). Beyond detection, the size of the
planets can also be inferred from how much the star decreases in brightness, and some
orbital parameters can be derived from the transit periodicity (Batalha et al., 2013). More
importantly, since a portion of the starlight passes through the planet’s atmosphere before
reaching the observer, the atmospheric composition can be analyzed (Charbonneau et al.,
2002).

Gravitational microlensing

When a star passes in the line of sight to another, much more distant, star, its gravitational
field magnifies the light of the background object. If a planet is also present around the
lensing (foreground) star, this brightening effect is amplified. These events are short (in
the order of days or weeks) and occur only once, making detections particularly difficult
to confirm or further analyze. Unlike with other methods, low-mass planets in medium
orbits (1 to 10 astronomical units (AU)) are the most likely to be detected by microlensing
(Tsapras, 2018).

Astrometry

As explained above with radial velocity, a star experience motion due to the gravitational
pull of its planets. Instead of analyzing the star’s spectra, the astrometry method focuses
on finding the spatial displacements of the star in the sky. Planets with large orbits are
naturally more likely to be detected, which is complementary to the radial velocity ap-
proach. Astrometry is extremely challenging and has provided only three detections so
far. Datasets from the Gaia mission, which contain astrometry measurements of nearly
two billion stars, are expected to yield tens of thousands of discoveries in the next few
years (Perryman et al., 2014).

1.1.2 Direct imaging

Obtaining a direct image of a planet is extremely challenging, essentially because two
large gaps exist between exoplanets and their parent star: high contrasts and small angular
separations.

The contrast is the flux ratio between the planet and the star: C =
Fplanet

Fstar
. Contrast values

can be found from 10−3 to 10−10, corresponding to very massive planets (thermal emission
observed in the infrared) and Earth-like planets (reflected light from the star in the visible),
respectively. On the other hand, the angular separation is the apparent distance between
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Figure 1.1 Contrasts versus angular separations of exoplanets with direct imaging. Al-
ready detected exoplanets in the near-infrared (orange dots) can be compared with their
predicted contrasts in the visible (gray circles). Exoplanets detected with the radial veloc-
ity method (black dots) and Solar system planets (multicolor dots; dashed line orbits) are
also indicated for reference. Current contrasts reached by space-based instruments inside
the Hubble Space Telescope (HST; black curve) and the James Webb Space Telescope
(JWST; red curve) are shown. Ground-based instruments (orange curves) perform better
so far, with the best results achieved with the VLT/SPHERE on Sirius. Future instruments
will push the contrast limits: ground-based extremely large telescopes (ELTs; not limited
to the European ELT) will reach 10−8 contrasts and angular separations down to 0.03”
(dashed orange line), the Roman Space Telescope Coronagraph instrument is predicted to
dig contrasts up to 2×10−9 (solid black line), while the Habitable Worlds Observatory mis-
sion concept should allow detecting Earth-like exoplanets at 10−10 contrasts (pink line).
In-lab results are also shown: the Decadal Survey Testbed (DST) helped to obtain im-
pressive performance with vector vortex (VVC) and Lyot coronagraphs (magenta lines).
Credits: NASA/JPL/Caltech (version: November 2023).
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the planet and the star, and is often expressed in arc seconds (arcsec), which is equal to
1/3600th of a degree. Typical encountered separations range from 0.1 to 1 arcsec.

The contrast and separations encountered in exoplanet imaging are illustrated in Fig-
ure 1.1. Contrasts between our Solar System’s planets and the Sun are very large, and
these planets would not be detected with current technology. Detections so far have rather
concerned young, hot and massive exoplanets. In the infrared (IR) wavelengths, these
planets have enough thermal emission compared to their star to give contrasts in the order
of 10−3 to 10−6. This is why IR passbands are used in HCI, especially the bands that have a
good transmittance through the atmosphere (J, H, K and L). While reflected light from the
planet can also be targeted, contrasts are much stronger and only future projects will be
able to reach such values (Figure 1.1). All detected exoplanets are also orbiting far away
from their parent star, because it is then possible to spatially distinguish them. As shown
in Figure 1.1, future telescopes will be able to reach much smaller angular separations.
Because of these important challenges, direct imaging has only yielded about 1% of all
the exoplanet detections so far (Table 1.1).

One of the main advantages of the direct imaging technique is that it allows to study
the exoplanet’s atmosphere by retrieving its spectra. Some molecules in planetary atmo-
spheres can be indications of biological presence or activities, such as water H2O, methane
CH4, molecular oxygen O2, ozone O3 and nitrous oxide N2O (Seager & Deming, 2010;
Schwieterman et al., 2018). Unlike the transit photometry method, which also allows the
retrieval of planetary spectra, direct imaging can probe planets in wider orbits. With the
next generation of extremely large telescopes soon to operate, combined with future space
missions, detecting rocky planets and probing their atmospheres for signs of biological
activity will become possible.

Thus far only giant exoplanets have been discovered with direct imaging. The first
imaged exoplanet is a “super-Jupiter” orbiting the brown dwarf 2M1207 (Chauvin et al.,
2004, 2005). This detection, shown in Figure 1.2a, was achieved with the NACO instru-
ment at the Very Large Telescope (VLT) observing in different wavelength bands. The
HR 8799 system is one of the most important discoveries made with direct imaging: four
young super-Jupiters were directly imaged around a bright and young star (Marois et al.,
2008, 2010), as it can be seen in Figure 1.2c. The orbital motion of these exoplanets
was also observed over several years, which allowed to derive precise orbital parameters
(Soummer et al., 2011; Wang et al., 2018). Another famous detection is that of β Pictoris
b (Lagrange et al., 2009), a giant planet whose spectra was later retrieved with a molecular
mapping technique, showing the presence of H2O and CO in its atmosphere (Hoeijmakers
et al., 2018). Exoplanet surveys allow probing hundreds of potential planetary systems
and get a census of young giant exoplanets. Using the VLT/SPHERE instrument, the cur-
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(a) 2M1207 b from Chauvin et al. (2004). (b) HIP 65426 b from Chauvin et al. (2017).

(c) HR 8799 system from Marois et al. (2010).

Figure 1.2 Examples of directly imaged exoplanets. (a): 2M1207 b is clearly visible
positioned to the lower left of the central star. (b): HIP 65426 b appears in the lower
left corner of the image. (c): The four companions of HR 8799 are indicated with their
respective letters.
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rent SHINE program has already yielded multiple detections that way, including two new
discoveries (Vigan et al., 2021). One of them is HIP 65426 b (Figure 1.2b), notably re-
imaged using the James Webb Telescope (Carter et al., 2023). Despite its young age, no
debris disk has been detected around HIP 65426 b, challenging current planetary forma-
tion models (Chauvin et al., 2017). Contrasts and angular separation of some of those
directly imaged exoplanets are indicated in Figure 1.1.

Other privileged targets with the direct imaging method are circumstellar disks, in
which planetary formation occurs. Studying these disks allows understanding better the
origin of exoplanets and how they form. The disk of PDS 70 and its recently discovered
exoplanet are a prominent case (Keppler et al., 2018).

1.2 Coronagraphy
As explained in the previous section, contrasts between planets and stars are significant,
and this represents a major obstacle for detecting planetary companions. The coronagraph
is a fundamental optical system for HCI, designed to block out the starlight while keep-
ing any off-axis exoplanet light mostly unaltered. Originally developed to observe the
corona of the Sun, coronagraphs have since been implemented to detect exoplanets and
circumstellar disks around other stars. Different varieties of coronagraphs now exist, and
Section 1.2.1 offers a non-exhaustive presentation. Vortex coronagraphs in particular are
of interest for this thesis, and are thus described in detail in Section 1.2.2.

1.2.1 Coronagraphic concepts

Various families of coronagraphs exist (Guyon, 2011; Belikov et al., 2023) and this section
focuses on a few relevant focal and pupil plane coronagraphs.

Focal-plane coronagraphs

The first type of coronagraph was invented by Bernard Lyot to study the Sun’s corona
(Lyot, 1939), and it later appeared that Lyot coronagraphs can be very beneficial for di-
rectly imaging exoplanets as well (Vilas & Smith, 1987; Watson et al., 1991). The original
Lyot coronagraph is composed of two main elements:

• A focal plane mask: It blocks the on-axis light from the star.

• A Lyot stop: Downstream of the mask and at the exit pupil plane, it is a diaphragm
that blocks the light of the Airy rings beyond the focal plane mask.
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Detector

Source Coronagraph

Pupil plane

Lyot stopMaskAperture

Pupil planeFocal plane Focal plane

Figure 1.3 Ray diagram of a typical focal-plane coronagraph, based on the Lyot design.
Most of the on-axis light (star; dark orange) is cancelled by a focal-plane mask, while
some residual light due to optical imperfections and wavefront aberrations (pale orange)
still reach the detector. On the other hand, any off-axis light (exoplanet; blue) is unaffected
by the mask.

A ray diagram of such a focal-plane coronagraph encountering starlight and exoplanet
light is represented in Figure 1.3. This simple design can be further improved by placing
an apodizer in the entrance pupil plane to reduce the diffraction effects of the telescope
aperture (Soummer, 2005), which are also due to the central obscuration and the secondary
mirror supports (‘spiders’). An apodized pupil Lyot coronagraph is for instance used in
the SPHERE instrument (Carbillet et al., 2011; Guerri et al., 2011).

Other types of focal-plane coronagraphs include phase mask coronagraphs. The most
prominent designs are the four-quadrant and optical vortex masks, which are presented in
Section 1.2.2.

Pupil-plane coronagraphs

There are also notable pupil-plane coronagraphs, such as the Apodizing Phase Plate (APP)
coronagraph. It is a transparent mask that suppresses the starlight by creating a “dark hole”
covering 180 degrees in the science camera (Codona et al., 2006), i.e., the starlight is sup-
pressed to a significant degree across the image. The APP was first implemented on-sky
using the MMT Observatory (Kenworthy et al., 2007). The APP has several advantages,
such as requiring only one optical element and being insensitive to tip-tilt aberrations. It
faces some drawbacks, however, since it cannot cover the whole field of view (FoV) at
once, and it does not perform well in broadband (multiple wavelengths at once). The
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vector-phase design of the APP (vAPP), is a halfwave plate with variable fast-axis orien-
tation (Snik et al., 2012). The coronagraph therefore applies opposite phase ramps to each
circular polarization. The polarization can then be split by using a quarter-waveplate and
a polarizing beam-splitter. The grating-vAPP implementation, instead, applies a tip-tilt
phase on top of the apodizing phase to separate the polarization states (Doelman et al.,
2021). Both methods then produce two PSFs with opposite dark hole regions, which al-
lows to cover the entire FoV, at the expense of losing half the light in each region. As
illustrated in Figure 1.4, the vAPP and grating-vAPP are also based on the geometric
phase.

Several studies are under development to improve APP-based coronagraphic designs,
in particular using optimization methods. We can for instance mention the attempt to
pair together the apodized-pupil Lyot and vAPP coronagraphs (Por, 2020). By deriving
an optimization problem, the best designs are found for specific instruments and pupil
aperture configurations. In parallel, to leverage the vortex coronagraphs and vAPP perfor-
mance, Doelman et al. (2020) propose to incorporate polarization grating elements. This
prevents polarization leakage while keeping great broadband capabilities. In this study,
vAPP designs are determined with the global optimizer from Por (2017). Besides works on
the APP, non-linear optimization techniques have also helped improve shaped pupil Lyot
coronagraph designs (Zimmerman et al., 2016), for instance. The optimization solvers
used in these studies perform generally well, but as discussed in Section 5.1.1, automatic
differentiation can be a much more powerful and efficient tool to optimize coronagraphs
and optical parameters in general.

1.2.2 Vortex phase masks

Vortex coronagraphs (VC) are particularly relevant to this thesis due to their performance
and polarization properties, which can benefit focal-plane wavefront sensing (see Chap-
ter 4). VCs are first presented in details in this section.

Origin

As illustrated in Figure 1.4, the origin of the VC can be traced back to the four-quadrant
phase mask (FQPM; Rouan et al., 2000), which is itself based on the principle of the phase
mask (Roddier & Roddier, 1997). The FQPM works with destructive interference on the
incoming light, by applying a π phase shift on two of the four quadrants. Although this
concept is supposed to be achromatic, i.e., the performance should be the same for every
observing wavelength, the standard implementation with physical steps shows chromatic
behaviour. Using achromatic half-wave plates, which are based on the geometric phase,
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Vortex coronagraph (VC)

Lyot coronagraph

4-Quadrant Phase Mask Apodizing Phase Plate coronagraph 
(APP)

Geometric phase 

Vector VC 

Vector-APP 
(vAPP)

Scalar VC

Pupil-plane masks

Focal-plane masks

Grating-vAPP

Figure 1.4 Relationships between Lyot, vortex and apodized phase plate coronagraphs, as
focal or pupil-plane masks, and whether they have the geometric phase property.

have been notably proposed (Mawet et al., 2006). One main issue for the FQPM, however,
remains: the transitions that exist between the four quadrants can cause exoplanet light
subtraction. It is by focusing on solving this issue that the annular groove phase mask
(AGPM) was developed by Mawet et al. (2005), which is composed of subwavelength
gratings to produce an optical vortex on the incoming light. An AGPM can be seen as a
FQPM with a very large number of segments, leading to a continuous helical phase ramp
(König, 2023). In parallel, and coincidently, Foo et al. (2005) also proposed a concept of
vortex coronagraph based on a helical piece of glass.

Principle of the Vector VC

Generally speaking, the vortex coronagraph uses a transparent phase mask at the focal
plane that diffracts the on-axis light outside the pupil (Mawet et al., 2005). A downstream
pupil-plane Lyot stop then blocks this light. As a consequence, the starlight is suppressed,
and only off-axis light, such as of an exoplanet, appears in the detector plane. The vor-
tex coronagraph thus also follows Figure 1.3, except that the planetary signal also passes
through the mask, and the on-axis light from the star that has been diffracted is blocked
by the Lyot stop. The companion’s light is also slightly reduced by the mask the smaller
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Figure 1.5 Structure of a vector vortex coronagraph with topological charge `p = 2 in the L
band (3–4 µm). Left: Helical phase ramp applied to the incoming wavefront (from Mawet
et al., 2005). Right: Image of the center obtained with a scanning electron microscope
(from Delacroix et al., 2013).

its off-axis angle. In comparison to the Lyot design, the vortex coronagraph has a smaller
inner working angle (IWA) but is more sensitive to low-order phase aberrations.

The vector flavor of the vortex coronagraph (VVC) was specifically designed to reach
the best achromatic performance possible. The VVC generates two conjugated phase
ramps with a complex transmission:

τ = exp(i ± `p θ), (1.1)

with `p the topological charge and the θ the azimuthal coordinate. These conjugated phase
ramps are applied to both circular polarization of the incoming light.

The choice of the topological charge of the VVC is important for several reasons.
First, only even charges can in theory perfectly cancel on-axis light (Mawet et al., 2005).
Also, lower charges produce smaller IWAs and are more sensitive to low-order aberrations
than higher charges. Moreover, as shown in Figure 1.5, charge-2 AGPMs have a circular
grating design and are therefore easier to manufacture. This is why vortex coronagraphs
with `p = 2 have been essentially used and are thus exclusively considered in this thesis.

For a perfect wavefront and a circular pupil, and neglecting the leakage term due to
imperfect manufacturing and chromatic effects, the VVC totally cancels the on-axis light
of the star. As explained later in Section 1.3, the wavefront is often distorted by atmo-
spheric turbulence and optical imperfections. The resulting phase aberrations decrease the
coronagraph’s efficiency, allowing some starlight to leak through. The VVC is particularly
sensitive to low-order aberrations such as tip-tilt, which causes the starlight not to be cen-
tered anymore. Precise low-order wavefront control is therefore important for the VVC to
work properly (Huby et al., 2015).
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Overall the VVC has multiple advantages, such as a small IWA (e.g., 0.9 λ/D for
`p = 2), quasi-achromaticity across a wide bandwidth, high throughput, high contrast
sensitivity and a 360◦ discovery space (Mawet et al., 2010).

The scalar VC

An optical vortex can be vectorial or scalar in nature, depending on how it affects the
electromagnetic field. Early studies (Swartzlander, 2006; Swartzlander et al., 2008) paved
the way for a scalar flavor of vortex coronagraphs (SVC). But it is with the development
of space telescopes for HCI that the interest on them really emerged (Ruane et al., 2019).

SVCs differ from VVCs in the effect they have on the circular polarization of the in-
coming light. With the SVC, the same phase ramp exp(i `p θ) is applied to both circular
polarizations. This is important when wavefront control needs to be very accurate: the
differential aberrations in each polarization are not averaged and can be retrieved and cor-
rected with wavefront control. Unlike VVCs, the scalar phase masks typically suffer from
chromaticity (Desai et al., 2022) due to the way they are manufactured. Recent works have
investigated how to make SVCs achromatic. Optimizing optical components or stacking
multiple materials can improve the bandwidth (Ruane et al., 2019), while phase wrapping
can be another approach to achieve this goal (Galicher et al., 2020).

Manufacturing

VVCs can be made of various materials, but it is the developments in diamond micro-
optics (Karlsson & Nikolajeff, 2003) that offered a unique opportunity to produce VVCs
with transmissivity at all visible and IR wavelengths: thanks to the birefringent properties
of diamonds, geometric phase and thus achromacity is achieved. Manufacturing a vortex
on a diamond works well in mid-infrared wavelengths, in particular in the L and N bands
(Delacroix et al., 2012). In the near-IR and in the visible, however, the grooves of the sub-
wavelength gratings become too small to be made on diamonds. In this case, liquid crystal
polymers are usually preferred for short observing wavelengths (Mawet et al., 2009). As
illustrated in Figure 1.6, SVCs are typically made of glass substrates forming a thin geo-
metrical pattern shaped as a staircase (Delacroix et al., 2013). Recent developments have
indicated that SVCs could also be made of metasurfaces (König et al., 2023).

Applications

Since 2012, VVCs have been integrated with success in several high-contrast imaging
instruments in the L’ band: first was for VLT/NACO (Mawet et al., 2013), where β Pictoris
was successfully re-imaged (Absil et al., 2013), followed by LBT/LMIRCam (Defrère
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(d)

Figure 1.6 Structure of a charge-6 scalar vortex phase mask. Such single-layer design is
fundamentally chromatic. Left: 6-level staircase design (from Ruane et al., 2019). Middle
and Right: Picture of a prototype and microscopic image around the central area (from
Desai et al., 2021).

et al., 2014) and Keck/NIRC2 (Femenía Castellá et al., 2016). N and M-band VVCs have
also been implemented on VLT/NEAR (Maire et al., 2020) and VLT/ERIS (Kenworthy
et al., 2018; Davies et al., 2023), respectively. Developments for VVCs are also under way
regarding future projects, in particular for ELT/METIS (Carlomagno et al., 2020).

On the other hand, no SVC has yet been implemented on an observing instrument, but
several projects with this flavor of vortex phase masks are underway. Current studies target
space applications, in particular for the Habitable Worlds Observatory (König et al., 2023;
Desai et al., 2024).

1.3 Adaptive optics
Adaptive Optics (AO) systems are built to correct the atmospheric turbulence in real-time,
which makes direct imaging possible for ground-based observations. Wavefront correction
is also essential for focal-plane coronagraphs to work, to ensure that the starlight is well
focused on the coronagraphic mask. Before diving into atmospheric turbulence and AO
(Sections 1.3.2 and 1.3.3, respectively), it is first important to introduce basic concepts of
optical aberrations.

1.3.1 Optical aberrations

Diffraction-limited system

Optical elements in an observing system modify the shape and direction of the incoming
wavefront, as illustrated in Figure 1.3. A converging lens or mirror follows the Fraunhofer
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propagation, i.e., the approximation of the Fresnel-Kirchhoff diffraction for large propaga-
tion distances. This means Fourier transforms describe well the transformation of electric
fields between pupil and focal planes. In an optical system without aberrations, the electric
field at the focal-plane of a converging lens can thus be written as

Efocal = F [Apupil], (1.2)

where Apupil is the amplitude of the pupil-plane aperture, F is the Fourier transform oper-
ator, and Efocal is the electric field in the focal-plane.

The corresponding point-spread function (PSF) is the intensity in the focal plane and
is expressed as

I = |Efocal|
2 . (1.3)

For a circular aperture and a perfect optical system, such a PSF is called an Airy pattern
(Goodman, 2005). The angular resolution Θ of the system is in this case defined as

Θ ' 1.22
λ

D
, (1.4)

where D is the diameter of the aperture and λ is the observing wavelength. Such an an-
gular resolution would be achieved if the telescope was diffraction-limited: the diffraction
caused by the aperture D of the telescope will always limit the resolution. The minimum
separation needed to be able to distinguish two objects, such as a star and a planet, is thus
defined by the Equation 1.4. It is called the Rayleigh criterion. For instance, if we consider
an 8-meter telescope observing at 2 µm, any planet needs to lie at least 0.06 arcsec away
from the star to be distinguishable.

Phase aberrations

In the real world, optical systems are never perfect, and changes in the index of refraction
in the medium or optical surface defects produce differential optical paths. Phase aber-
rations make the overall wavefront deviate from an ideal shape (flat or spherical) during
propagation inside the observing instrument. They correspond to phase shifts with respect
to a reference unaberrated wavefront. In the presence of phase aberrations, the expression
for the PSF becomes:

I =
∣∣∣F [Apupil eiΦ]

∣∣∣2 , (1.5)

where I is the PSF or intensity in the focal plane, and Φ are the phase aberrations in the
pupil plane.

The resulting PSF therefore contains what we call speckles. Those originate from
the interference between wavefronts that follow different optical paths due to the optical
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Figure 1.7 Effect of the atmospheric turbulence on a non-coronagraphic PSF and AO cor-
rection. Left: Short exposure PSF showing the presence of speckles distributed around the
center. Middle: Long exposure PSF appearing as a large seeing halo. Right: A closed-loop
AO correction yielding a diffraction-limited PSF. From Cantalloube (2016).

imperfections. Speckles appear as blob-like structures, sharing the same focal-plane sig-
nature as exoplanets. An image containing such structure is shown in Figure 1.7 (left),
where multiple speckles are distributed around the center of the image. They represent the
main source of noise in HCI images, preventing the detection of exoplanets (Racine et al.,
1999).

To describe and analyze phase aberrations, it is practical to use an orthogonal basis,
because it allows to decompose the wavefront into independent components. The most
common basis is made of Zernike polynomials, that allow to express the phase as

Φ =

N+1∑
j=1

c j Z j, (1.6)

with Φ the phase, c j the Zernike coefficients, Z j the Zernike polynomials and N the number
of modes considered.

The Zernike modes Z j are defined on a circular aperture and are characterized by their
radial and azimuthal orders. In this thesis, the Noll convention (Noll, 1976) is followed to
represent the Zernike modes. In such a representation, the modes are arranged as shown
in Figure 1.8 and their expressions can be found in Table 1.2. The modes are ordered in
terms of their frequency content and symmetry and can be defined with sine and cosine
functions using polar coordinates. The symmetric modes notably depend on cos(mθ) and
the antisymmetric ones on sin(mθ), with m the azimuthal order and θ the azimuthal angle.
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Figure 1.8 Ordering of the first 21 Zernike polynomials with their indices j according to
the Noll convention. The even radial order are highlighted in red.

j n m Z j

1 0 0 1
2

1
1 2ρ cos(θ)

3 1 2ρ sin(θ)
4 0

√
3(2ρ2 − 1)

5 2
√

6ρ2 cos(2θ)
6

2
2

√
6ρ2 sin(2θ)

7

3

1
√

8(3ρ3 − 2ρ) sin(θ)
8 1

√
8(3ρ3 − 2ρ) cos(θ)

9 3
√

8ρ3 sin(3θ)
10 3

√
8ρ3 cos(3θ)

j n m Z j

11 0
√

5(6ρ4 − 6 ρ2 + 1)
12 2

√
10(4ρ4 − 3ρ2) cos(2θ)

13 2
√

10(4ρ4 − 3ρ2) sin(2θ)
14 4

√
10ρ4 cos(4θ)

15

4

4
√

10ρ4 sin(4θ)
16

5

1
√

12(10ρ5 − 12ρ3 + 3ρ) cos(θ)
17 1

√
12(10ρ5 − 12ρ3 + 3ρ) sin(θ)

18 3
√

12(5ρ5 − 4ρ3) cos(3θ)
19 3

√
12(5ρ5 − 4ρ3) sin(3θ)

20 5
√

12ρ5 cos(5θ)
21 5

√
12ρ5 sin(5θ)

Table 1.2 Expressions for the first 21 Zernike polynomials Z j in polar coordinates (ρ, θ)
with their radial order n and azimuthal order m (even modes in red).
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Amplitude aberrations

In addition to phase errors on the wavefront, there are also amplitude aberrations that
impact the intensity in the science camera. Amplitude errors can be due to several factors,
such as irregularities in optical surfaces or phase errors in intermediate planes (outside
the pupil plane), which translates into amplitude errors in the next plane due to Fresnel
propagation.

Some methods have been developed to measure amplitude errors; for instance the coro-
nagraphic phase diversity approach proposed by Herscovici-Schiller, O. et al. (2018). Two
deformable mirrors (DMs, see Section 1.3.3) are usually required to correct amplitude
aberrations (Pueyo et al., 2009), although it is also possible to use only one DM, at the
expense of correcting only half the focal-plane (Mazoyer et al., 2013). Amplitude aber-
rations may cause a loss of contrast, but they have a minor impact compared to phase
aberrations, which definitely need to be mitigated for high-contrast imaging.

1.3.2 Atmospheric turbulence

The Earth’s atmosphere is a dynamic medium. Turbulence, i.e., rapid fluctuations of tem-
perature and density, arise in such medium. This impacts the refraction index of the atmo-
sphere, and local variations of this index cause the incoming star wavefront to be distorted
before reaching ground-based telescopes. Resulting short-exposure images thereby con-
tain speckles, as it can be seen in Figure 1.7 (left). Their lifetime, as quantified by the
coherence time τ0, is in the order of milliseconds (Macintosh et al., 2005). With long ex-
posures, these speckles average out over time, producing blurred PSFs with a full width
at half maximum (FWHM) that measures the so-called seeing (Figure 1.7, middle). The
coherence length of the atmosphere is quantified by the Fried parameter r0 (Fried, 1966),
which depends on the observing wavelength: r0 ∝ λ

6/5. Although the angular resolution θ
of a telescope increases with larger apertures D (see Equation 1.4), it is in fact limited by
r0 in the presence of turbulence. If D ≥ r0, the effective resolution is then:

θ ≈
λ

r0
. (1.7)

The telescope is in this case seeing-limited because it has the same resolution as a
telescope of diameter r0. In good astronomical sites at λ = 500 nm, r0 takes values between
10 and 20 cm. Following Equation 1.4, it roughly translates to a seeing between 1 and 0.5”.

Ground-based telescopes can have very large mirrors. For instance, the four VLTs
have primary mirrors of 8.2 m, and the future ELT will have a 39 m segmented primary
mirror. To be able to reach the extreme spatial resolution they are capable of, it is essential
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to correct the atmospheric turbulence. Adaptive optics offers a powerful solution, and it is
described in Section 1.3.3.

1.3.3 Adaptive optics

As described in the previous section, the atmospheric turbulence considerably reduces the
spatial resolution of telescopes. To mitigate this major issue, adaptive optics systems have
been developed. An AO system is built to perform real-time corrections of the wavefront,
most commonly in a closed-loop fashion (Figure 1.9). It is based on three main compo-
nents:

• Wavefront sensor: It measures the optical aberrations present in the incoming wave-
front. The Shack-Hartmann (SHWFS, Shack & Platt, 1971) and the Pyramid wave-
front sensors (PyWFS, Ragazzoni, 1996) are the two main designs used today. The
PyWFS is notably more sensitive to low-order aberrations in the presence of noise
compared to the SHWFS, which is a strong advantage for HCI (Guyon, 2005).

• Real-time controller: Based on the information obtained from the wavefront sen-
sor (WFS), it computes the command to be sent to the deformable mirror in terms
of actuator displacements. This is achieved not only from the current wavefront
measurement, but also integrating the previous steps.

• Deformable mirror: It changes its shape in real-time according to the command sent
by the controller, in order to modify and correct the incoming wavefront.

For a point source such as a star, AO corrects most of the speckles and the energy
is gathered around the center of the image, as illustrated in Figure 1.7 (right). In this
example, the diffraction rings shows that the image is diffraction-limited.

The quality of an AO system is determined by its capability to properly analyze and
correct the incoming wavefront, and Extreme Adaptive Optics (XAO) have been developed
to meet the requirements of HCI (Guyon, 2018). A typical XAO system operates at 1 kHz.
The primary mirror is usually too large to be altered at such a rate, so the DM is then a
much smaller mirror that can be common to all instruments (e.g., on the ELT) or installed
in each one of them (e.g., SPHERE on the VLT, Beuzit et al., 2019).

The performance of an AO system is generally quantified by the Strehl ratio SR:

SR =
Icorr(0)
Idiff(0)

' e−σ
2
Φ ,

(1.8)
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Figure 1.9 General representation of an adaptive optics system. The atmosphere (blue) dis-
torts the incoming wavefront (orange), producing phase aberrations. The AO system cor-
rects the aberrations in real-time using a wavefront sensor, a controller and a deformable
mirror (green), leaving mainly high-order residual aberrations behind. A beamsplitter al-
lows to provide a fraction of the starlight to a coronagraph (yellow) and the science camera.
The non-common path (red) also gives rise to NCPAs on top of the atmospheric residuals,
resulting in the speckles observed in the science image.

with Icorr(0) the peak intensity of the corrected PSF, Idiff(0) the non-aberrated peak intensity
(diffraction limited), Φ the phase aberrations and σΦ the root-mean-square (RMS) wave-
front error (WFE) of the phase in the pupil plane. The Strehl ratio can be expressed as a
function of σΦ in the small aberration regime, i.e., if σΦ < λ/2π. An illustration of the SR
is shown in Figure 1.10, where the SR corresponds to the peak intensity of the aberrated
PSF since the diffraction-limited PSF is normalized. In a real-life system, it is not possible
to directly get an exact reference for the intensity, because of the intrinsic aberrations that
are always present in the instrument. Different methods can thus be used to obtain a SR
value, which can make comparisons between systems difficult (Roberts et al., 2004).

The Strehl ratio is an important metric in the context of HCI because a high SR means
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Strehl Ratio

Figure 1.10 PSF flux profile and corresponding Strehl ratio (SR). An horizontal cut is
taken from the PSFs (left) and the corresponding 1D flux is plotted (right). The flux is
normalized with regard to the diffraction-limited PSF (red), and the SR is therefore equal
to the relative flux of the aberrated PSF (orange). In this example, we have SR ' 70%.

more energy in the PSF core and therefore a stronger exoplanet signal. As illustrated
in Figure 1.1, however, the contrast remain the most fundamental metric to assess HCI
performance. The raw contrast, in particular, is often used to showcase coronagraphic
capabilities (Delacroix et al., 2022), potentially operating behind an AO system. The raw
contrast is defined as the ratio between the intensity of the post-coronagraphic PSF and an
off-axis (non-coronagraphic) PSF, and is computed at every separation from the star. The
5-σ contrast is also often used to assess detection limits (Mawet et al., 2014; Carlomagno
et al., 2020) for post-processing techniques (see Section 1.5).

1.3.4 Non-common path aberrations

Not all phase aberrations can be corrected by the AO system. As it can be seen in Fig-
ure 1.9, the optical path leading to the science camera and the one reaching the wavefront
sensor diverge. As a consequence, aberrations arising between the beamsplitter and the
science camera cannot be seen by the WFS. Additionally, any aberration present between
the beamsplitter and the WFS will be measured, but the correction will introduce new
aberrations in the path leading to the science camera. AO systems are therefore not able
to detect and correct these so-called non-common path aberrations (NCPAs), which can
manifest themselves as residual speckles in the focal plane. The amount of NCPA depends
on the instrument, but typical values are around 50 nm RMS such as in SPHERE (Vigan
et al., 2019).
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Figure 1.11 Example of two images obtained with the SPHERE instrument behind a coro-
nagraph. Left: Image acquired using an internal source and containing only NCPAs. Right:
On-sky image containing NCPAs and dynamic AO residuals (smooth halo at the center).
In both cases, many residual speckles are present. The circular structure hints at the area of
AO correction while the cross-like pattern is an artifact generated by the piezo actuators of
the DM. The colors are arbitrary. From Potier et al. (2020); Galicher & Mazoyer (2023).

Optical aberrations can have different dynamics, depending on their source. We can
define two types of NCPAs (Martinez et al., 2012):

• Static: caused by optical surface errors and misalignment in the instrument optical
train.

• Quasi-static: originating from thermal and optomechanical deformations, including
moving optics, occurring during observation sequences.

Fast varying aberrations due to atmospheric turbulence residuals produce speckles that
are averaged over the integration time of the detector, resulting in a smooth halo in the
image that can be removed in post-processing. On the other hand, static NCPAs can be
corrected with a single calibration of the instrument before the observation. Quasi-static
NCPAs are, however, particularly problematic because they can evolve during the obser-
vation sequence: they have typical timescales in the order of minutes or hours, depending
on the instrument and the observing conditions (Martinez et al., 2013; Milli et al., 2016).
Some NCPA speckles have also been found to vary on the order of a few seconds and are
likely due to turbulence within the instrument (Vigan et al., 2022). Quasi-static NCPAs are
therefore neither smoothed nor can they be easily calibrated. Typical science images after
coronagraphy and adaptive optics can be found in Figure 1.11, where remaining quasi-
static speckles around the center of the images can be clearly seen.
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1.4. Focal-plane wavefront sensing

1.4 Focal-plane wavefront sensing
As explained above, it is essential to correct wavefront aberrations in high-contrast imag-
ing to be able to distinguish planetary companions. Low-order aberrations in particular can
strongly degrade the coronagraphic performance. Even with an efficient adaptive optics
system, NCPAs allow light artifacts from the star to reach the science camera. Focal-
plane wavefront sensing (FPWFS), by utilizing information from the focal-plane (where
the science camera is positioned), aims at estimating and correcting NCPAs to enhance the
performance of high-contrast imaging (HCI). This section first defines the inverse problem
faced by FPWFS, before explaining the sign ambiguity prevalent to this problem, before
finally presenting current FPWFS methods.

1.4.1 General problem statement

The simplified expression of Equation 1.5 states that the PSF intensity I is a function
of phase aberrations Φ. In reality, the relationship between the phase and the PSF is
not deterministic. Noise sources also impact the PSF, such as photon, detector and AO
residual noise. As a consequence, for a given Φ, I is rather a realization of a probability
distribution

I ∼ p(I|Φ). (1.9)

This process is illustrated in Figure 1.12 (top). In Bayesian term, and as represented
in Figure 1.12 (bottom), the problem faced by FPWFS is to estimate the posterior p(Φ|I)
from the observed I as

p(Φ|I) ∝ p(I|Φ) p(Φ), , (1.10)

where p(I|Φ) is the likelihood and p(Φ) the prior. The evidence p(I) is not shown in the
expression because it is only a regularization term and does not depend on Φ.

Several aspects of phase aberrations can help define the prior distribution. For example,
we know that phase aberrations created by optical systems usually follows a power spectral
density (PSD) profile S ≈ 1/ f 2, with f the spatial frequency (Dohlen et al., 2011; Orban
de Xivry et al., 2021). A decomposition into Zernike components (Equation 1.6) therefore
means low-order modes have stronger values than high-order modes. The global amounts
of phase aberrations are also often constrained within a range, with RMS WFE around
known levels for HCI instruments (see Section 1.3.4).

Extracting an estimate of Φ from the posterior p(Φ|I) is most commonly done with
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Figure 1.12 Image formation (top) and inverse problem (bottom) to solve with focal-plane
wavefront sensing, where phase map distributions (p(Φ|I); left) are to be reconstructed
from images (I; right).

the Maximum a posteriori (MAP) estimate

Φ̂ = arg max
Φ

p(Φ|I). (1.11)

Other ways to compute Φ̂ exist, such as with the posterior mean or Monte Carlo meth-
ods. While the primary target of FPWFS are NCPAs, all residual phase aberrations present
in the system can potentially be estimated.

Solving the inverse problem defined in Equation 1.10 is challenging due to the loss of
phase information that occurs when the signal is converted into intensity. This is caused
by the absolute value operation applied to the electric field by the detector (Equation 1.5).
Additionally, beyond the presence of noise in the images, properly estimating Φ̂ from the
posterior is also difficult because of a phase sign ambiguity, which will be explained in the
next section.

1.4.2 Phase sign ambiguity

One important hindrance to phase retrieval from PSF measurements is the so-called twin-
image problem (Gonsalves, 1982; Guizar-Sicairos & Fienup, 2012). It manifests a sign
ambiguity for Zernike modes of even radial order (vertical axis in Figure 1.8), such as
defocus, astigmatism or spherical modes.
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The twin-image problem can be explained by the Hermitian symmetry existing in
Fraunhofer propagation

F [Epupil(x)] = F [E∗pupil(−x)], (1.12)

where Epupil denotes the electric field in the pupil plane and E∗pupil its conjugate.
Even Zernike modes are symmetric in horizontal and vertical axis, unlike odd modes,

as it can be seen in Figure 1.8. This means flipping any axis does not have any effect on
the even modes

Φeven(x) = Φeven(−x), (1.13)

where Φeven is the phase containing only even Zernike modes.
By combining Equations 1.5, 1.12 and 1.13, it can be deduced that the same PSFs are

obtained from Φeven(x) and −Φeven(x):∣∣∣F [A eiΦeven(x)]
∣∣∣2 =

∣∣∣F [A e−iΦeven(x)]
∣∣∣2 . (1.14)

This degeneracy of the phase sign means the phase retrieval solution p(Φ|I) is bi-
modal. Figure 1.13 illustrates this ambiguity for single modes and a combination of sev-
eral low-order modes. One of the standard way to solve this problem is to incorporate
phase diversity (Gonsalves, 1982). We can observe in Figure 1.13c, that if the astigmatism
mode is fixed, for two opposite defocus maps, the resulting PSFs are different. This means
that knowing the sign of only one mode of even radial order is enough to lift the ambi-
guity. The traditional phase diversity approach is thus to introduce a known even mode
aberration, typically a defocus (Vievard et al., 2019). The resulting PSF can then be used
together with the science image to perform focal-plane wavefront sensing. Because this
problem exists only with centrosymmetric pupils, it is also possible to use an asymmetric
pupil to solve the ambiguity (Martinache et al., 2016; Bos et al., 2019).

1.4.3 Types of sensing techniques

Several approaches have been developed for focal-plane wavefront sensing. The most
natural strategy is to directly estimate the phase aberrations from the science image or
PSF. This is, however, rarely possible due to the phase sign ambiguity presented in Sec-
tion 1.4.2. Temporal or spatial modulation is thus often necessary (Jovanovic et al., 2018),
although direct retrieval remains possible in some cases.

Temporal modulation

To solve the sign ambiguity, temporal diversity can be exploited by injecting known phase
errors and using multiple focal-plane images.
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Θ(z4) <(Efocal) =(Efocal) I[Θ(z4)]

Θ(−z4) <(Efocal) =(Efocal) I[Θ(−z4)]

(a) ±Defocus.
Θ(z7) <(Efocal) =(Efocal) I[Θ(z7)]

Θ(−z7) <(Efocal) =(Efocal) I[Θ(−z7)]

(b) ±Coma.
Θ(z4, z5, z7) <(Efocal) =(Efocal) I[Θ(z4, z5, z7)]

Θ(−z4,−z5, z7) <(Efocal) =(Efocal) I[Θ(−z4,−z5, z7)]

Θ(z4,−z5, z7) <(Efocal) =(Efocal) I[Θ(z4,−z5, z7)]

(c) ±Defocus, ±astigmatism and +coma.

Figure 1.13 Illustration of the sign ambiguity problem. Phase maps Φ are shown with
the resulting focal-plane electric fields (real< and imaginary = parts) and images I after
a pupil-plane to focal-plane wavefront propagation using a circular aperture. The even
modes are indicated in bold font. (a) Even mode: defocus (z4) with opposite signs. (b)
Odd mode: coma (z7) with opposite signs. (c) Composition of even and odd modes:
defocus, astigmatism (z5), and coma with three different sign configurations.
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One of the most standard approach for FPWFS is the Gerchberg-Saxton algorithm
(G-S, Gerchberg, 1972). It iteratively reconstructs an estimate of the phase aberrations
using constraints on the amplitude. The electric field in the pupil plane is first computed
with a random phase map and the known aperture. The electric field in the focal-plane
is then obtained after a Fourier transform, and its amplitude is replaced with the real PSF
amplitude (A =

√
PSF). An estimate of the phase in the pupil-plane is finally obtained

with an inverse Fourier transform. This process is repeated until the reconstructed PSF
is close enough to the real one, according to a defined error criterion. In its original
implementation, the G-S algorithm cannot reconstruct the exact phase due to the twin-
image problem. This is why the standard G-S algorithm should be modified to include
phase diversity, for instance using a defocused PSF (Orban de Xivry et al., 2021). Beyond
FPWFS, the algorithm was notably applied to reconstruct the wavefront from PyWFS
measurements on the SEAL testbed (Chambouleyron et al., 2024). The G-S algorithm
has several limitations, such as the time it takes to converge to a solution, the dependence
on the initial state of the phase, the lack of noise representation and the phase wrapping
occurring during the process.

Among the numerous approaches proposed since then, the Fast and Furious algorithm
(F&F, Keller et al., 2012; Korkiakoski et al., 2014) was developed based on sequential
phase diversity. The focal-plane image is numerically split into even and odd components
and the DM command at the previous step is used to lift the sign ambiguity. F&F was
applied on-sky with SCExAO to correct the island and low-wind effects in particular (Bos
et al., 2020).

Temporal diversity can also be achieved with coronagraphic systems, as done by the
COFFEE algorithm (Sauvage et al., 2012; Paul et al., 2013). It estimates the quasi-static
aberrations using a physical model of the optical system and two focal plane images. The
method was tested on the SPHERE instrument (Paul et al., 2014) and an extension also
allows for amplitude aberrations measurement (Herscovici-Schiller, O. et al., 2018).

It is also relevant to measure the focal-plane electric field, which contains information
about the speckles. Pair-wise probing (PWP, Give’on et al., 2011) is a widely used tech-
nique that introduces phase probes on the DM to help estimate the focal-plane electric field
to be cancelled. The control approach commonly used with PWP aims to create a “dark
hole” — a region of significantly reduced contrast in the focal-plane image where speckles
are minimized. Rather than correcting the NCPAs directly, the DM is used to introduce
specific aberrations that destructively interfere with the speckles. The most common tech-
nique for creating such dark hole is Electric Field Conjugation (EFC, Give’on et al., 2007),
which uses a model of the instrument to compute the optimal DM command for cancelling
the electric field in the focal plane. The PWP+EFC combination has notably been used to
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Chapter 1. High-contrast imaging

create dark holes on sky with SPHERE (Potier et al., 2022). Recognizing the robustness
limitations of model-dependent methods, a model-free approach was proposed, using an
interaction matrix calibrated directly on-sky (iEFC, Haffert et al., 2023). Dark hole dig-
ging with both scalar and vector vortex coronagraphs has been performed on the IACT
testbed (Desai et al., 2023), comparing various configurations of EFC: with pairwise prob-
ing, iEFC, and the self-coherent camera technique (discussed in the following paragraph).

Spatial modulation

Spatial diversity relies on a single PSF, for instance by making the focal-plane image
interfere with an arbitrary probe.

The self-coherent camera (SCC, Baudoz et al., 2006) technique works on this principle.
A small amount of the light is allowed to pass through a “pinhole” in the Lyot plane of the
coronagraph. This light then interferes with any on-axis starlight that is not blocked by the
coronagraph, i.e., the aberrated part of the light. The resulting Fizeau fringes in the focal
plane encode the NCPAs, from which the electric field in the focal plane can be computed
to estimate and correct the aberrations. Among its various implementations, the SCC is
the baseline for the upgrade of the Gemini Planet Imager (Chilcote et al., 2020).

Asymmetric pupil masks are also a way to perform spatial modulation and lift the
sign ambiguity. The asymmetric pupil Fourier wavefront sensor (APF-WFS, Martinache,
2013), for instance, is an interferometric approach working in the small aberration regime
that takes a non-coronagraphic image in the Fourier plane to reconstruct the NCPAs. The
vAPP coronagraph (see Section 1.2.1) can be implemented to work as a wavefront sensor
to estimate NCPAs (Bos et al., 2019): the dual-PSF measurements obtained behind the
vAPP and an asymmetric pupil are fed into a non-linear algorithm to reconstruct the phase
aberrations. In the same paper, the method was demonstrated on-sky with SCExAO.

Direct phase retrieval

Some methods have been developed without requiring modulation of the wavefront. The
Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS) technique was
proposed by Huby et al. (2015) for the vortex coronagraph. Tip-tilt errors create asymme-
tries in a post-VVC PSF. By splitting the image into four quadrants and using an analytical
model, the amount of aberrations for these two Zernike modes can then be retrieved. One
major advantage of QACITS is that it does not require any modification of the optical sys-
tem. No phase diversity is needed because tip-tilt odd radial order modes. QACITS was
tested on-sky with the Keck/NIRC2 instrument (Huby et al., 2017). The VVC’s properties
for phase retrieval can also be leveraged with the Nijboer-Zernike Phase Retrieval method
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1.5. Science data processing

(Riaud et al., 2012b,a). With this approach, the circular polarization are split to provide
two complementary focal-plane signatures, and an analytical model can then reconstruct
both low and higher-order aberrations.

Another way to work without modulation is to use AO residuals as phase diversity. The
phase sorting interferometry (PSI, Codona et al., 2008) method achieves this by using the
wavefront sensor slopes together with the science images to reconstruct the NCPAs. Linear
dark field control (LDFC, Miller et al., 2017) monitor speckles changes observed outside
the dark hole region to reconstruct the pupil-plane aberrations. LDFC cannot create a dark
hole itself and provides a relative measurement of the NCPAs.

Challenges

Most of the approaches described above either introduce modulation of the wavefront that
reduces the science duty cycle or require hardware modifications. The few techniques that
can directly reconstruct the pupil-plane phase only work for specific coronagraph or instru-
mental designs, and sometimes make assumptions about the wavefront aberration level.
This is why there is no unique FPWFS method used on-sky today. Current methods also
lack generalization by providing point estimates rather than full posterior distributions, as
defined in Equation 1.10. Such an estimate does not quantify the level of confidence in the
prediction.

Having an approach that is valid for different conditions is thus strongly motivated.
Deep learning methods are an interesting option that can offer generic models with min-
imal hardware requirements, and that have the potential of performing direct phase re-
trieval. Such approaches are also suitable to predict posterior distributions, which incor-
porate prediction uncertainties. Deep learning methods are introduced in Section 2.2.

1.5 Science data processing
After wavefront sensing and control, any remaining speckles may hinder the capacity to
extract exoplanetary signal. Image processing techniques applied on the acquired science
data, i.e., the PSF plus any potential exoplanet in the FoV, represent a fundamental step to
achieve detection. Post-processing techniques allow for characterizing exoplanets as well,
notably by extracting their flux and spectra to study their atmospheric content.

Most post-processing techniques are based on the angular differential imaging (ADI,
Marois et al., 2006) observing and processing strategy. While following a star in the sky
along its trajectory, the pupil of the instrument is kept in position (i.e., the field derotator
is switched off), so the aberrations that produce the speckles stay static with regard to the
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Chapter 1. High-contrast imaging

science camera. Meanwhile, the relative rotation of the sky makes any companion of the
on-axis star move around it. This allows to discriminate apparent rotating planets from
(quasi-) static speckles, as represented in Figure 1.14. Beyond ADI, there are other ob-
serving methods for HCI: Spectral, Polarimetric, and Reference-star Differential Imaging
(SDI, PDI, and RDI, respectively).

From the data cubes obtained with such observations (frames at different times, wave-
lengths, or polarizations), a reference PSF Iref is computed. It corresponds to the speckle
field that can then be subtracted from the data Iraw to remove as much as possible the
aberrations and reach higher contrasts in the post-processed image Ipost:

Ipost = Iraw − Iref . (1.15)

There exist several ways to get this reference image. The most standard one is to
compute the median frame of the cube Iref = median (I(θ0), . . .I(θn)), where I(θi) is
the image at parallactic angle θi. The median operation removes the moving companions
while retaining most of the static speckle field in Iref. More advanced approaches such
as Principal Component Analysis (PCA, Soummer et al., 2012; Amara & Quanz, 2012)
and Locally Optimized Combination of Images (LOCI, Lafrenière et al., 2007) perform
better than the median combination approach. Maximum-likelihood methods such as AN-
DROMEDA (Mugnier et al., 2009; Cantalloube et al., 2015), the KLIP forward-model
matched filter (Pueyo, 2016; Ruffio et al., 2017), or PACO (Flasseur et al., 2018) go much
further by making assumptions about the noise distribution on the data to better extract
planetary signals.

Approaches based on machine learning have also been introduced recently. For in-
stance, SODINN (Gomez Gonzalez et al., 2018) is a method that classifies pixels contain-
ing exoplanet signals from those containing noise only in ADI sequences. An extension to
SODINN works annular-wise and accounts for the different noise distributions in the data
(Cantero et al., 2023). Using half-sibling regression to handle noise in the data (Gebhard
et al., 2022) or Generative Adversarial Networks (Yip et al., 2020) have also been pro-
posed to help increase detections. A deep learning version of the PACO algorithm (deep
PACO, Flasseur et al., 2024) has recently been introduced.

Adaptive optics combined with coronagraphy, NCPA correction, and data processing
have allowed the detection of more than 60 exoplanets (Table 1.1). Examples of such
processed images are shown in Figure 1.2. To obtain these images, a myopic deconvolution
algorithm, the Template LOCI (TLOCI, Marois et al., 2014) and the LOCI approaches
where used (Figures 1.2a, 1.2b and 1.2c, respectively). The four unveiled planets of the
HR8799 system in particular illustrate well what direct imaging can accomplish.
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Figure 1.14 ADI sequence (A) with rotation planets over time, computation of the refer-
ence PSF using the median frame (B), new sequence with most of the speckles subtracted
(C), derotated images according to their parallactic angles (D), and final post-processed
image with a prominent exoplanetary signature (E). From Gómez González (2017)

1.6 Current limitations to high-contrast imaging
As explained in the previous sections, high-contrast imaging is an extremely challenging
field. Only exoplanets presenting substantial brightness, size and distance from their star
have been found so far. The contrasts needed to detect a larger range of exoplanets are
difficult to reach for various reasons.

Apart from the inherent high contrasts and small angular separations between stars and
their exoplanets (Section 1.1), which are addressed with coronagraphs (Section 1.2) and
adaptive optics for ground-based telescopes (Section 1.3.3), remaining optical aberrations
represent obstacles to detect a large variety of planetary companions. For ground-based
observations, the AO system cannot correct all phase aberrations, which cause starlight
leakage from the coronagraph. Temporal errors remain present because of the delay be-
tween the wavefront measurement and the correction by the AO system. This corresponds
to the servolag error, and it notably produces an asymmetric halo in the focal plane, called
the wind driven halo (Cantalloube et al., 2018, 2020). Another source of error is the low
wind effect, which causes a gradient of temperature between the spiders of the telescope,
therefore disturbing the phase in the pupil plane (Sauvage et al., 2015; Milli et al., 2018).
Low-order residuals such as tip-tilt aberrations, which can be due to atmospheric residuals
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or vibrations in the system (Lozi et al., 2018a), also strongly limit focal-plane corona-
graphs. Additionally, the limited resolution of the wavefront sensor and the finite number
of actuators for the DM do not allow to correct all high-order spatial modes. This does not
represent, however, an important constraint to exoplanet imaging since high-order phase
residuals are weak compared to low-order aberrations in the close vicinity of the star. All
the mentioned wavefront errors play their role in limiting HCI, but one of the most impor-
tant contribution today remain non-common path aberrations, which cannot be handled
by the AO system. As explained in Section 1.3.4, NCPAs are particularly problematic
when they have a quasi-static lifetime. Phase aberrations are also dominant in space-based
observatories, making wavefront sensing and control of prime importance.

As explained in Section 1.4, focal-plane wavefront sensing offers the most natural ap-
proach to correct NCPAs. Traditional FPWFS methods work iteratively, which means
predictions can be time-consuming since several steps are needed before reaching con-
vergence (Section 1.4.3). Some approaches are also dependent on the instrument and
restricted to low-order errors or small aberration regimes, for instance. Deep learning
techniques can potentially offer a compelling solution to these limitations, by building
performant and robust models, suited to different aberration contents and levels, offering
fast predictions while being adaptable to the instrument and observing conditions. This
thesis thereby focuses on exploring how deep learning approaches can leverage FPWFS
to correct NCPAs in AO systems. The next chapter introduces deep neural networks, in
particular how they are suited for image-based reconstructions and wavefront sensing.
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CHAPTER2
Deep learning for wavefront sensing

This chapter introduces some fundamental concepts of deep neural networks,
focusing on convolutional neural networks due to their importance in this the-
sis and presenting the motivations behind these approaches. Methods devel-
oped for wavefront sensing are then discussed, primarily within a supervised
learning framework, and the motivation behind adopting physics-based learn-
ing approaches is finally highlighted.

Contents
2.1 Deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 General concept . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . 40
2.1.3 Motivations and challenges . . . . . . . . . . . . . . . . . . . . . 43

2.2 Application to wavefront sensing . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1 Supervised phase retrieval . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 Physics-based retrieval . . . . . . . . . . . . . . . . . . . . . . . 45

2.1 Deep neural networks

2.1.1 General concept

Data-driven models built to make predictions from observations are rising with machine
learning. More specifically, deep artificial neural networks (NN) combined with vast
amounts of data have allowed building accurate and robust models. With the availability
of large-scale datasets, enhanced computing power facilitated by graphics processing units
(GPUs), as well as the development of advanced algorithms, “deep” learning (DL) has re-
cently made breakthroughs in a wide range of fields and applications, including virtual
assistants and chatbots, language translation, self-driving vehicles, or robotics. (Alzubaidi
et al., 2021; Sarker, 2021).
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Chapter 2. Deep learning for wavefront sensing

A neural network architecture allows to build a differentiable model to approximate
a function fθ : X → Y parameterized by θ, with X and Y the input and output spaces,
respectively. This function therefore yields predictions y ∈ Y from input data x ∈ X, so
that y ≈ fθ(x). A probabilistic representation with predictions p(y|x) := fθ(x) can also be
preferred, for instance in focal-plane wavefront sensing, as defined in Equation 1.10 and
applied in Chapters 3 and 5.

The most basic constituent used to approximate a function fθ is the Perceptron (Rosen-
blatt, 1958). It is an artificial neuron that computes a feature h from a linear combination
of inputs xi and weights θi,

h = θ0 +
∑

i

xi θi. (2.1)

A non-linear activation function σ can then be applied on the output features as o =

σ(h). Various activation functions have been developed over the years. The rectified linear
unit (ReLU), defined as σ(x) = max{0, x}, is one of the most used today (Agarap, 2018).

Several of these artificial neurons can be combined in a neural network layer. In turn,
several of these layers can be stacked one after the other to form a multilayer perceptron
(MLP). MLPs are known to be universal approximators (Hornik et al., 1989) and are ca-
pable of learning non-linear representations. To train the parameters of a neural network,
two fundamental components are needed: a loss function that computes a prediction error
and a gradient descent algorithm, commonly referred to as backpropagation (Rumelhart
et al., 1986), which updates the model parameters using the prediction error and derivatives
obtained from the chain rule.

In supervised learning, a model is built using labelled data, i.e., the target’s ground
truth is known for every training sample. The gap between the predictions ŷi ≈ fθ(xi) and
the labels yi is therefore assessed with a loss function Lsup : Y × Y → R. The empirical
risk for fθ, which accounts for the average error on a training dataset containing N samples,
is then

R( fθ) =
1
N

N∑
i=1

L (yi, fθ(xi)) . (2.2)

Empirical risk minimization is what drives the model training, aiming to find the opti-
mal model f ∗θ from a class of functions F

f ∗θ = arg min
f∈F

R( fθ). (2.3)

This solution can be usually found using stochastic gradient descent, which allows to
iteratively update the model parameters θi as

θi ← θi − η
∂L

∂θi
, (2.4)
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Figure 2.1 Neural network working principle, as a multilayered perceptron to be trained in
a supervised fashion. The architecture is composed of several parameterized hidden layers
(orange) that take the input data (blue) and yields predictions (red). One perceptron is
shown in more detailed (top right): it computes a linear combination of the inputs before
applying an activation function σ. For each training sample, a loss is computed from the
predictions and the labels, which allows to optimize the parameters using an algorithm
called backpropagation. This process is performed iteratively until the loss converges to a
minimum.

where η is the learning rate and ∂L
∂θi

is the gradient obtained using the chain rule. An
illustration of an MLP in a supervised learning setup is shown in Figure 2.1.

In unsupervised learning, models training does not require a label for each training
sample. Such models can be built for tasks such as ordering data into clusters (“cluster-
ing”), denoising, generating new data or reconstructing the input signal. For this latter task,
autoencoder architecture can be used, for instance, with a loss functionLunsup : X×X → R
(see Chapter 5).

For a thorough description of the working principle of deep neural networks (DNNs),
the reader is encouraged to look into Prince (2023).
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2.1.2 Convolutional neural networks

Multilayer perceptrons do not handle well spatial information because each input feature
is processed independently and neurons are fully connected. This hinders the ability of
MLPs to capture the structure in images and variations that might occur, such as spatial
shifts. MLPs are also cumbersome models with a lot of redundant neural connections,
making them ineffective with high-dimensional input spaces. Convolutional neural net-
works (CNNs) represent a much better option for image prediction tasks, including wave-
front reconstruction.

CNN building blocks

The idea behind CNNs is to add inductive biases, i.e., assumptions about the data, to neural
networks that are dealing with images (Cohen & Shashua, 2017). Three such biases exist
with CNNs:

• Locality: The network should analyze the data at various scales to capture local
features.

• Translation invariance: When parts of the image are shifted to different pixel loca-
tions, the model should produce consistent responses.

• Hierarchical composition: Detected patterns can be described as compositions of
simpler patterns.

These properties make CNNs much more effective and performant with images than
MLPs. CNN architectures are typically composed of four main building blocks: convolu-
tional layers, pooling operations, activation functions and fully connected (FC) layers.

A convolutional layer applies successive convolutions by “sliding” a kernel, i.e, a ma-
trix composed of trainable parameters, over the input data. For a 3D input x ∈ RC×M×N ,
e.g., an RGB image (C = 3) of M × N pixels, and a kernel θ ∈ RC×K×L, the result of the
convolution operation for each element of a hidden feature h can be written as

hi, j = βi, j +

C−1∑
c=0

(θc ∗ xc) [i, j]

= βi, j +

C−1∑
c=0

K−1∑
k=0

L−1∑
l=0

θc,k,l xc,i+k, j+l,

(2.5)

where β is a bias that is learned together with θ. The output h ∈ RM×N is a feature map
matching the input dimensions, typically followed by a non-linear activation. Equation 2.5
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Figure 2.2 The LeNet-5 convolutional architecture applied to the task of handwritten digit
recognition. From Lecun et al. (1998).

is a simplified version of the convolution operation, as other parameters such as the stride
and dilation rate are ignored (the reader is referred to Prince (2023) for a description of
these parameters).

Convolutional layers allow the extraction of spatial features at different scales from the
data. Pooling layers then progressively reduce the spatial size of the representation, which
decreases the number of parameters and the computational cost, while also supporting
hierarchical feature composition. FC layers are finally placed before the output of the
CNN to learn non-linear combinations of the high-level features provided by the final
convolutional layer.

Types of architectures

One of the first successfully developed CNN is LeNet (Lecun et al., 1998). It was specif-
ically designed for the task of handwritten digit recognition: composed of a succession
of convolutional, pooling and fully connected layers, the network took as input a drawn
number from 0 to 9 and was successfully able to classify these input images to the correct
digit. LeNet was groundbreaking at the time of its introduction because it demonstrated
the effectiveness of artificial neural network approaches for image recognition tasks. It
paved the way for subsequent advancements in CNNs. The principles and architectural
concepts of LeNet have been since widely adapted for various other tasks, such as object
recognition, facial recognition, and image classification in general. A representation of the
LeNet-5 architecture is shown in Figure 2.2.

Deeper architectures have emerged since then with increasing complexity, which has
also raised new challenges. One such challenge is the vanishing gradient problem (Hochre-
iter, 1998), which occurs when the gradients become increasingly small with the chain
rule of the backpropagation algorithm. This can lead to meager or even no updates of the
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(a) The ResNet-34 architecture.
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Figure 2.3 The ResNet structure, based on successive residual learning blocks.From He
et al. (2015)

weights and therefore prevent model learning. Additionally, very deep CNNs often experi-
ence accuracy saturation or even degradation as more layers are added. This phenomenon
is observed with the training data and thus cannot be a result of overfitting.

Residual neural networks (ResNets), introduced by He et al. (2015), address both van-
ishing gradient and degradation problems. ResNets contain batch normalization layers,
that not only accelerate and stabilize training but also reduce the probability of facing
vanishing gradients. By normalizing activations, batch normalization prevents them from
saturating and keeps the gradients from diminishing to zero. To address the degradation
problem, ResNets use skip connections by summation, as illustrated with the 34-layer
version of ResNet in Figure 2.3a. These skip connections use identity mappings, i.e., the
input of a block is added to its output (Figure 2.3b). This approach improves the gradient’s
flow during backpropagation, which leads to easier optimization and prevents decreasing
accuracy with the addition of more layers.

Many deep CNNs have been proposed beside ResNets. The U-Net and EfficientNet
architectures have notably been used in this thesis, and their specificities are described in
Sections 3.3.1 and 4.2.2, respectively. During the timeframe of this thesis, new types of
CNN architectures have emerged. Among them, we can cite the Vision Transformer (ViT,
Dosovitskiy et al., 2021), an application of Transformer architecture to computer vision,
as well as ConvNext (Liu et al., 2022), which is inspired by ViT.
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2.1. Deep neural networks

2.1.3 Motivations and challenges

Deep neural networks are very powerful and capable of approximating extremely complex
functions. Many physical problems are difficult to simulate and inverse problems are often
ill-posed and tedious to solve. Deep learning allows finding solutions only using observed
information, and if data is sufficient and diverse enough, competitive models can be built.
Depending on the architecture complexity and the amount of input data, training a DNN
can take hours or even days, but predictions are very fast, usually in the order of 10 mil-
liseconds per forward pass on a standard GPU. This means that when DNNs are deployed
in production, some can achieve real-time predictions. DNN are particularly good at learn-
ing complex visual patterns and predict unseen information. We live in a world where data
is abundant and where computing power is dramatically increasing. In such context DNNs
are working tremendously well.

Choosing the number of neurons and layers for an NN architecture has a strong im-
pact on the model performance. Based on the universal approximation theorem (Hornik
et al., 1989), a single layer should be sufficient to represent any function, but the size of
the layer could then prevent proper learning and generalization (Goodfellow et al., 2016).
Multiple layers are better at capturing more complex representations because they learn
all the intermediate features, i.e., the various levels of abstraction. But very deep NNs are
susceptible to experience two main issues. One is overfitting, which occurs when the NN
performs well on training data but fails to give consistent results on new data (Ying, 2019).
Increasing the size of the training dataset can help, but regularization techniques are usu-
ally needed to improve generalization, for instance with dropout layers, loss penalty terms
or early stopping. Another common issue for DNNs is the vanishing gradient problem,
which is mitigated by architectures such as ResNets (see Section 2.1.2).

DNNs contain millions of parameters to be fitted to the data. Because of their complex-
ity, DNNs are often seen as a “black box”, similarly to the intricate neural connections of
the brain. Extracting physical meaning from deep learning models is therefore not always
straightforward, although there are ways to interpret DNNs (Montavon et al., 2018; Zhang
et al., 2020). Supervised learning approaches are often the easiest and fastest way to train
models, but creating realistic labelled datasets can be time-consuming and is not always
possible. For certain tasks, unsupervised learning and transfer learning can thus repre-
sent the best approach to achieve results with proper accuracy and robustness. Methods
developed in these areas are proposed in this thesis (Chapters 5 and 6).
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Chapter 2. Deep learning for wavefront sensing

2.2 Application to wavefront sensing
Artificial neural networks and other deep learning methods are being transformative for
astronomy and optical applications, such as wavefront sensing and control. This section
presents supervised learning methods that have been developed for wavefront sensing in
astronomy, and then discusses the potential of physics-based models.

2.2.1 Supervised phase retrieval

Enhancing existing wavefront sensors

Wavefront sensing is crucial in adaptive optics systems for ground-based exoplanet imag-
ing, as outlined in Section 1.3. Neural networks trained in a supervised way have been
applied to address these challenges. The first application goes back over thirty years ago:
a perceptron composed of 150 hidden units was trained on focused and defocused images
from the Multiple Mirror Telescope (Angel et al., 1990) to infer the piston and tip-tilt
aberrations and perform co-phasing between the telescope mirrors. This corrected the
telescope’s point spread function (PSF) near the diffraction limit, first with simulations
and then on a real star (Sandler et al., 1991). Early NNs were also able to infer atmo-
spheric parameters on top of wavefront slopes (Montera et al., 1996), although small NNs
have shown limitations in performance in the presence of noise (McGuire et al., 1999).

This success with early neural networks paved the way for further developments. Tra-
ditional wavefront sensors like the Shack-Hartmann and Pyramid wavefront sensors have
limitations in terms of non-linearities and dynamic range. This motivates the exploration
of deep neural networks to address these issues. A CNN can be used to infer the non-
linear term of the reconstruction, as proposed by Landman & Haffert (2020). Combined
with a linear model, the method can then retrieve the full aberrated wavefront with im-
proved dynamic range and without noise amplification. WFS dynamic range has been
improved with CNNs for other types of wavefront sensors as well (Allan et al., 2020a,b),
and deep CNNs have also been developed to function as image-based wavefront sensors
(Nishizaki et al., 2019). One limitation of AO systems are the inherent temporal delays
that produce wavefront estimation errors (see Section 1.6). This has prompted research on
predictive control, from early NNs (Jorgenson & Aitken, 1992) to deep convolutional long
short-term memory (LSTM) networks (Liu et al., 2020; Swanson et al., 2021). Beyond
supervised learning, reinforcement learning techniques have also been implemented for
predictive control (Nousiainen et al., 2024; Pou et al., 2024; Gutierrez et al., 2024), and
such approaches are briefly discussed in the thesis perspectives (Section 7.2).
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Focal-plane sensing approaches

As demonstrated in Section 1.3.4, non-common path aberrations remain in AO systems
and are an important part of current HCI research. Focal-plane wavefront sensing, pre-
sented in Section 1.4, allows measuring NCPAs, and deep neural networks represent a
legitimate avenue for addressing the non-linearity of the problem. Phase aberration esti-
mation from PSFs has been leveraged using standard CNN architectures such as LeNet
(Wu et al., 2020; Naik et al., 2020), Inception (Andersen et al., 2019) or ResNets (Guo
et al., 2019; Andersen et al., 2020). Modifications in the architectures, for instance replac-
ing the fully-connected layers with deconvolution layers can in some cases improve speed
and precision (Guo et al., 2019). Data pre-processing techniques, including principal com-
ponent analysis (PCA) (Terreri et al., 2022b,a) and Fourier-transformations (Naik et al.,
2020), are also valuable for extracting relevant PSF features and reducing dimensionality
before training models. Recent advancements also include the use of deep neural networks
to leverage photonic fiber devices for focal-plane wavefront sensing (Norris et al., 2022;
Wei et al., 2023).

Space telescopes, while free from atmospheric turbulence, still suffer from instrument-
based aberrations and can thus benefit from focal-plane wavefront sensing. Early work
applied neural networks to predict low-order Zernike modes for the Hubble Space Tele-
scope (Barrett & Sandler, 1993). Harnessing advances in deep CNNs, Paine & Fienup
(2018) applied the Inception v3 architecture to provide initial estimates of the wavefront
from simulated James Webb Space Telescope PSFs. This approach extends the capture
range beyond what standard iterative methods offer, particularly in the presence of large
aberrations. Additionally, neural networks are being explored for correcting aberrations in
Earth observation satellites (Dumont et al., 2024).

Challenges persist in focal-plane wavefront sensing using deep learning. Supervised
methods require labeled datasets, which are difficult to acquire or may lack accuracy. Sim-
ulations offer a practical way to build these datasets, but trained models on such data often
lack robustness with real data. Therefore, learning methods that do not rely on labeled
data are appealing, as they can be trained on observed data only.

2.2.2 Physics-based retrieval

The integration of physical models into deep learning frameworks for focal-plane wave-
front sensing is relatively underexplored. However, recent advances in other optical sens-
ing fields demonstrate that incorporating physical models can enhance the robustness of
wavefront sensing.

For instance, in the context of holographic imaging, Peng et al. (2020) have proposed
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a method that combines neural networks with an optical model to learn object phase infor-
mation, while incorporating known Zernike modes to enhance the phase retrieval process.

When constructing robust models is challenging, models optimized directly on ob-
served images can be highly effective. Such an approach has been developed by Bostan
et al. (2020) using two neural networks: one to encode Zernike modes and estimate phase
aberrations, and the other to generate the object’s phase from a random tensor. These out-
puts are combined to produce the wavefront, which is then simulated to reconstruct the
images. The networks’ weights are iteratively optimized by minimizing the least-square
loss between observed and reconstructed images. Similarly, Wang et al. (2020) propose an
optical propagation model alongside an NN inspired by U-Net. This method incorporates a
“deep image prior”, which leverages prior information about the object’s phase regularities
to regularize the parameter optimization process. The reconstructed images are computed
from the phase predicted by the NN. These “untrained” neural networks are a great way to
bypass the training part while having a model fitted to the currently observed data. They
are however slower in operation since they need to converge to a solution through multiple
iterations.

Deep learning methods that incorporate physical models do not rely on labeled data
and can be considered unsupervised learning approaches. However, the incorporation of
a simulator in the architecture implies that some level of supervision is inherent in their
design1. Additionally, the methods described above use fixed optical models, which may
not perfectly match real-world data. It may thus be beneficial to address the question of
optimizing them, as it is done in this thesis in Chapters 5 and 6. Additionally, the deter-
ministic nature of phase estimation in these methods could be improved by considering
estimation uncertainties. This is explored through probabilistic predictions in Chapters 3
and 5.

1For simplicity, the term “unsupervised learning” will be used in Chapters 5 and 6 to differentiate such
methods from supervised learning approaches that use labels.
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Scope and outline of the thesis

As discussed in Chapter 1, exoplanet imaging is of prime importance and improving in-
strumental capabilities is needed. In particular, the residual phase aberrations that exist in
high-contrast imaging systems are to be mitigated to reach new discovery limits.

Wavefront sensing and control is especially motivated for future projects, such as the
Extremely Large Telescope with its instrument METIS, that will be able to probe at very
small angular separations from the star thanks to the increased resolution. This region is
polluted by low-order aberrations, producing flux leakage from focal-plane coronagraphs
such as vortex phase masks. Space-based telescopes are also limited by optical aberrations,
especially because they aim at much higher contrasts. The James Webb Space Telescope
is currently applying co-phasing of its primary mirror to mitigate low-order optical errors.
The upcoming Roman Space Telescope will be the first space-based telescope to use ac-
tive wavefront sensing, which will be essential to leverage its coronagraphic capabilities.
Future space projects, such as the Habitable Worlds Observatory, will surely benefit from
advanced wavefront sensing and control strategies to correct instrumental aberrations.

This PhD thesis aims at improving the estimation of phase aberrations in various ampli-
tude regimes and spatial frequency contents. Focal-plane wavefront sensing is the chosen
approach because it also measures non-common path aberrations, which represent one of
the main limitation for HCI systems today. Recent developments in deep neural networks,
as presented in Chapter 2, show great promises to help wavefront sensing reach new limits.
This thesis therefore aims at exploring how recent deep neural networks perform and how
they can pave the way for future deep learning-based methods to be implemented on-sky.

In Chapter 3, a new deep learning-based focal plane wavefront sensing method is first
presented with simulated data. Recent deep convolutional neural networks are imple-
mented and the potential benefits of predicting distribution parameters is assessed. This
thesis notably investigates how a new phase diversity method with the vortex coronagraph
can be used to retain a 100% science duty cycle (Chapter 4). Applying the method on a
real instrument can be strongly limiting since the exact wavefront state is never known,
and labels used to train models in a supervised way are therefore not accurate. Label-free
or “unsupervised” learning approaches are thus very interesting to explore, as described in
Chapter 5. In this regard, an autoencoder architecture that uses a differentiable simulator
as a decoder is proposed, allowing to build unsupervised learning models as well as to
optimize physical parameters within the simulator.

Thanks to a collaboration initiated with the SCExAO team at the Subaru Telescope,
studies on a real instrument are carried out in Chapter 6. Models are trained with data
acquired in the lab, i.e., using an in-house laser as light source and a deformable mirror
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to generate and correct phase aberrations. Both supervised and physics-based learning
approaches are tested on SCExAO in visible light. Phase map estimations from generated
datasets are performed, as well as closed-loop corrections to converge to even lower phase
residuals, yielding point-spread functions close to the diffraction limit. Transfer learning
strategies are also investigated, in order to quickly adapt pre-trained models on new data
as well as to fine-tune instrumental parameters with the physics-based autoencoder. The
main points demonstrated in this thesis work as well as the different prospects that arise
from it are finally summed up in Chapter 7.
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CHAPTER3
General supervised learning approach

This chapter presents the general focal-plane wavefront sensing approach of
this thesis, implementing deep convolutional neural networks trained in a
supervised manner. The data generation procedure to simulate point-spread
functions is presented here, both in classical imaging and behind vortex phase
masks. The supervised learning framework is then described. The perfor-
mance between several deep CNNs is compared, as well as the impact the
vortex coronagraph has on the results. Additionally, mixture density models
are also trained and analyzed. Most of the content of this chapter has been
published in the SPIE conference proceedings (Quesnel et al., 2020).
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3.1 Introduction
As described in Chapter 1, residual wavefront errors, and non-common path aberrations
in particular, represent key limitations to high-contrast imaging. Estimating phase aberra-
tions with focal-plane wavefront sensing is particularly motivated, and CNNs trained in a
supervised way can constitute a powerful solution (see Chapter 2). This chapter aims to
leverage supervised CNNs to estimate phase maps from PSFs using simulated data. The
importance of phase diversity is highlighted and an additional out-of-focus PSF is used
to solve the sign ambiguity, as explained in Section 1.4.2. An implementation of mixture
density networks (MDNs) is proposed in order to emphasize the sign ambiguity with prob-
ability distributions, and the method is tested with the Vector Vortex coronagraph (VVC).

The data generation procedure and deep learning approach are first explained in Sec-
tions 3.2 and 3.3. Results are then showcased in Section 3.4, with a performance compar-
ison between the U-Net and ResNet-50 architectures as a baseline, before evaluating the
MDN and studying the impact of simulated post-VVC PSFs on the performance.

3.2 Synthetic data generation
This section presents how the data is generated with simulations for classical and corona-
graphic imaging, as well as the transformations made on the PSFs before model training.

3.2.1 General procedure

For focal-plane wavefront sensing in a deep learning framework, a labeled dataset com-
posed of point-spread functions and phase maps is constructed. In classical imaging, i.e.,
with an optical propagation between pupil and focal planes using a single Fourier trans-
form, the PSF is expressed from the phase as in Equation 1.5.

The sets of Zernike coefficients are first randomly generated within the range [−1, 1]
and each coefficient is then divided by its corresponding radial order to approximate a 1/ f 2

power spectral density profile, typically encountered with good quality optics (Dohlen
et al., 2011). The entire set of coefficients for each phase map is re-scaled according to a
given median root-mean-square (RMS) wavefront error WFE:

ĉk =
ck

WFE ×median
(√∑

i c2
k,i

) , (3.1)

where ĉk is the normalized set of coefficients for the phase map k (see an example in
Figure 3.1; left).
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Figure 3.1 Left: Example of a generated set of Zernike coefficients. Right: Example of
an RMS WFE distribution in a dataset composed of 105 samples. The median RMS WFE
considered here is equal to 350 nm.

One can find that the RMS WFE of the phase is equal to the standard deviation on the
Zernike coefficients used for the normalization (Schmidt, 2010):

WFE(Φk) =
1

Npix

√√√Npix∑
i

Φ2
k,i =

√√
Nmodes∑

i

c2
k,i, (3.2)

with Npix the number of phase map pixels that are within the entrance aperture, while
Nmodes is the number of Zernike modes considered.

The input wavefront error is, therefore, a distribution centered around WFE, as repre-
sented with the histogram in Figure 3.1 (right). A higher WFE leads to a larger distribution.
The phase aberrations are then simulated using Zernike polynomials as defined in Equa-
tion 1.6. Regarding the ordering of the Zernike polynomials, the Noll convention (Noll,
1976) is used starting from the tip mode. A circular entrance aperture is considered, i.e.,
not including the central obstruction and support structures due to a secondary mirror.

The PSFs are computed using the PROPER (Krist, 2007) optical propagation package.
The data is generated in the K band at λ = 2200 nm, while an aperture diameter of 10 m,
a pixel scale of 0.25 λ/D/pix ' 11 mas/pix, and a field-of-view of 32.3 λ/D ' 1.47′′ are
considered. The phase maps and final PSFs are cropped to contain 129× 129 pixels. Each
sample from the dataset is composed of in-focus and out-of-focus PSFs, necessary for
phase diversity. A defocus of λ/4 = 550 nm is introduced in the pupil plane to obtain the
out-of-focus PSFs. Figure 3.2 illustrates phase maps and PSFs generated with a median
RMS WFE of 350 nm (1 radian) distributed over 20 and 100 modes.
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Figure 3.2 Example of phase maps and pre-processed PSFs with a median RMS WFE of
350 nm and an additional defocus of 550 nm. A fixed stellar flux of 104 photons (SNR
= 100) is considered. Top: Phase maps with 20 (left) and 100 modes (right). Middle:
Corresponding normalized in-focus PSFs. Bottom: Normalized out-of-focus PSFs. For
each case, classical and post-VVC PSFs are shown.

3.2.2 Implementation of the Vector Vortex coronagraph

As described in Section 1.2.2, the Vector Vortex coronagraph (VVC, Mawet et al., 2005) is
an optical device designed to suppress the direct starlight in order to reach higher contrasts
in the star’s surroundings. It uses a transparent phase mask at the focal plane that diffracts
the on-axis light outside the pupil, which is then blocked by a Lyot stop. As expressed in
Equation 1.1, the VVC generates two conjugated phase ramps for each circular polariza-
tion of the incoming light. For a flat wavefront and a circular pupil, the VVC perfectly
cancels the on-axis PSF. If the wavefront contains phase aberrations, however, some light
will leak. Figure 3.3 illustrates the influence of the incoming level of wavefront error on
the transmitted flux ratio. One can notice that regardless of the additional defocus, the
transmitted flux tends to converge towards a similar fraction for very high input wavefront
errors. In this aberration regime, some light also leaves the field of view, reducing the
measured transmitted flux. Additionally, for a fixed integration time, the signal-to-noise

56



3.2. Synthetic data generation

101 102 103

WFE (nm)

10 1

100

101

102

Tr
an

sm
itt

ed
 fl

ux
 (%

)

in-focus PSF
out-of-focus (+55 nm)
out-of-focus (+275 nm)
out-of-focus (+550 nm)

Figure 3.3 Transmitted flux after the vortex mask and the downstream Lyot stop as a func-
tion of the level of wavefront aberration, for different additional defocus. For each case, a
single data sample generated with 20 Zernike modes is used.

ratio (SNR) will be lower than in classical imaging. This has an impact on focal-plane
wavefront sensing compared to a case without coronagraph (see Section 3.4.3 for some
comparison results).

The post-VVC PSFs are generated using the end-to-end HCI simulator HEEPS (Carlo-
magno et al., 2020), which incorporates the optical propagation package PROPER (Krist,
2007). A topological charge `p = ±2 is considered throughout the study. In order to sim-
ulate the PSFs, two images are generated with each opposite topological charge `p before
being added together. We also perform some experiments with only one sign of the phase
screw (`p = +2) to investigate whether selecting one circular polarization could lift the
sign ambiguity (Section 3.4.3). The diffracted light outside the geometric pupil is blocked
by a Lyot stop, undersized to 98% of the pupil diameter. To generate the out-of-focus
PSFs, the defocus is introduced in the entrance pupil plane. Examples of post-VVC PSF
pairs can be found in Figure 3.2.

3.2.3 Data pre-processing

In the simulations, photon noise is considered, which means the SNR is defined as SNR =√
Nph, where Nph is the total number of photons in the entrance pupil plane. An SNR of
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Figure 3.4 The U-Net architecture, adapted for a regression task. Credits: P-O Vanberg.

100 is chosen for most of the experiments. With the VVC, the flux suppression induced
by the mask is also accounted for, reducing the SNR in the focal plane (Section 3.4.3).

A square-root stretching operation is then applied to the PSFs to assist the CNN in
identifying the speckle distribution. This scaling method is preferred because it offers a
good balance between revealing faint structures and avoiding saturation in bright areas,
which can occur, for instance, with a log-stretching.

Finally, the PSFs are normalized with a min-max scaling to obtain fluxes in the range
[0,1], which ensures same-scale quantities are fed to the CNN. This has been shown to pro-
vide better stability and performance during the training of deep neural networks (Bishop,
1995).

3.3 Deep learning models
In this section, the convolutional neural networks and the mixture layer used in this chapter
are first presented. The components allowing to train the models are then explained, in
particular the loss functions and some key hyperparameters.

3.3.1 Convolutional Neural Networks

The goal is to build models to map phase aberrations y from PSFs x, i.e., to approximate a
non-linear function fθ parameterized by θ, such that y ≈ fθ(x). In order to do so, two deep
neural network architectures are considered: ResNet-50 (He et al., 2015) and U-Net (Ron-
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neberger et al., 2015). Two other architectures, VGG-16 (Simonyan & Zisserman, 2015)
and Inception-v3 (Szegedy et al., 2015), were also tested but produced poorer results on
the datasets and are thus not presented in this study.

ResNet

ResNet-50 is an architecture based on residual neural networks, which are described in
Section 2.1.2. ResNet-50 (He et al., 2015) has been adapted to our regression task by
modifying the first and last layers of the network. This ResNet-50 predicts the Zernike co-
efficients from the input PSFs and the initialized weights are pre-trained with the ImageNet
dataset.

U-Net

U-Net was introduced by Ronneberger et al. (2015) for biomedical image segmentation.
U-Net is composed of a downsampling path followed by an upsampling of the feature
maps, producing outputs at the same dimension as the input. Upsampling the feature maps
is performed with transposed convolutions. It also uses skip connections by concatenating
feature maps from previous layers to retain local information during the forward pass. To
apply U-Net for our task, the softmax layer at the end of the architecture was removed
to perform a regression task instead of segmentation. As illustrated in Figure 3.4, phase
maps are directly inferred from PSFs and U-Net is trained from scratch.

3.3.2 Mixture Density Layer

Mixture density networks (MDNs), introduced by Bishop (1994), predict weighted sums
of probability distributions instead of single quantities, allowing to estimate uncertainties
in the data. A mixture of Gaussian distributions is selected for the models. We only need
to modify the last layer of ResNet-50 to produce three parameters per Gaussian k and
Zernike mode z: the mean µz,k(x), the standard deviation σz,k(x) and the weight αz,k(x)
given to each Gaussian. From these outputs, we reconstruct the likelihood of a coefficient
yz given an input x as

p(yz|x) =

∑
k

αz,k(x)N (yz| µz,k(x), σ2
z,k(x))

=

Ngauss∑
k=1

αz,k(x)
√

2 πσz,k(x)
exp

− (yz − µz,k(x))
2σ2

z,k(x)

2
 .

(3.3)
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For this study, two Gaussian distributions (Ngauss = 2) are used, which means that
six targets for each Zernike mode are predicted instead of a single one. The weights are
normalized such that

∑
k αz,k(x) = 1, with αz,k(x) ∈ [0, 1]. This architecture allows us to

measure prediction uncertainties and assess the sign ambiguity observed with even Zernike
modes. We expect to predict one Gaussian close to the true value of the Zernike coefficient
and another one around the opposite value when there is sign degeneracy, i.e., only for
even modes. Such a method could for instance be exploited to measure the capability of
diversity techniques to lift the sign ambiguity. In the following sections, “ResNet-MDN”
indicates the ResNet-50 architecture combined with the mixture density layer.

3.3.3 Training procedure

To train the models, a loss function needs to be defined. An optimizer will minimize this
loss by successive updates of the neural network’s weights, allowing to fit the model to the
data. In the standard case, i.e., without the mixture density layer, the chosen loss function
is the root-mean-square error of the phase residuals

Lcnn

(
Φ, Φ̂(x; θ)

)
=

√√√
1
N

N∑
i, j

(
Φi, j − Φ̂i, j(x; θ)

)2
, (3.4)

where Φi, j and Φ̂i, j(x; θ) are the true and estimated phase respectively, θ represents the
neural network weights, x corresponds to the input PSFs and N is the total number of
pixels in each phase map. On the other hand, with ResNet-MDN architecture we want to
maximize the likelihood p(yz|x) of the true Zernike coefficients yz defined in Equation 3.3.
This is the same as minimizing

Lmdn(yz, x; θ) = − log pθ(yz|x). (3.5)

A small offset ε = 0.005 rad is also added to the predicted σz,k(x) to improve the stability
of the minimization. During training the loss is averaged over the elements of the current
batch before being fed to the back-propagation algorithm.

A dataset composed of 105 PSF pairs is randomly split into training (90%) and valida-
tion (10%) sets. A batch of 64 data samples is fed to the neural network at each iteration
and the Adam optimizer (Kingma & Ba, 2017) is used, which is a well-known flavor of
stochastic gradient descent. A learning rate of 10−3 is set for the CNN while a learning
rate of 10−5 is preferred for ResNet-MDN to avoid training instabilities, which has been
observed with its loss function. The learning rate is then decreased by a factor of 2 each
time the validation loss stagnates over 20 epochs, resulting in immediate drops of the loss,
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Figure 3.5 Illustration of training and validation losses obtained through the epochs, with
phase diversity and on a dataset comprising 100 modes, a median input RMS WFE of
350 nm and classical imaging PSFs. Left: Using ResNet-50 (with weight decay). Right:
Using ResNet-MDN.

as it can be noticed in Figure 3.5. Only the model defined at the epoch with the lowest
validation loss is kept for evaluation.

Since ResNet-50 tends to be particularly prone to overfitting in our case, regulariza-
tion is applied with this architecture using a technique called weight decay. It works by
adding a penalty to the loss function, encouraging smaller weights. A factor of 10−7 was
found to yield the best performance. More generally, deep neural networks trained with
Adam and/or batch normalization have a specific response to weight decay, and multiple
discussions can be found about this topic in the literature (van Laarhoven, 2017; Zhang
et al., 2018; Loshchilov & Hutter, 2019).

3.4 Experiments and results
In this section, performance is assessed with both classical and coronagraphic imaging,
and the way mixture density models can exhibit prediction uncertainties is also illustrated.
To evaluate the models, test datasets are used, which are composed of 1000 samples gen-
erated the same way as the training and validation sets, except for a different random seed
on the Zernike coefficients.
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Number of modes 20 100

Input WFE (nm) 70 350 70 350

U-Net 8.7 13.6 20.2 56.9
ResNet 8.8 12.5 19.9 38.9

ResNet-MDN 9.2 15.0 20.7 71.8

Table 3.1 Comparison of RMS WFE on the phase residuals (in nm) averaged over 103 test
samples. The models were trained on 105 PSF pairs with phase diversity and an SNR of
100.

3.4.1 Comparison between CNN architectures

An overview of the performance of the ResNet-50 and U-Net architectures is given with
our approach. A more detailed analysis is done by Orban de Xivry et al. (2021).

Here the models are trained with datasets containing classical imaging PSFs (without
the VVC). Models trained with and without phase diversity are also compared. Predictions
on the test dataset are made, and the root-mean-square error (RMSE) on the phase resid-
uals, defined the same way as the loss function metric in Equation 3.4, is computed. The
performance is illustrated in Figure 3.6 for a median input RMSE of 350 nm (1 radian)
distributed over 100 Zernike modes and with an SNR of 100. The histograms represent
the RMSEs computed from each test sample. Using diversity clearly reduces the error on
the phase residuals, due to having two inputs instead of a single one (the effective SNR
increases by a factor

√
2), but most importantly because the predictions are especially

improved on the even modes, since the sign ambiguity is overcome. ResNet-50 is able
to learn 100 modes slightly better than U-Net but, as shown in Table 3.1, almost iden-
tical RMSEs are obtained between the two architectures when trained with 20 modes or
an input WFE of 70 nm. In the following experiments, ResNet-50 and ResNet-MDN are
exclusively used.

3.4.2 Predicted uncertainties with mixture density models

From mixture model predictions, the RMS WFE can be obtained from the weighted mean
µ̂∗z = α̂z,1µ̂z,1 + α̂z,1µ̂z,2, corresponding to the predicted Zernike coefficient for each mode z.
The RMSE of the residual phase can then be computed with Equations 1.6 and 3.4. We
observe a degradation in performance with the mixture density models in terms of RMSE
compared to the standard CNN models (Table 3.1). This is especially true for 100 Zernike
modes and an input WFE of 350 nm. Training on 5×105 images compensates for the
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Figure 3.6 Empirical distributions of RMS WFE on the test dataset for models trained over
100 modes and with a median WFE of 350 nm (green). Performance with the ResNet-50
and U-Net architectures are compared, as are the cases with (in-out-focus; darker colors)
and without (in-focus; lighter) phase diversity.

difference in performance, and the following results are thus obtained from models trained
with this dataset size.

As illustrated with reconstructed distributions from the predicted parameters in Fig-
ure 3.7, ResNet-MDN is well capable of recognizing the sign ambiguity when fed only
with in-focus PSFs, by estimating two Gaussian distributions centered near the true coef-
ficient and its opposite value. This works particularly well for low order Zernike modes,
while the estimations degrade for higher order modes: the predicted absolute weight dif-
ference ∆α̂z = |̂αz,1 − α̂z,2| starts to be equal to 1 for even modes from z > 20, which means
only one Gaussian is predicted instead of two (Figure 3.8; left). In these cases the pre-
dicted µ̂z of the single Gaussian is approximately equal to zero, which is what the standard
CNN predicts for even mode when facing the twin-image problem. More training data
helps improve the predictions for high-order even modes. On the other hand, with phase
diversity, the MDN predicts a single Gaussian for every Zernike mode as expected.

The metric we use here to measure the sign ambiguity is the entropy (Shannon, 1948)

H = −
∑

i

p(yi|x) log2 p(yi|x), (3.6)

where yi are Zernike coefficient values (x-axis of Figure 3.7). The advantage of this metric
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Figure 3.7 Examples of predicted distributions with a mixture model for an odd mode (tip;
top), a low order even mode (defocus; bottom left), and a higher order even mode (bottom
right).

is that it depends both on the number of Gaussians and their widths, i.e., it considers
the total uncertainty in the prediction. The entropy computed for each Zernike mode is
shown in Figure 3.8 (right). The entropy is consistently higher for even modes compared
to odd modes without phase diversity, which showcases the twin-image problem. One can
also notice that for the high-order modes for which ResNet-MDN is not able to predict
two Gaussians (Figure 3.8; left), the entropy is still important because the predicted σ̂z

is sufficiently large in these cases. Regarding odd Zernike modes, the entropy is always
higher when trained only with in-focus PSFs since it lacks the additional out-of-focus PSFs
that naturally improve the performance.

3.4.3 Influence of the Vector Vortex coronagraph

In this section the performance using post-coronagraphic PSFs is assessed, i.e., using a
dataset generated with the VVC described in Section 3.2.2, comparing the residual errors
obtained with models trained on classical imaging PSFs. In particular, three types of
models are studied: trained using classical PSFs and a fixed SNR of 100, using post-VVC
PSFs at the same SNR of 100 (for both in and out-of-focus PSFs), and using post-VVC
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Figure 3.8 Top: Absolute difference of the predicted weights. A value of 1 indicates only
a single Gaussian is predicted while 0 shows that two Gaussians with equal weights are
obtained. Bottom: The entropy of the predicted Gaussian mixture for each Zernike mode.
In both plots, the median values are represented, and the shaded regions extend to the
5–95th percentiles.
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PSFs at a fixed stellar flux, resulting in lower SNRs in the focal plane because of the flux
suppression caused by the vortex mask.

The results are displayed in Figure 3.9. At low input RMS WFE, the performance for
each case reaches a plateau set by the photon noise limit (Orban de Xivry et al., 2021).
On the other hand, at high RMS WFE, the performance degrades and this deviation from
the photon noise limit relates to an additional model error. Models trained with post-VVC
PSFs at a fixed stellar flux (blue curve) give higher residual RMS WFE for any input
WFE which is essentially due to their lower SNR in the focal plane (see Figure 3.9; right).
Finally, models trained on post-VVC PSFs at a fixed SNR of 100 (purple curve) give
better performance in the low aberration regime (≤ 125 nm) compared to classical PSFs
at the same SNR, but poorer performance at higher aberration levels. Since the vortex
mask removes the Airy disk, we would expect the aberrations to be better revealed in the
focal plane, potentially improving learning the mapping between the phase and PSFs. This
could explain the gain in performance obtained with the VVC at low levels of aberrations.
Still, the stronger degradation in performance with higher input RMS WFE is not fully
understood. One hypothesis is that this could be due to the non-linearity of the VVC at
high levels of aberrations, which would make the models more difficult to train. This
trend has also been observed with models trained on other SNRs and levels of additional
defocus. However, the differences in performance are relatively small and mostly within
the error bars.

3.5 Conclusions
In this chapter, a deep learning-based method has been developed to predict wavefront
aberrations typical of NCPAs from simulated PSFs, notably using the ResNet-50 architec-
ture. The approach has been tested on both classical and post-coronagraphic PSFs with
vector vortex phase masks. Models trained with both types of PSFs yield similar perfor-
mance at the same level of photon noise, albeit with slight differences. Mixture density
models have also been implemented to predict the ambiguity on the phase sign. It has
proven to work well in our setup, even though some limitations regarding higher order
Zernike modes have been observed. A more detailed study of the method applied to clas-
sical imaging can be found in Orban de Xivry et al. (2021). In particular, it discusses the
robustness of the models, how the performance relate to the theoretical limit and a com-
parison is made with the iterative Gerchberg-Saxton algorithm. The initial experiments
with post-VVC PSFs presented in this chapter represent a starting point to explore further
developments. Specifically, the unique properties of vortex coronagraphs can be harnessed
for focal-plane wavefront sensing. This is the focus of the next chapter.
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Figure 3.9 Top: Comparison of residual RMS WFE between models trained on post-VVC
and classical imaging PSFs for different input WFE, each reported point corresponding to
a specific model. Bottom: SNR of the in and out-of-focus PSFs for each model with the
VVC, considering a fixed stellar flux (blue curve in the top plot). In both plots the median
values are represented and the error bars correspond to the 5–95th percentiles.
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CHAPTER4
Phase diversity with vortex masks

This chapter explored a novel phase diversity method that achieved a 100%
science duty cycle with scalar and vector vortex phase masks. The properties
of this types of coronagraphs and the effects they have on light polarization
allows to solve the phase sign ambiguity and perform focal-plane wavefront
sensing. Using a state-of-the-art CNN, phase aberrations are successfully in-
ferred from simulated focal-plane images behind vortex coronagraphs. Most
of this work appears in refereed journal paper A&A (Quesnel et al., 2022a).
Additionally, Section 4.3.6 includes non-published experiments on closed-
loop simulations and Appendix B presents the effect an asymmetric Lyot stop
as an alternative approach for addressing sign ambiguities.
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4.1. Vortex phase diversity concept

4.1 Vortex phase diversity concept
As described in the previous chapters, the phase sign ambiguity is typically solved with
phase diversity using, for instance, an additional defocused PSF (Gonsalves, 1982), or an
asymmetric pupil mask (Martinache, 2013). This, however, reduces the science duty cy-
cle because some observing time, and/or part of the science beam, has to be dedicated to
wavefront measurements exclusively. Based on the properties of the vector vortex coro-
nagraph (VVC, Mawet et al., 2005), a Nijboer-Zernike phase retrieval approach tailored
to the post-VVC PSF was formulated in Riaud et al. (2012a,b). They proposed to split
the two circular polarization states to exploit the phase diversity introduced by the two
opposite topological charges associated with the VVC.

An illustration of the sign ambiguity is shown in Figure 4.1, where two phase maps
with opposite signs for their even Zernike modes are generated. After propagation through
a VVC, the in-focus PSFs are the same in both cases (Figure 4.1d and f), showcasing the
twin-image problem. The out-of-focus PSFs, however, are different (Figure 4.1e and g)
because the added defocus has the same sign in both cases, which allows the ambiguity
to be lifted. Now, if the two orthogonal circular polarization states are split downstream
of the VVC to separate the conjugated phase ramps (−`p and +`p), or if the case of the
scalar vortex coronagraph (SVC) is considered, the in-focus PSFs are not identical any-
more (Figure 4.1h and j, or Figure 4.1i and k). The resulting PSFs are actually switched
between the two circular polarization states. This indicates that the sign ambiguity can
potentially be lifted when using either the two PSFs obtained from the separate circular
polarization states or the single PSF behind the SVC independently of the polarization
state. This illustrates the fact the VC provides an azimuthal phase diversity, which can be
used instead of the radial phase diversity provided by an additional defocus (Riaud et al.,
2012a). In the case of the SVC, the sign ambiguity would then be lifted similarly to using
only an out-of-focus PSF in classical phase diversity (e.g., Lamb et al., 2021).

This chapter revisits the problem of phase retrieval behind a vortex coronagraph using
deep learning techniques. Unlike an analytical approach, which could show limitations re-
garding its formulation, deep learning models can be trained regardless of the instruments
and observing conditions. In Section 4.2, the deep learning approach is presented, based
on convolutional neural networks (CNNs), which have the advantage of being flexible and
easy to implement, and they have already been shown to be capable of reaching funda-
mental noise limits in previous works (Quesnel et al., 2020; Orban de Xivry et al., 2021).
In Section 4.3, quantitative results on simulated data are provided. The performance of the
vortex phase diversity method is compared to a classical approach and the robustness of
the models is assessed, notably in the presence of representative atmospheric turbulence
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(a) Entrance pupil

(b) Phase map φ (c) Phase map φ′(φ′even = −φeven)

(d) ±`p (e) ±`p; out (f) ±`p (g) ±`p; out

(h) +`p (i) −`p (j) +`p (k) −`p

Figure 4.1 Comparison of simulated PSFs for two conjugated phase maps φ (left) and φ′

(right): for φ′, we set opposite Zernike coefficients to those of φ only for the even modes,
with a total of 18 modes starting from defocus. (a): Entrance annular pupil. (b, c): The
conjugated phase maps. (d, e): In-focus and out-of-focus PSFs obtained from propagating
(b) with both polarization states together. (f, g): The same as (d, e) but using (c) for prop-
agation instead. (h, i): In-focus PSFs obtained from (b) with −`p and +`p used separately.
(j, k): The same as (h, i) but using (c) for propagation instead.
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residuals. The performance of the models in a closed-loop process is finally highlighted
in Section 4.3.6, showcasing the impact it has on the contrast. The potential of using
an asymmetric Lyot stop and a single in-focus PSF with the VVC is also investigated in
Appendix B.

4.2 Deep learning approach

4.2.1 Data generation

In the simulations, an annular entrance pupil is considered with a diameter of 8 m and a
central obstruction of 30%. An observed bandwidth of 0.2 µm was defined around 2.2 µm
(K band), by simulating a total of five wavelengths. A pixel scale of 0.25 λ/D/pix was
set with a detector containing 64×64 pixels, giving a field-of-view of 16 λ/D. The most
relevant simulation parameters are listed in Table 4.1.

As in Chapter 3, the phase aberrations are produced using annular Zernike polynomials
(see Equation 1.6). The generated datasets are composed of 18 or 88 Zernike modes, up to
the fifth and 12th radial orders, respectively, excluding the piston, tip, and tilt modes. The
set of Zernike coefficients for each sample was first randomly generated within the range
[−1, 1] before each coefficient was divided by its corresponding radial order to approxi-
mate a 1/ f 2 power spectral density profile, typically encountered with good quality optics
(Dohlen et al., 2011). Low and high aberration levels, represented by wavefront error
(WFE) distributions centered at a 70 and 350 nm root-mean-square (RMS), respectively,
are considered by normalizing the Zernike coefficients accordingly (see Equation 3.1). An
example of such a distribution can be seen in Figure 3.1 (right). For classical phase di-
versity, which is used as a reference to compare the performance of various setups, the
additional defocus was set to λ/5, that is, 440 nm RMS. In our case, this amount of diver-
sity is close to the optimal value measured in terms of phase retrieval performance, and
other defocus values may provide better results in different experimental configurations.
The defocus was added in the entrance pupil plane as if done by the deformable mirror of
an adaptive optics system, which means that the resulting defocused PSFs contain more
flux than the in-focus PSFs as the coronagraphic performance of the VC is degraded.

To increase the representativeness of the simulations and to test the robustness of the
approach, atmospheric turbulence residuals are added to the phase maps. A state-of-the-
art extreme adaptive optics (AO) was simulated using the COMPASS library (Ferreira
et al., 2018), assuming a loop frequency of 3.5 kHz, 2-frame delay, a 50×50 deformable
mirror (i.e., 2040 modes/valid actuators), and a pyramid sensor with 5 λ/D of modulation
(without noise). This has yielded a Strehl ratio of about 98% at 2.2 µm, corresponding to a
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Parameter Value
Central obstruction 30 %
Topological charge 2

Pixel scale 0.25 λ/D / px
Field-of-view 16 λ/D

Table 4.1 Data generation parameters.

WFE of about 50 nm RMS. The AO residuals are sampled at 10 Hz and a sequence of ten
consecutive phase screens is used by summing up the corresponding PSFs. A 1-s exposure
in the presence of a given amount of static NCPAs is therefore simulated. The results with
data containing these AO residuals are shown in Section 4.3.5.

To simulate a PSF obtained behind a VVC, two propagations are performed, one with
+`p and the other with −`p, to consider each circular polarization state. The downstream
Lyot stop blocked 2% of the outer pupil area (but the central obstruction was not over-
sized). The resulting PSFs were then either summed up to reproduce the nonpolarized
case, or they were kept separate to consider the dual-polarization case. To simulate the
SVC, only one such PSF was taken. The optical propagation was handled by the HEEPS
package1 (Carlomagno et al., 2020), which makes use of PROPER (Krist, 2007). Exam-
ples of generated phase maps and PSFs can be found in Figure 4.1. Photon noise is then
added to the PSFs, so that the signal-to-noise ratio (SNR) was defined as SNR =

√
Nph,

where Nph is the number of photons. Figure 4.2 illustrates PSFs at increasing amounts of
SNR. A square-root stretching operation was applied to the PSFs to help the CNN identify
the speckle patterns. Finally, the PSFs are normalized with a min-max scaling to obtain
flux in the range [0,1], which ensured the CNN was fed with same-scale quantities.

4.2.2 Model architecture

As in the previous chapter, deep neural network models are trained to approximate a non-
linear function that maps Zernike coefficients from PSFs. In this chapter, the state-of-the-
art deep CNN called EfficientNet (Tan & Le, 2019) is implemented. EfficientNet stands
out from other deep CNNs by using a new scaling technique: all dimensions of the CNN
(depth, width, and resolution) are scaled by the same compound coefficient, as shown in
Figure 4.3a. This allows us to leverage the correlation that exists between the different
network dimensions, not only to increase accuracy but also the efficiency of the models
in terms of FLOPS (Floating Point Operations Per Second). With the compound scaling

1https://github.com/vortex-exoplanet/HEEPS
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Figure 4.2 Examples of PSFs at different SNR levels (defined in the entrance pupil plane)
for +`p. The resulting SNR in the detector place is reduced due to the extinction factor
introduced by the coronagraph and by the beam splitting between the two polarization
channels. The level of NCPA is equal to 70 nm RMS distributed over 18 modes (top) and
350 nm RMS over 88 modes (bottom). AO residuals are also present: each PSF is the
result of combining ten PSFs, with each containing a different AO residual phase screen.

method, the architecture is therefore optimized to the dimensions of the input. The param-
eters are inferred from the original model or baseline EfficientNet-B0, and there are thus
several models available (from B0 to B7). The performance of EfficientNet on a standard
dataset is shown in Figure 4.3b. Among the different models available, EfficientNet-B4
is chosen because it offers best trade-off between model performance and runtime for our
task. EfficientNet-B4 has a total of 1.9×107 parameters and 4.2 ×109 FLOPS. It has about
the same number of parameters as the ResNet-50 architecture, which was used in Quesnel
et al. (2020) and Orban de Xivry et al. (2021).

4.2.3 Training procedure

General parameters Similarily to Chapter 3, a dataset composed of 105 PSFs (or PSF
pairs for the cases with two input channels) was randomly split into training (90%) and
validation (10%) sets for each training. Each sample also contains the true NCPA phase
maps as labels, while the AO phase screens are never given. Batches composed of 64 data
samples were then consecutively fed to the neural network. The loss function is defined as
the root-mean-square error (RMSE) of the phase residuals. Weight updates based on the
loss were handled by the Adam optimizer (Kingma & Ba, 2017). Pre-trained models on
ImageNet were used to initialize the weights. The training of the model was stopped if no
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Figure 4.3 The EfficientNet principle and its performance compared to other deep CNNs.
From Tan & Le (2019).
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Designation Charge Defocus Inputs
VVC in-focus ±`p no 1

VVC [in, out]-focus ±`p yes 2
VVC dual-polar [+`p, -`p] no 2

SVC +`p no 1
no vortex [in, out]-focus 0 yes 2

VVC dual-polar; diff PSFs [+`p, -`p] no 1

Table 4.2 Configurations considered for phase retrieval.

improvement of the validation loss was observed over 25 epochs. This results in training
procedures lasting between 50 and 250 epochs.

The use of weight decay To improve the performance, a penalty on the loss (“weight
decay”) of 10−7 is set for the low aberration regime and 10−6 for the higher aberration
regime. An initial learning rate of 10−3 is also set, which was decreased by a factor of two
as soon as the validation loss reached a plateau over 15 epochs. This results in sudden loss
drops, allowing the performance to be greatly improved.

4.3 Results and analysis
Here we compare the capacity of different configurations to lift the sign ambiguity as well
as their performance. The designation of these configurations, together with some of their
parameters, can be found in Table 4.2: we consider the cases of the VVC with or with-
out classical phase diversity (“VVC [in, out]-focus” and “VVC in-focus”, respectively),
which are compared to the new approaches presented in this chapter (“VVC dual-polar”
and “SVC”). The non-coronagraphic case (“no vortex [in, out]-focus”) is evaluated as
well. The possibility of working with differential PSFs obtained by subtracting the sepa-
rate circular polarization states (“VVC dual-polar; diff PSFs”) is also investigated. In the
last part of this section, atmospheric turbulence residuals are added and the robustness of
the models regarding variations in the SNR levels, input wavefront errors, and Zernike
polynomial orders are assessed. All models are evaluated using 1000 test samples.
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4.3.1 Phase sign determination

To determine whether the models predict the correct sign, we looked at the performance
per Zernike mode. The metric used is the RMSE per mode:

σz =

√√
1

Ntest

Ntest∑
i

(ĉi − ci)2 , (4.1)

where Ntest is the number of test samples, while ĉ and c are the estimated and true Zernike
coefficients, respectively.

In Figure 4.4 the performance per mode between four cases for two different aberration
contents are compared. A network using only in-focus PSFs in the non-polarized case with
the VVC yields no correction for even Zernike modes because the model tends to predict
zero for the coefficients facing the ambiguity (due to the l2-norm training loss). For odd
modes, the model is able to provide some correction, even though its quality is limited
by the loss function, which does not discriminate between even and odd modes. Adding
defocused PSFs as input solves the problem as expected (Quesnel et al., 2020). In the dual-
polarization case, a network using either one or both circular polarization states separately
as input (SVC and VVC, respectively) also yields good performance for even modes as
well as for odd modes. This indicates that the sign ambiguity is properly lifted with these
two approaches.

It is noteworthy that the performance marginally depends on the Zernike mode: the
error tends to increase for larger angular azimuthal orders at a given radial order. The
interpretation is that since the phase information is of higher spatial frequency and located
closer to the edge of the pupil in these cases, it is more difficult for the CNN model to
identify those features.

4.3.2 Comparison to classical phase diversity

We now compare our method to the classical phase diversity approach in terms of overall
phase retrieval performance. The RMS WFE on the phase residuals is used as a metric,
and it is defined for each test sample as:

σφ =

√√√
1

Npix

Npix∑
i

(φ̂i − φi)2, (4.2)

where Npix is the number of pixels, while φ̂ and φ are the estimated and true pupil phases,
respectively.

76



4.3. Results and analysis

101 102

Zernike mode

101

102
R

M
S

E
(n

m
)

18 modes, 70 nm RMS
input WFE

VVC in-focus

VVC [in, out]-focus

VVC dual-polar

SVC

even modes

101 102

Zernike mode

101

102

R
M

S
E

(n
m

)

88 modes, 350 nm RMS

Figure 4.4 RMSE per Zernike mode, following the Noll convention, starting from the
defocus mode. Four cases were compared (see Table 4.2 for notations), using a single
in-focus post-VVC PSF without splitting the polarization states (cyan), two post-VVC
PSFs with additional defocus (dark blue), the two post-VVC PSFs associated with each
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modes. In both examples, the SNR in the entrance pupil plane is equal to 100.

77



Chapter 4. Phase diversity with vortex masks

In our simulations, the fact that the vortex coronagraphs block out most of the starlight
is considered and that for a given stellar magnitude, the resulting flux in the detector plane
is reduced. The flux is also equally split between each PSF for all the cases with two
channels, while for the configurations with a single one, the PSF receives the total flux
remaining after the vortex mask. The performance of the trained models at different SNR
levels defined in the entrance pupil plane is shown in Figure 4.5. In our case, SNRs be-
tween 101 and 3 × 103 correspond to stars of apparent magnitudes in the range from 18.6
to 6.2.2 For a median input WFE of 70 nm with 18 modes (Figure 4.5, top), the simulated
performance is almost identical for the classical, SVC, and VVC dual-polarization ap-
proaches, even though the additional defocus increases the overall SNR at the focal plane
for the classical method. For a median input WFE of 350 nm with 88 modes (Figure 4.5,
bottom), the phase residuals are distinctly higher for all the configurations, and a plateau is
reached for SNRs above 1000. We can especially notice that the sole PSF behind the SVC
somewhat limits the performance in this case. The main hypothesis for this discrepancy
is that, in a high aberration regime, the effects of the nonlinear nature of the problem are
greater. The extra information given by having two input channels is therefore favorable
and makes the models easier to train. In general, it is more difficult to train datasets con-
taining strong aberrations, and this can typically be improved by using more data, more
complex architectures, and/or stronger weight decay.

4.3.3 Companion subtraction with dual-polarization

The possible presence of planetary companions in the detected images is also considered.
This additional, off-axis source of light is largely unaffected by the vortex phase ramp
and therefore adds the same signature in both circular polarization states. This additional
light source may bias the phase retrieval process, and lead to unwanted planetary signal
subtraction. A possible workaround is to subtract one polarization image from the other,
in an attempt to remove the signature of any off-axis light source. The phase retrieval
capabilities using the difference between both polarization states after the VVC were thus
assessed. The results are shown in Figure 4.5 and are compared with the other configu-
rations. We only obtain a marginal increase in the error at high SNRs, especially in the
low aberration regime, which can be explained by the loss of information produced by
subtracting one PSF from the other.

2with an integration time of 1s, a transmission and quantum efficiency equal to 50%, a telescope diameter
of 8 m, and a filter bandwidth of 50 nm.
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Figure 4.5 Performance in terms of RMS WFE on the phase residuals at different SNR
levels. Each point corresponds to a model trained and evaluated on the indicated SNR
(six SNRs are considered, and slight horizontal shifts were applied to be able to discern
each point). The same colors in Figure 4.4 are used, with the addition of the performance
with classical imaging (green), using differential post-VVC PSFs (violet), as well as the
theoretical limit (black dashed line). The median values are represented and the error bars
correspond to the 2–98th percentiles. The indicated SNRs are defined in the entrance pupil
plane, accounting for flux suppression by the vortex mask. Top: Input WFE of 70 nm RMS
distributed over 18 modes. Bottom: 350 nm over 88 modes.
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4.3.4 Theoretical limit

The performance of the various configurations is finally compared to the theoretical limit in
Figure 4.5. This limit is discussed in Orban de Xivry et al. (2021) for non-coronagraphic
imaging. For both the non-coronagraphic and vortex imaging cases, the residual errors
reach the fundamental limit in the low aberration regime (Figure 4.5, top). In a higher
aberration regime, the performance does not reach the fundamental limit, and the gap
increases toward higher SNRs (Figure 4.5, bottom). This could potentially be improved
with more robust training, for instance by increasing the number of training data samples,
as demonstrated by Orban de Xivry et al. (2021). It is worth noting that the residual
errors are constrained by the WFE distribution in the data toward lower SNRs, while the
theoretical limit is independent of the input WFE distribution and continues to increase for
lower SNRs, thus yielding residual WFE below the limit.

4.3.5 Model robustness

To test how the method handles more realistic ground-based observations, atmospheric
turbulence residuals are added in addition to the NCPAs, as described in Section 4.2.1.
This represents an additional source of noise since the AO residuals are not included in
the labels for training. Examples of input PSFs at the different flux levels can be found in
Figure 4.2. The performance now starts to reach a plateau of a few nm RMS in the low
aberration regime at high SNRs (Figure 4.6, top), due to the presence of these atmospheric
turbulence residuals. In the high NCPA regime (Figure 4.6, bottom), the AO residuals
however become negligible, and the performance is almost identical to the case without
turbulence (Figure 4.5, right).

We finally study the robustness of the models regarding a variation in the data during
evaluation. First, we may encounter different flux levels than those considered during
training. Figure 4.7 illustrates how models in the VVC dual-polar configuration trained
on data containing 70 nm RMS behave in such conditions. Whether the training SNR
is low or high, models only show good robustness to other flux levels within a limited
range, outside which the performance is strongly degraded. If a more robust model is
required, it is also possible to train with various flux levels. We investigated this by using
a training dataset covering the entire test SNR range, without increasing its size. The
median performance is much more consistent at every SNR; although, the variation in the
residual error between samples is greater, and a small degradation can naturally be seen
compared to using identical training and testing SNR (as shown in Figure 4.6).
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Figure 4.6 Phase prediction errors at different SNR levels, presented the same way as in
Figure 4.5, but this time also including atmospheric turbulence residuals in the PSFs during
both training and testing.
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The change in performance when evaluating the model outside the input WFE training
range is also studied. Figure 4.8 shows the robustness of models trained on the two aberra-
tion regimes studied in this chapter. Data containing more aberrations rapidly deteriorate
the reconstruction. The models perform better when evaluated at lower aberration levels,
but they have limited performance when trained in the high aberration regime. To over-
come these limitations, two models are trained over the entire test WFE range for each
of the Zernike mode contents considered in the chapter. Such models show excellent ro-
bustness, with minimal degradation compared to models with identical training and testing
WFE distributions. This suggests that these models could be robustly used in closed-loop
operations, even with the aberration level decreasing with time. Regarding the varying
spatial power spectral density of the wavefront, the residuals are generally constant along
the Zernike modes, as seen in Figure 4.4. When giving the reconstructed PSFs as in-
put to the same trained model, we have observed that most residual RMS WFE stay below
10 nm for a model trained on 70 nm RMS as input and an SNR of 1000. Some closed-loop
experiments will be presented in Section 4.3.6.
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It can also be expected to have observations containing higher-order NCPAs (in addi-
tion to the changing atmospheric residuals) than considered during training. For a model
trained on 18 modes at 70 nm RMS (SNR = 1000), 70 higher-order Zernike modes are
added in the test data. In Figure 4.9, we observe a moderate degradation for the 18 modes
when increasing the wavefront error contained in these additional modes, because the cen-
tral PSF signature is mostly preserved.

4.3.6 Closed-loop experiments

In order to demonstrate the capabilities of the models to perform iteratively, closed-loop
tests are performed. This is achieved by successively simulating the PSF I with the gener-
ator g at step t using the predicted and true phase maps obtained at the previous step (Φ̂t−1

and Φt−1), and injecting I to the model f for the next predictions Φ̂t:

Φ̂t = f (It)

with It = g
(
Φ̂t−1 − Φt−1

)
.

(4.3)

Results are shown in Figure 4.10 for ten test samples taken from the 70, 350 and
[0, 490] nm RMS datasets, through ten iterations. Except for the uniformly distributed
dataset, the best performance is obtained for the first iteration, and the following iterations
show nonetheless restrained degradation, with an RMS WFE that converges to 60 nm and
5 nm RMS in the high and low aberration regimes, respectively. The WFE distributions
of these two datasets approximate a normal distribution, which is not ideal for closed-
loop application, since lower WFEs quickly become predominant. This is why a uniform
or a logarithmic distribution are more relevant in this case. Results using the uniformly
distributed dataset show much better closed-loop stability, with residuals WFE decreasing
over the few first iterations to converge to 10 nm RMS on average.

Corrected PSFs for one sample taken from each of the three datasets are shown in
Figure 4.11. With low aberrations, the PSF after 10 iterations remains very close to the
diffraction limit. In the high aberration regime, some degradation can be observed be-
tween the first and the 10th iterations, although it remains within a reasonable range. The
improvement of wavefront quality is quantified with the raw contrast at each separation
from the center of the image, which is defined as

Cr =
〈Ir(θ)〉θ
I

Airy
0

, (4.4)

where 〈Ir(θ)〉θ is the average flux, at a specific distance r over the angular position θ
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Figure 4.10 Iterative approach for ten test samples with post-VVC PSFs (multicolor lines),
over ten iterations. The results for the three datasets are shown: input WFE centered
around 70 nm RMS (top left), 350 nm RMS (top right), and in the range [0, 490] nm RMS
(bottom). The models used are trained on Efficientnet-b4 with a entrance SNR of 1000.

within the corresponding annulus, and IAiry
0 is the flux at the central pixel of the non-

coronagraphic and non-aberrated image (Airy disk).
The contrast curves are shown in Figure 4.12, where the separations are converted to

the λ/D unit. It can be notices that there is a small gain in contrast at most separation
from the star, and that the contrast gets particularly deep at close separations because of
the PSFs “donut” shape, due to the vortex phase singularity. For the obscuration of 30%
that is used in this chapter, a relatively important fraction of the light passes through the
phase mask, producing bright residuals in the images (Figure 4.11). This prevents reaching
deep contrasts at separations of a few λ/D. Results with a smaller central subtraction or a
circular pupil are shown in Appendix A, with models trained on the uniformly distributed
dataset (WFE ∈ [0, 490] nm RMS). This dataset provides much better robustness than the
normally distributed datasets, especially for the case with the circular aperture where in
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Figure 4.11 Evolution of post-VVC PSFs through iterations with the 70 nm RMS (b),
350 nm RMS (c), and [0, 490] nm RMS (d) datasets. The classical imaging and post-VVC
PSFs (a), both diffraction-limited, are displayed for comparison. From left to right: Initial
aberrated PSF, image after first correction/iteration, and after 10 corrections. The PSFs are
all normalized by the peak intensity of the NCPA-free classical imaging PSF. Each PSF is
shown after a power-law normalization to emphasize the residual speckles. The wavefront
aberration level of the PSFs is indicated at the top of each corresponding image.
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Figure 4.12 Contrast curves after 10 iterations at each separation from the center of the
image. The average over 10 PSF samples is taken. The case without coronagraph and
aberrations (blue) is compared to adding a vortex phase mask without aberrations (orange),
with the initial NCPAs (green), and after correction (red). The three datasets used contain
median input WFEs of 70 nm (top left), 350 nm (top right), and [0, 490] nm RMS (bottom).

the low aberration regime the light leakage through the vortex coronagraph is particularly
small, which necessitates a model trained on very low aberrations as well.

4.4 Conclusions
In this chapter, a novel approach to performing focal-plane wavefront sensing with vor-
tex coronagraphs has been explored. Using an EfficientNet deep CNN, the modulation
introduced by the vortex coronagraph (either scalar or vectorial after splitting the circu-
lar polarization states) is leveraged to solve the sign ambiguity and perform FPWFS for
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various signal-to-noise ratios, input wavefront errors, and spatial frequency contents. The
dual-polarization method with the vector vortex coronagraph offers very similar perfor-
mance to the classical phase diversity method, which uses additional defocused PSFs,
even though the level of light is largely reduced after filtering by the vortex coronagraph.

For instance, considering a star of magnitude 6.2 observed at a wavelength of 2200 nm,
a residual of 0.73 nm RMS is obtained from an input WFE of 70 nm RMS. With the SVC,
which provides a single focal-plane image, a loss in performance is only observed for high
aberration levels. In the presence of high orders and high levels of aberrations (e.g., 88
Zernike modes at 350 nm RMS of phase error), training a CNN is generally challenging.
In this case, the performance reaches a plateau of approximately 20 nm RMS, even with
bright stars. Under these circumstances, increasing the amount of training data, employ-
ing larger and deeper CNN architectures, and implementing regularization techniques can
further improve the phase retrieval accuracy. Atmospheric turbulence residuals that are
expected in ground-based observations only produce minor degradation in performance in
a low NCPA regime, and they should not be a concern in practice. Models trained on data
containing particularly wide WFE and SNR distributions provide very good robustness.

Closed-loop tests have also been carried out by successively feeding the corrected PSF
to the model to obtain the next prediction. The results further highlight the stability of the
prediction process as well as the gains in terms of contrasts achieved with those residual
NCPAs.

It is difficult to obtain reliable and very precise NCPA labels for model training in
supervised learning. Employing unsupervised learning techniques such as autoencoder-
based architectures, is another interesting approach that is explored in the next chapter.
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CHAPTER5
Physics-informed learning
with autoencoders

In this chapter, a physics-based approach is proposed by incorporating a dif-
ferentiable optical simulator into the deep learning framework, resulting in an
autoencoder architecture that estimates phase aberrations in the latent space.
This unsupervised method therefore eliminates the need for labeled data dur-
ing training. The chapter begins with an overview of automatic differentia-
tion and discuss two possible physics-based learning approaches. Section 5.2,
which has been published in the SPIE conference procedings (Quesnel et al.,
2022b), then details the autoencoder method and present the results. Further
developments include the incorporation of vortex phase diversity into the au-
toencoder and the exploration of a variational inference approach.
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Chapter 5. Physics-informed learning with autoencoders

5.1 Introduction
One important drawback for standard deep learning approaches is the lack of physical
principle within their architectures. This can cause a poor interpretability of the models,
making it potentially difficult to validate the results. The generalization capabilities of
models can also be an issue when the physical process is not taken into account, because
real-world data that is distributed differently than the training data may lead to non-realistic
predictions. Training datasets should then be very large to present proper robustness,
which may be cumbersome to generate, especially for supervised learning.

5.1.1 Differentiable optical systems

As explained above, incorporating physical models into the learning procedure would be
highly beneficial. Such an integration nonetheless requires the parameters to be differen-
tiable, so gradients can be computed during the backward pass through the model. These
gradients are needed to optimize a physics-based deep learning model, as it is done to learn
neural network weights (see Equation 2.4).

Automatic differentiation (AD) offers an efficient method to evaluate derivatives. There
are two ways to apply the chain rule for the backpropagation algorithm using AD: forward
and reverse accumulations. Choosing one mode or the other determines in which order the
derivatives of the chain rule are multiplied, and impacts computational efficiency, depend-
ing on the dimensions of the inputs and outputs (Baydin et al., 2017). For artificial neural
networks, reverse-mode AD is more computationally efficient compared to forward-mode
AD, since the output is typically a scalar value (the loss), while the input is usually of very
high dimension (e.g., batches of multichannel images). For this reason, reverse-mode AD
is commonly used in deep learning and is also relevant for the optimization of physical
systems.

Several studies have demonstrated the effectiveness of AD for phase retrieval (Jurling
& Fienup, 2014) and telescope optics optimization (Liaudat et al., 2021) with reverse-
mode accumulation. Numerical wavefront sensors can also be built using AD. For in-
stance, Landman et al. (2022) proposed a joint optimization procedure where a differen-
tiable Fourier-filtering wavefront sensor is optimized while a CNN is trained to reconstruct
the wavefront aberrations. Additionally, AD has been used to optimize coronagraphic
masks (Wong et al., 2021; Por et al., 2022). Another noteworthy application is kernel
phase analysis, initially applied to interferometry (Martinache, 2010), and later adapted
for instrumental self-calibration with forward-mode AD (Pope et al., 2021).

Libraries have been developed to perform AD on optical systems, notably Morphine
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Figure 5.1 Two proposed approaches for phase retrieval with physics-informed learning.
(a): Using an inverted simulator and a CNN to learn the non-invertible part. (b): An
autoencoder architecture containing a simulator to perform unsupervised learning.

(Wong et al., 2021), which combines the optical propagation package Poppy with JAX
to make the code differentiable and allow gradient computation. Morphine was later re-
placed by δLux (Desdoigts et al., 2023), which is much more efficient and allows for high
dimensional optimization of optical parameters.

5.1.2 Potential physics-based architectures

This section explores how we can harness the concept of physics-informed modeling with
AD for our problem using an optical simulator. In particular, two approaches are investi-
gated: a supervised learning method containing an inverted simulator (Figure 5.1a), and a
label-free method based on a simulator-based autoencoder (Figure 5.1b). Advantages and
drawbacks of both architectures are summarized in Table 5.1.
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Inverted simulator Autoencoder
Structure Backward simulator + CNN CNN + forward simulator

Advantages Learn only what is needed Unsupervised learning

Drawbacks
– Limited invertible optics
– Supervised learning

– Imperfect simulators

Table 5.1 Specific features of the two envisioned physics-based approaches.

Inverted simulator

The idea behind the first approach is to perform part of the work previously carried out
by the CNN, using a backward simulator for the optical transformations that are invert-
ible, i.e., the optical propagation of the electric field between the pupil and focal planes.
Only the transformation of the focal-plane electric field (FP E-field) into intensities is not
invertible, and therefore can be handled by a CNN. Specifically, only the argument of
the FP E-field needs to be inferred by the CNN (Figure 5.1a), since the FP E-field mod-
ulus is directly obtained as the square root of the PSF intensity. Although this inverted
approach only learns a limited optical process, experiments have shown that it is neither
easier nor faster to learn the FP E-field compared to the pupil-plane one, and the overall
phase retrieval performance does not improve either. A “lighter” version of U-Net with
four times fewer parameters than the original was also tested, showing consistent phase re-
trieval performance. One potential issue is phase wrapping, which occurs for aberrations
with peak-to-valley WFEs outside the range [−π, π], similar to what iterative methods such
as the Gerchberg-Saxton may encounter (see Section 1.4.3).

Simulator-based autoencoder

The motivation for the second approach is to make the FPWFS approach “unsupervised”,
i.e., not relying on labels to train the models. This is justified as building models with in-
lab and on-sky data is particularly challenging due to the lack of precise knowledge about
the NCPAs themselves, it may therefore be difficult to build reliable labeled datasets. This
is where CNN-based supervised learning show limitations. By reconstructing the input
data, deep learning autoencoders are a well-proven unsupervised approach (Baldi, 2012).
For focal-plane wavefront sensing the targets are the NCPAs instead of the point spread
functions (PSF), and one way to extract this phase information with an autoencoder is
to add physical knowledge to the model. This is achieved by including a simulator in the
decoder that is forcing the latent space to be a representation of the phase aberrations. This
approach therefore overcomes the limitations of the inverted simulator, and offers a label-
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free training. The main requirement for such a method to work efficiently is, however, to
have a reliable differentiable simulator.

Since the inverted simulator concept do not offer as many benefits as the simulator-
based autoencoder, the following sections focus on the latter approach.

5.2 General simulator-based autoencoder method
In this section, the simulator-based autoencoder method is designed and tested. As in pre-
vious chapters, the data generation process is described as well as the training procedure.
Experiments in the classical imaging case are then carried out.

5.2.1 Data generation

For this study, we consider an optical propagation between a pupil plane and a focal plane,
as defined in Equation 1.5. As before, the phase maps are built using Zernike polynomials
following the Noll convention, starting from the tip mode, and based on an annular aperture
with a central obstruction of 30% of the total diameter. The sets of Zernike coefficients
are randomly generated to approximate a 1/ f 2 power spectral density profile and scaled
to a given median root-mean-square wavefront error (Equation 3.1). In the simulations,
two aberration regimes are considered: NCPAs around 70 nm RMS covering 20 Zernike
modes, and 350 nm RMS over 100 modes. The PSFs are computed using the PROPER
optical propagation package. Again, the data is generated in the K band at λ = 2200 nm,
while an aperture diameter of 10 m, a pixel scale of about 11 mas/pix, and a field-of-view
of about 1.5” are considered. The phase maps as well as the PSFs contain 64 × 64 pixels.
Out-of-focus PSFs with a defocus of λ/4 = 550 nm RMS are also generated for phase
diversity. Only photon noise is added to the PSFs, and a square-root stretching operation
is performed to the PSFs, before normalizing the flux in the range [0,1]. This operation is
done inside the encoder for the autoencoder architecture.

For the experiments done in Section 5.2.3, data containing atmospheric turbulence
residuals are also generated. This is achieved by simulating an extreme AO system using
the COMPASS library (Ferreira et al., 2018), giving a wavefront error of about 50 nm
RMS. To simulate a 1-s exposure in the presence of a given amount of static NCPA, a
sequence of 10 consecutive AO phase screens that are 100ms apart is used, and the cor-
responding PSFs are summed up. These AO simulations are described in more detail in
Chapter 4.2.1.
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Figure 5.2 The proposed simulator-based autoencoder architecture (SimAE), uses a CNN
as the encoder and a differentiable optical simulator as the decoder. The latent space
contains the Zernike coefficients which are used during training to reconstruct noiseless
PSFs, while during inference these coefficients can be applied for NCPA correction.

5.2.2 Autoencoder architecture

In this work, an autoencoder architecture is proposed, as presented in Section 5.1.2. As
in previous chapters, the encoder is a neural network that approximates a function f that
maps Zernike coefficients z from PSFs x: z ≈ f (x). The deep CNN EfficientNet (Tan &
Le, 2019), presented in Section 4.2.2 and previously used in Chapter 4, is employed for
this task.

The decoder corresponds to a differential optical simulator, i.e., it reconstructs the in-
put PSFs based on the predicted Zernike coefficients, allowing it to work without labels.
This decoder is the same as the data generator defined in Equation 1.5, with the exception
that it produces noiseless PSFs. In this section, all the simulator parameters are fixed, and
learning optical parameters is notably investigated in Section 5.3.2. Regarding the latent
space that exists between the encoder and the decoder, the number of Zernike modes has
to be predefined. During inference on a trained model, the encoder containing the CNN
allows us to obtain the Zernike coefficients that correspond to the NCPAs of interest. Fig-
ure 5.2 represents the simulator-based autoencoder architecture, which is called “SimAE”
in the following sections.

The loss function, which is used to optimize the neural network’s weights in order
to fit the model to the data, needs to be adapted to our SimAE architecture. Since we
are working in a case where only photon noise is present in the input images, i.e., each
pixel follows a Poisson distribution, the typical mean-square error loss that makes the
assumption of Gaussian noise is not appropriate for the PSF residuals. We can rather define
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the loss so that the log-likelihood of the Poisson probability distribution is maximized,
giving the expression

LSimAE(x; θ) = −
1

Npix

Npix∑
i=1

log
(
λi(xi; θ)xi

xi!
exp(−λi(xi; θ))

)
, (5.1)

where λi(xi; θ) is the rate of the Poisson distribution, representing the photon flux at pixel
i. This corresponds to the noiseless PSF pixel reconstructed by the decoder, whose flux is
scaled to the measured flux of the input PSF pixel xi. The parameters θ of the CNN define
the output of the encoder, i.e., the latent space, which represents the aberrations affecting
the photon flux at each pixel. The final loss value is the average of the log-likelihoods over
the whole image of size Npix.

The baseline on which the SimAE models are compared is a standard supervised CNN,
as applied in Chapters 3 and 4. As a reminder, the loss function is in this case defined as
the RMS error of the phase residuals. It can be expressed using the Zernike coefficients
as:

LCNN(z, ẑ(x; θ)) =

√√
1

Nmodes

Nmodes∑
i

(zi − ẑi(x; θ))2, (5.2)

where z and ẑ correspond to the true and predicted Zernike coefficients respectively, while
Nmodes is the number of Zernike modes (20 or 100).

5.2.3 Experiments and results

Experimental protocol

The hyperparameters used to train the models are as presented in Section 4.2.3. No weight
decay is used this time. Efficientnet-b4 weights are initialized with models pre-trained on
ImageNet. An example of the resulting training and validation losses for each method can
be found in Figure 5.3. The models are then systematically evaluated on 103 new samples.

Performance compared to a standard deep CNN

The performance of each Zernike mode is first compared. The metric used is the RMSE
per mode, computed over the entire test set:

σz =

√√
1

Ntest

Ntest∑
i

(ĉi − ci)2 , (5.3)
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Figure 5.3 Examples of training and validation losses over the epochs for each approach:
CNN (left) and SimAE (right). In these examples, the models are trained on datasets
containing 350 nm RMS of aberrations distributed over 100 modes, and an SNR equal to
300.
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Figure 5.4 Performance per Zernike mode, for a low aberration regime (70 nm over
20 modes, light shades) and a high aberration regime (350 nm over 100 modes, darker
shades), at an SNR of 1000. The CNN and SimAE architectures are compared (blue and
red, respectively).

where Ntest is the number of test samples, while ĉ and c are the estimated and true Zernike
coefficients, respectively.

As shown in Figure 5.4, the Zernike coefficients are very well reconstructed, even at
high aberrations contents (350 nm RMS over 100 modes). There is no particular dis-
tinction between even and odd modes, and the SimAE and CNN manifest very similar
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Figure 5.5 Performance at different SNR levels for the SimAE (blue) and the standard
CNN (red) models, at low and high aberration regimes (darker and brighter shades re-
spectively). The points correspond to the median value and the error bars to the 2–98th
percentiles.

performance.
Since the SimAE is defined to take into account photon noise through its loss function,

it is worth assessing the performance for different SNR levels. To do so, we compare the
residual errors in terms of RMS WFE on the total phase residuals. The metric is therefore
defined for each test sample as:

σΦ =

√√√
1

Npix

Npix∑
i

(Φ̂i − Φi)2, (5.4)

where Npix is the number of pixels within the pupil area, while Φ̂ and Φ are the estimated
and true pupil phases, respectively.

The errors on the phase retrieval for a range of SNR levels are shown in Figure 5.5,
where each point corresponds to a model trained and evaluated at the same given SNR.
The two approaches show almost identical performance and a plateau is reached around
an SNR of 3000 in the high aberration regime. This has been observed and discussed
in previous works (Orban de Xivry et al., 2021; Quesnel et al., 2022a) as well. Only at
very low SNRs, does the SimAE appear to differ from the CNN approach. This difference
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could be due to the loss function of the SimAE that is defined on the PSFs and not on the
NCPAs, so that there is no implicit regularization occurring with supersized CNNs, which
has been described by Orban de Xivry et al. (2021). The residual errors thus tend to follow
the theoretical limit for lower SNRs with the SimAE.

Robustness of the trained models

Deep learning models may show limitations when evaluated on data lying outside the
training data distribution. It is therefore important to assess the stability of the models in
such conditions, which would probably occur when applying the algorithm on sky.

Here we compare the SimAE method with the CNN, this time varying the testing SNR
(Figure 5.6, top), on a model trained at a median WFE of 70 nm RMS distributed over
20 modes. Giving data containing less noise to the models always provides stable predic-
tions, and good improvement is even obtained with the SimAE when trained at an SNR of
30. If more noise is introduced to the test data, the error quickly increases, at about the
same rate with both approaches. The testing input WFE present in the data is also mod-
ified (Figure 5.6, bottom). Here the CNN and SimAE showcase identical behavior, with
constant performance for lower testing WFE than the training one, and strong degradation
for higher testing WFE, although with the SimAE the performance does not degrade as
quickly as with the CNN. Similar trends regarding the CNN have been found in previous
works (Orban de Xivry et al., 2021; Quesnel et al., 2022a). Overall the SimAE method
offers some improvement in terms of robustness compared to the CNN.

Transfer learning

Instead of directly applying a trained model on observed data, we propose to fine-tune the
model using a single “on-sky” image, initializing with the trained weights of the original
model based on synthetic data. This is done to illustrate how we could quickly adapt the
model from simulated to on-sky data. To test this on the SimAE method, a model trained
on data containing 70 nm RMS and an SNR of 100 is used. The levels of NCPA and SNR
are changed on simulated test data, and the results are shown in Figure 5.7. The models
perform much better when transfer learning is done on each test sample, in particular when
their SNR and WFE are higher than for the original training data. This second training
on a single test sample is performed over 200 epochs, to make sure all the models have
time to converge. The training process takes about 20 seconds to complete on one GPU
(Nvidia GeForce RTX 2080 Ti). For data relatively close to the ones used for pre-training,
convergence is naturally achieved after much fewer epochs and the final prediction can be
made in only a few seconds. These early results have shown that transfer learning on real
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Figure 5.6 Top: Performance with changing the SNR of the test data for two models trained
on SNRs of 30 and 300 (indicated by the vertical dotted lines). The median input WFE is
70 nm with 20 modes. Bottom: Performance for different testing input WFE, on models
trained at 70 nm and 350 nm (20 and 100 modes respectively).

data is particularly motivated. This is investigated in Chapter 6 with supervised learning
models and the SimAE.

Atmospheric turbulence residuals

In the previous experiments, the decoder, i.e., the differentiable optical simulator, was able
to exactly reconstruct what the data generator produced to build the training and test sets,
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Figure 5.8 Residual errors as a function of the input WFE, for a model trained on a dataset
with WFEs distributed around 70 nm (20 modes). A SimAE model with data containing
only photon noise (cyan), is compared to CNN and SimAE models (purple and blue, re-
spectively) trained on data containing AO residuals, which are not provided to the decoder
during training and evaluation.

except for photon noise, but for which the loss function was adapted. In order to test the
method on data the decoder cannot totally reconstruct, atmospheric turbulence residuals
are added to the input data, without giving this information to the decoder. These AO
residuals amounts to 50 nm RMS of aberrations, and the way they are included in the data
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is described in Section 5.2.1. Even with the presence of this additional source of noise,
the training is very stable, and the evaluation results shown in Figure 5.8 indicate that
the SimAE suffers a reasonable degradation in performance compared to a case without
turbulence (from 1 to 4 nm RMS on average). Using a CNN with labels that do not account
for these AO residuals gives the same results.

5.3 Unsupervised vortex phase diversity
In this section, the dual-polarization approach behind a vortex coronagraph is tested on
the SimAE. The simulator is thus upgraded to include differentiable propagation through
a vortex coronagraph.

5.3.1 Models and results

For the experiment, the data is generated with a uniform WFE distribution between 0
and 350 nm RMS, and two spatial frequency contents are selected: 20 and 100 Zernike
modes (Figure 5.9a). Photon noise is included to give an entrance SNR of 1000. As
explained before, the effective SNR is reduced in the focal-plane due to the vortex mask,
also depending on the level of aberrations. The two datasets, composed of 105 samples
each, are then used to train the SimAE, as well as a CNN in a supervised learning way
for comparison. The ResNet-50 architecture is used for both approaches, since it yielded
better results than EfficientNet in this case.

The distribution of residual phase errors on the 1000 test samples with the SimAE is
shown in Figure 5.9a. We can see that the amount of Zernike modes considered has a
strong impact on the overall performance. As done with classical imaging (Figure 5.6,
bottom), the robustness with varying testing WFE is evaluated. The results are shown
in Figure 5.9b. The SimAE provides some improvements in the low spatial frequency
content compared to the CNN. This is notably true for testing WFEs that are close to the
average training WFE (training WFE ∈ [0, 350] nm RMS). At a very low testing WFE of
10 nm RMS, the CNN performs relatively well on average but contains a few very poor
predictions. Overall, the SimAE has better constrained results with lower error bars. In
the large frequency content range (100 Zernike modes), both approaches do not give very
good predictions. This is explained by the fact that not only the training WFE range is
very large, so is the number of Zernike modes to predict, and the SNR in the images is also
changing depending on the level of aberrations. A more complex and robust architecture
would be needed in this case.
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Figure 5.9 (a): Input WFEs in the range [0, 350] nm RMS (green), and phase residuals
with the SimAE (red and orange). 1000 test samples are used to produce the results. (b):
Performance for different input WFE on the SimAE and supervised CNN models trained
in the range [0, 350] nm RMS. Vortex phase diversity data is used at an entrance SNR of
1000. Results are with aberrations decomposed into 20 and 100 Zernike modes (left and
right, respectively). The error bars are obtained with the 2–98th percentiles.

5.3.2 Rejection factor optimization

One important advantage of a differentiable simulator is that it is possible to learn some
of its parameters. One relevant parameter that is explored here is the rejection factor,
which quantifies the capacity of the vortex mask to cancel the on-axis incoming light. It
corresponds to the inverse quantity of the flux leakage, and it can be used to assess the
performance of the vortex mask. In the vortex simulator, it implies that the final PSF can
be defined as:

Itrue =

(
1 −

1
R

)
Iperfect +

1
R
Iclassic, (5.5)
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with Iperfect the PSF behind a perfect vortex coronagraph, Iclassic the non-coronagraphic
PSF, and R the rejection factor.

Typical values for a VVC that are suitable to work on-sky are in the order of 102 − 103

(Defrère et al., 2014; Jolivet et al., 2019). It may not be straightforward to know the exact
value for R after manufacturing the phase mask. Parametrizing the model with such factor
can therefore reduce reconstruction uncertainties and make the SimAE perform better.

To assess the feasibility of learning R in a deep learning context, datasets containing
VVCs with R comprised between 10 and 103 are simulated. SimAE models are then
trained with an initial factor set to R = 100. As shown in Figure 5.10 (bottom), the
learning is tracked over the epochs for seven different datasets and models. A relatively
small dataset composed of 103 training samples is used, and the phase is composed of 20
modes at aberration levels around 70 nm RMS, while the SNR is set to 1000 (defined in the
pupil-plane, upstream of the vortex mask). The models perfectly reconstruct the rejection
factor up to R = 50, and the worst reconstruction still yields 86% accuracy (for R = 103).
As it can be seen in Figure 5.10 (top), for R = 103, the difference between the true image
and a PSF behind a perfect vortex is barely distinguishable. The noise present in the data
is considered to be the sole limitation to the rejection factor reconstruction.

The residual wavefront error also remains quite stable (between 35 and 40 nm RMS)
for all rejection factors, showing that the slight errors on the reconstruction R̂ for rejec-
tion factors above 50 do not affect the prediction capabilities of the encoder. Using more
data and having more input flux decreases the residual WFE but do no show a particular
improvement on R̂.

Training custom parameters alongside a neural network may require using multiple
learning rates, because the custom parameters can have values at a different order of mag-
nitude than the neural network weights. For simplicity, the inverse of the rejection factor
R−1 was trained instead, so a common (initial) learning rate of 10−3 could be used. Opti-
mizing directly R with this relatively small learning rate works as well, but a much larger
amount of epochs is then needed to converge to the best solution.

Depending on the instrument in use, other simulator parameters can be potentially op-
timized, such as camera rotations, flips, amplitude maps, and pixel scale. This is discussed
in Section 6.4.4 with the Subaru/SCExAO instrument.

5.4 Variational inference approach
The models trained so far have performed deterministic predictions. Probability distribu-
tions via the posterior provide a more general representation of the predictions, as pre-
sented in Equation 1.10. In this section, the application of a variational approach to the
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Figure 5.10 Top: PSFs Itrue simulated with three different rejection factors R are shown
next to the difference between Itrue and a PSF behind a perfect vortex coronagraph Iperfect.
The mean square error of the difference is indicated above each corresponding frame. The
flux is normalized to be equal to 106 and the images are without photon noise. Bottom:
Learned values for the vortex rejection factor through the training epochs. Seven different
R are simulated and the initialized factor for the training is always 100. The final estimation
R̂ is written in the legend. The dataset used in this example contains 103 samples composed
of 20 Zernike modes and a median WFE of 70 nm RMS, while the entrance SNR level is
1000. The encoder is composed of the ResNet-50 architecture.
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simulator-based autoencoder is explored.
The models trained so far have produced deterministic predictions. Incorporating prob-

ability distributions through the posterior offers a more comprehensive representation of
the phase predictions, as illustrated in Equation 1.10. In this section, the application of a
variational approach to the simulator-based autoencoder is explored.

5.4.1 Definition

Variational inference aims to predict probability distributions instead of deterministic val-
ues. The standard way to achieve this is to predict distribution parameters, such as the
mean and the variance of a Gaussian if such posterior is considered. This approach aligns
with the formalism of Equation 1.10 and works similarly to mixture models implemented
in Chapter 3. A variational autoencoder (VAE) is an unsupervised approach that uses dis-
tributions in the latent space, incorporating a prior distribution. The final encoding is then
obtained by sampling the posterior distribution. A schematic representation of a VAE is
provided in Figure 5.11.

Because it is not possible to backpropagate through a stochastic node, direct sam-
pling from the posterior distribution is not feasible. VAEs address this issue using a
“reparametrization trick”, which separates randomness from the parameters by introduc-
ing an external random variable, ε. For a Gaussian posterior, the expression of the latent
variables is

z = µ + σ · ε, (5.6)

where µ is the mean, σ the standard deviation predicted by the encoder, and z the sample
drawn in the latent space.

The loss function of a VAE contains two key terms. Firstly, there is the reconstruction
error, which computes the discrepancy between the input data and the output of the decoder
as

Lreco = −
1

Npix

Npix∑
p

log(pψ(x|z)), (5.7)

where pψ(x|z) is the likelihood obtained from the decoder with parameters ψ, qθ(z|x) the
posterior predicted by the encoder with parameters θ, and Npix the number of pixels in the
image. The reconstruction term has been the loss function used in this chapter so far, as
represented in Equation 5.1.

The second term is the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951),

105



Chapter 5. Physics-informed learning with autoencoders

CNN Simulator

…

Figure 5.11 Diagram of the simulator-based variational autoencoder architecture (Sim-
VAE). The encoder (green) estimates the parameters µ and σ for each Zernike modes,
allowing to build a Gaussian posterior q(z|x) parametrized by µ and σ. The Zernike coef-
ficients z are then sampled from q(z|x) and fed into the decoder (yellow), which estimates
the noiseless reconstruction x̂. This allows to compute the likelihood p(x|z) for the input
x, following the specified noise distribution, which, in our case, is a Poisson distribution
parametrized by x̂ as the mean value. The SimVAE model is trained by maximizing p(x|z)
while simultaneously minimizing the gap between q(z|x) and a prior p(z), which contains
information about the coefficient distribution for each Zernike mode.

which regularizes the training by taking into account prior assumption about the data:

LKL = KL (qθ(z|x) || p(z))

'

Nmodes∑
i

qθ(zi|x) log
(
qθ(zi|x)

p(zi)

)
,

(5.8)

where p(z) is the prior distribution and Nmodes the size of the latent space, corresponding to
the number of Zernike modes. Minimizing this loss term forces the posterior distribution
to be as close as possible to the prior distribution.

The total loss for a given batch of data sampled from p(x), thus becomes

Ltotal =
1

Nsamples

Nsamples∑
i=1

(Lreco + βLKL), (5.9)
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where Nsamples is the batch size and β is a regularization factor that can be applied to reduce
the impact of the KL divergence term during training, if needed (Higgins et al., 2017).

Unlike standard autoencoders, which only penalize poor reconstructions by the de-
coder, a variational autoencoder also accounts for the quality of the encoding and the
latent space through the KL loss term. VAEs are especially advantageous for generat-
ing new data, because the latent space becomes interpretable thanks to the prior. In our
simulator-based autoencoder, the decoder already provides an interpretable latent space,
and generating new data is not the focus of this thesis. Another advantage of VAEs is that
they provide prediction uncertainty with the posterior, which can help to assess the quality
of the predictions. VAE models are also more likely to generalize well and are therefore
less prone to overfitting.

5.4.2 Training the SimVAE

In our phase retrieval application, the mean µ̂z and standard deviation σ̂z for each Zernike
mode z are predicted by the encoder. This allows us to construct a posterior distribution
p(z|x) = N (̂µz, σ̂z). For the reparametrization trick defined in Equation 5.6, which en-
ables the sampling of Zernike coefficients from the posterior p(z|x), the random variable
ε is sampled from a uniform distribution defined in the range [0, 0.01]. This prevents
the sampled coefficients z from becoming excessively large and improves stability during
training.

Gaussian distributions are considered here as they allow to apply the reparametrization
trick defined in Equation 5.6, and it represents a good starting point to assess the capabil-
ities of the SimVAE. Experiments with uniformly distributed coefficients are done using
real data in Section 6.4.3. To test the relevance of a Gaussian prior, Zernike coefficients
are generated following a centered Gaussian distribution instead of a uniform distribution
(before normalization by the radial orders and the chosen input WFE; see Equation 3.1).
This gives the distribution per Zernike modes shown in Figure 5.12, with the 1/ f 2 power
law over the modes. The corresponding standard deviation of the generated distribution
σz is then used to define the prior for the training as p(z) = N(0, σz). The KL divergence
is finally computed using Equation 5.8 and a factor β = 10−2 is set to balance the two loss
terms (see Equation 5.9).

For the experiments, three datasets each are employed, that contain dual-polarization
post-VVC PSFs in different spatial frequency and aberration regimes: 20 and 100 modes
with 70 nm RMS, as well as 50 modes with 350 nm RMS. As in the previous section,
the SNR is set to 1000 and is defined in the entrance pupil plane, while the training set
is composed of 105 samples. Training and validation losses for the low regime model
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Figure 5.12 Generated Zernike distribution, following a centered Gaussian with a decreas-
ing standard deviation over the modes. The colors show the sample count at the indicated
WFE on the y-axis.
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Figure 5.13 Metrics over the training epochs. Left: VAE loss for the training and validation
sets. Middle: Evolution of the phase residuals (on the training and validation sets). Right:
Learning rate values decreased when reaching validation loss leveling off.

are shown in Figure 5.13 (left), as well as the monitored phase WFE and the decreasing
learning rate through the epochs (Figure 5.13, middle and right, respectively).

5.4.3 Results and discussions

For each test data sample (100 in total), the models are evaluated with 100 forward passes
to sample the posterior distribution. This ensures representative results and allows quan-
tifying prediction uncertainties. If the final residual WFE needs to be expressed, it can
be defined as the mean of the RMS WFE on the phase residuals over both the test data
samples and the distribution samples:
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Input; lp=-2 p0 p25 p50 p75 p100

0 250 500 750 1000 1250 1500 1750

Figure 5.14 Predicted phase maps (top) and reconstructed PSFs (middle and bottom) with
the SimVAE method with post-VVC PSFs at an entrance SNR of 1000 and 350 nm RMS
WFE over 50 modes. The reconstructions shown are the mean values (i.e., without photon
noise) except for the input. One PSF sample is represented, while five resulting predictions
are shown, corresponding to the 0th, 25th, 50th, 75th and 100th percentiles of the RMS
WFE.

〈WFE(Φ)〉 =
1

NtestNdistNpix

Ntest∑
t

Ndist∑
d

√√√Npix∑
p

(
Φ̂t,d,p − Φt,p

)2
, (5.10)

with Ntest, Ndist and Npix the numbers of test samples, distribution samples and pixels,
respectively. Φ̂ represents the predicted phase maps from the latent space and Φ the true
phase maps used for the simulations.

Examples of five predictions for a given data sample is shown in Figure 5.14. These
predictions are selected according to their residual WFEs: different percentiles are chosen,
from the worst prediction to the best one (from left to right). We can see that the predictions
are visually almost identical to each other, showing that the predicted σ̂z are very small.
This can be explained by the fact that the constraint put on ε to be sampled from [0, 0.01]
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Figure 5.15 Residual RMS WFE for 100 test samples with the SimVAE, in different aber-
ration regimes (a, b and c). Two prior distributions are considered: standard Gaussian
distribution (zero mean and unit variance; orange) and the same Gaussian distribution as
used to generate the dataset (red). The results with the deterministic approach (SimAE)
are also shown (blue), as well as the input WFE (black). The median values with the 2–98
percentiles are displayed.

prevents much variability in the predictions. Sampling from a larger uniform range quickly
deteriorates the performance though, especially in high aberration regimes.

The residual WFEs for each test sample are represented in Figure 5.15, where the
median values as well as error bars are shown for the SimVAE models with two differ-
ent priors: a standard prior pstd = N(0, 1) (orange) and a prior equal to the generated
distribution pgen = N(0, σgen) (red). The standard deviation σgen is obtained from the gen-
erated distribution shown in Figure 5.12. Results with the deterministic autoencoder are
also displayed (blue). Different behaviors are observed. With low input aberrations and
low-order modes (Figure 5.15a), the prior always degrades the performance, especially if
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it is close to the data generation distribution pgen. In this aberration regime, the SimAE
performance is already good to a point that the prior included in the KL divergence term
only limits the posterior to achieve very accurate predictions. Considering higher order
modes (Figure 5.15b), the performance strongly deteriorates, although the SimVAE with
pgen does not degrade as much as the other approaches. With this prior, the SimVAE ben-
efits from the latent space regularization, since it is much harder to predict such complex
phase maps without a priori guidance. Finally, in a large aberration regime (Figure 5.15c),
the SimVAE with pgen and the deterministic approach perform equally. This can be ex-
plained by the constraints put on ε, which makes the standard deviation low compared to
the Zernike coefficient range in this regime. Increasing the range of ε prevents conver-
gence during training, though. The three different types of models have also been trained
on data containing 100 modes at 350 nm RMS, but all models failed to converge to a solu-
tion. Experiments performed on a fixed SNR in the focal-plane have nonetheless managed
to provide some improvement in terms of residual WFE in this extreme aberration regime.
It has been observed multiple times that the varying SNR on the PSFs within the dataset
complicate the training process.

This early study of a variational approach show some good promises. In our case,
the natural choice for the Zernike coefficients to select after inference and to apply for
correction would be the predicted mean value, because it is associated with the highest
probability. Alternatively, performing multiple inferences and selecting the median value
could also be considered for increased robustness. Moreover, an application of such a
variational model could prove to be particularly advantageous in a closed-loop system.
Here, the control gain could be dynamically adjusted according to the prediction uncer-
tainty, offering better stability during closed-loop correction. For instance, if the posterior
distribution has a large standard deviation, the control gain could be minimized to prevent
instability and ensure convergence.

5.5 Conclusions
In this chapter, a physics-informed deep learning method for focal-plane wavefront sensing
has been developed, by incorporating an optical simulator into a CNN-based autoencoder
architecture (SimAE). We observe very similar performance compared to using a simple
CNN, both approaches reaching the expected theoretical limit over a large range of con-
ditions. The SimAE, however, has the major advantage of not requiring labels during the
training of the models.

One promising opportunity with an approach like the SimAE is that the model can
be quickly fitted to the currently observed PSF using a pre-trained model. As shown
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in this chapter, such fine-tuning of the models can greatly improve the results for data
showing different noise or NCPA levels. Dealing with data the decoder cannot reproduce
is naturally a potential limiting factor for the method. Models have been trained with
atmospheric turbulence residuals present on top of NCPAs, and the loss of performance
that we obtain stays well constrained. In practice these turbulence residuals may even
be given to the decoder, by using the wavefront sensor telemetry to learn what the AO
residuals effectively are, with the help of a small neural network for example.

To apply the technique on-sky with a real instrument, a more comprehensive simu-
lator may be needed. Including a coronagraph for high-contrast imaging is notably mo-
tivated. In this direction, a vortex coronagraph simulator is incorporated into the archi-
tecture, demonstrating consistent performance with classical imaging. Optical parameters
present in the decoder can also be trained together with the encoder weights. Tests with
the vortex rejection factor show very good retrieval for a large range of simulated values.

A variational SimAE is also implemented in this chapter. The approach is notably
tested with a prior distribution matching the data generation distribution. While it achieves
better average performance in a high aberration regime, degradation is observed in the low
aberration regime. Overall, such a variational approach offers prediction uncertainties,
unlike deterministic approaches, and this could be exploited to provide better robustness
in a wavefront control scenario.

The studies on simulations carried out in this chapter have demonstrated that a simulator-
based autoencoder approach represents a compelling alternative to supervised learning
models. As the approach performs very well across different aberration and noise regimes,
the next step is to conduct tests on real data. This is proposed in the next chapter (Sec-
tion 6.4).
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Part III
Application to real data





CHAPTER6
In-lab experiments on SCExAO

After demonstrating deep learning-based focal plane wavefront sensing meth-
ods on simulated data, this chapter extends their application to real-world
data. The SCExAO instrument from the Subaru Telescope is operated to
build in-laboratory datasets and apply real-time wavefront corrections. A
deep CNN is trained with such datasets in a supervised manner, while trans-
fer learning from simulations illustrates its effectiveness on limited in-lab data.
Closed-loop experiments are conducted, achieving consistently low and stable
residual aberrations. Additionally, the simulator-based autoencoder is trained
with SCExAO data, validating the method while raising remaining limitations.
These results are expected to be included in a forthcoming journal publication.
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6.1. The Subaru/SCExAO instrument

6.1 The Subaru/SCExAO instrument
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is installed
on the infrared (IR) Nasmyth focus of the Subaru Telescope in Mauna Kea, Hawaii (Fig-
ure 6.1a and 6.1b). The Subaru Telescope has a primary mirror of 8.2 m and contains a fa-
cility adaptive optics system to correct the atmospheric turbulence. Additionally, SCExAO
comprises a second-stage AO system with a 2000-actuator DM to reach extreme AO cor-
rection (Lozi et al., 2018b). The instrument is dedicated to science, i.e., to direct imaging
of exoplanets and protoplanetary disks, but also to technology development. It thereby
allows external groups to test new technologies in-laboratory and on-sky. Thanks to this
opportunity, a collaboration with the SCExAO team has been initiated during this thesis to
test the deep learning-based methods for focal-plane wavefront sensing in the lab.

The work presented in this chapter is carried-out using the visible module VAMPIRES.
The optical setup of VAMPIRES as integrated in SCExAO is shown in Figure 6.1c (dashed
box). A super continuum laser is used as the light source. It is fed to the IR bench
using an optical fiber (bottom left). The light is directed towards a DM used to control
phase aberrations. A dichroic then only reflects the visible light, and a periscope redirects
the beam to the upper visible bench. In VAMPIRES, the signal is then captured by two
cameras simultaneously using a polarization beamsplitter. During science observations
with differential polarization or H-α imaging, both VAMPIRES cameras are in-focus. For
our FPWFS task, however, one camera is set out-of-focus in order to obtain phase diversity
(see previous chapters).

A pupil stop is applied on SCExAO, as shown in Figure 6.2 (left). It masks the central
area covering the obstruction of the secondary mirror (∼30% of the total pupil area), as
well as the spider structure holding the mirror. Two small masks also cover dead actuators,
with one of them being supported by an additional spider segment. This pupil stop is
located downstream of the DM, as shown in Figure 6.1c (red vertical bar).

6.2 SCExAO data management
Several datasets have been acquired on SCExAO, beginning in 2021 and continuing into
2024 for further experimentation. This section details the data acquisition process and
provides descriptions of the various datasets.
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(a) Subaru telescope (b) SCExAO instrument

(c) Optical setup

Figure 6.1 (a): View of the Subaru telescope with its dome open. (b): The SCExAO
instrument as it is installed on Subaru. (c): Optical diagram of the SCExAO visible and IR
benches. The non-relevant modules are faded-out. Credits: NAOJ (a, b) and Lucas et al.
(2022) (c).
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6.2. SCExAO data management

Figure 6.2 Left: SCExAO pupil stop installed downstream of the deformable mirror. Right:
Flat map applied on the DM for calibration.

6.2.1 In-lab data acquisition

The data is acquired on SCExAO remotely using a VPN-secured access. To interact within
the VAMPIRES cameras and the DM, the pyMILK package1 is employed. This package
enables interaction between custom Python scripts and the shared memory structure of the
Multi-purpose Imaging Libraries toolKit (MILK). The communication with the DM can
be done through different channels. For the experiments described in this chapter, one DM
channel is dedicated to applying the phase maps on the DM, allowing custom aberrations
to be introduced in the system. Another channel is used to apply the corrections after the
phase map predictions, as described in Section 6.3.3. Ultimately, all channels interact with
the same DM, which is located in the SCExAO IR bench (Figure 6.1c, bottom).

After switching on the light source, the PSFs are inspected to ensure they are properly
imaged on the two cameras (dichroic in place, adequate optical alignment). To correct
most of the static aberrations on the instrument, a flat map is applied to the DM before data
acquisition (Figure 6.2, right). One of the two cameras is then displaced out-of-focus by a
given amount (e.g, 3 mm for the recent datasets). The integration time is set (typically 10
ms) to ensure both a sufficient signal-to-noise ratio and a rapid data generation procedure.

Early in-lab datasets

Three datasets in different aberration regimes have been first used (in early 2021), obtained
by injecting 104 different random phase aberrations maps, with a median RMS WFE of 50,
130, and 260 nm for each of the three datasets (Figure 6.3). Each phase map is distributed
uniformly over 20 Zernike modes, starting from the defocus mode (i.e., discarding tip and

1https://github.com/milk-org/pyMilk
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Figure 6.3 WFE distributions for each of the three early datasets, in the low, medium and
high aberration regimes (blue, orange and green, respectively).

tilt aberrations). The phase map generation from Zernike coefficients follows Equation 1.6
and a distribution around a given median WFE for the full dataset is achieved with Equa-
tion 3.1. These phase maps are adjusted to fit the DM orientation and shape (Figure 6.4,
left). The light source is in the visible centered at 750 nm, with a 50 nm bandwidth.

The second camera is moved out-of-focus to a corresponding -155 nm RMS of pupil-
plane phase aberrations. The cameras installed back then were electron-multiplying CCDs
with frame rates ranging between 1 and 100 Hz and low read-out noise levels (Lucas et al.,
2022). The cameras presented pixel scales of 5.82 milliarcseconds per pixels (mas/pix)
and 8.20 mas/pix, for the in-focus and out-of-focus PSFs, respectively. Additionally, there
are orientation angles between pupil and focal plane on SCExAO: -0.55 and 2.59 radians
for the in-focus and out-of-focus PSFs, respectively. The in-focus PSFs are also flipped
horizontally with respect to the pupil plane.

After acquisition, the datasets are split so that 9×103 samples are used for training and
validation, and 103 samples are dedicated to testing. A sample from each of the aberration
regime are shown in Figure 6.4. The three datasets are used throughout the chapter, except
for the closed-loop experiments of Section 6.3.3.

More recent datasets

By the time of the acquisition of the new datasets (mid-2024), the cameras installed on
SCExAO had been upgraded as CMOS detectors with ultra-low read noise. The pixel
scales are now almost identical between the two cameras: 6.04 mas/pix and 6.03 mas/pix
(in- and out-of-focus, respectively, with an uncertainty of 0.29 mas/pix for each). The
rotation between the pupil and focal planes are also different: -41.4±3.1 and -40.6±3.1 de-
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Figure 6.4 Raw in-lab SCExAO samples at λ = 750 nm taken from the early datasets, at
low, medium, and high aberration regimes (top, middle and bottom, respectively). The DM
commands (left) are shown next to the resulting in-focus and out-of-focus PSFs (middle
and right, respectively). The PSFs only underwent an initial cropping of 128×128.

grees. Additionally, not only is the second camera flipped on the horizontal axis, but both
cameras are also flipped along the vertical axis. The defocus applied is by a displacement
of 3 mm, which translates to -245 nm RMS of pupil-plane aberrations. The observing
wavelength and pupil mask remain unchanged.

Datasets are gathered in different aberrations regimes, one of them following a uni-
form WFE distribution between 0 and 350 nm RMS. Datasets with large WFE range have
proven to be particularly robust in simulations (Sections 4.3.5 and 5.3). The aberrations
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are also generated using 20 Zernike modes, while 104 training and 103 test samples are
gathered in total. The uniformly distributed dataset is used for the closed-loop experi-
ments in Section 6.3.3 and a dataset centered at 130 nm RMS is also used to train the
SimAE and compare the results with the early dataset (Section 6.4.1).

6.2.2 Pre-processing

Pre-processing steps on the raw in-lab PSFs can be important for several reasons. First,
removing instrumental effects helps to reduce the gap between lab data and simulations.
This is important to attest the fidelity of the simulator and to prepare the implementation on
the SimAE approach (Section 6.4). Secondly, reducing the dimensions of the data allows
training models more efficiently.

The first calibration step is to subtract the dark current from the PSFs. There is one
for each image channel, because two cameras are used in VAMPIRES to capture the in-
and out-of-focus PSFs. Dark frames represent a bias on the images, containing electronic
signal from the cameras even when they are not exposed to light. Subtracting the dark
frame removes the corresponding dark current but not its noise. The dark noise is due
to thermal agitation within the sensor, as well as shot noise due to the fluctuation of the
dark current, and readout noise which occurs when the signal is read by the sensor. The
combination of these random processes typically results in the dark noise following a
Gaussian distribution.

Additionally, the PSFs from the two cameras are rotated and flipped respects to the
pupil plane following the orientations provided in the previous section.

The standard VAMPIRES frames typically contain 500×500 pixels, while the PSF sig-
nature covers only a fraction of the field of view (Figure 6.4). Cropping the images to
decrease their dimensions is thus possible without impacting the phase retrieval capabil-
ities. The “center of mass” of the images is first found to crop around the center of the
PSFs. As in the previous chapters, a 64×64 cropping is performed.

6.2.3 Simulations and in-lab data comparison

Beyond dark removal, rotating, flipping, centering and cropping the in-lab PSFs, adding
noise content on simulations can improve the similarity of simulations compared to real
data. Regarding the photon noise, since it is considered as dominant, the SNR can be
approximated as SNR =

√∑
i Ni, with Ni the flux at pixel i. The SNR computed among all

the lab samples of the early datasets is 862±9 and 977±4 for the in and out-of-focus PSFs,
respectively. Adding shot noise (Poisson distributed) with an SNR of 1000 is therefore a
good approximation. Although the dark current has been subtracted, dark noise should
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Figure 6.5 Examples of in-focus PSFs taken from each aberration dataset: 50, 130 and 260
nm RMS (top, middle, and bottom row, respectively). Simulated samples (left) are com-
pared to their corresponding pre-processed in-lab PSF (middle). The difference between
them is also shown (right).

also be considered. It is obtained as σdark =
√

Ndark, where Ndark is the average flux of
the dark frames. It allows computing two Gaussian maps, zero-centered with a standard
deviation equal to σdark−1 and σdark−2 for each camera. These noise maps are then added to
the in-lab PSFs.

Simulations and laboratory data are compared in Figure 6.5, for the same samples as
the ones presented in Figure 6.4. The phase maps used to produce the simulated PSFs are
built from the same Zernike coefficients that were employed to create the DM commands
responsible for the in-lab PSFs. All the images are scaled with a min-max normalization
for consistency. While the simulations display similar structure to the in-laboratory data,
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some discrepancies remain. There are several factors creating these differences.
Firstly, the in-lab data provided have as labels the Zernike coefficients used for the

DM commands. Since some level of phase aberrations are also present in the system
itself, the total phase aberrations which produce the final PSF do not exactly correspond
to these commands. For the SimAE approach, for instance, it is necessary to know the
difference between command and these additional aberrations if we want to properly assess
the performance of the models in terms of phase reconstruction.

The polychromaticity may also be considered in the simulations, although tests with
the SimAE did not impact the reconstruction much when considering the light source
bandwidth. Also, the pupil may not be uniformly illuminated. We can expect a Gaussian
distributed intensity, and such pattern can be trained in the simulator. Another potential
effect is the level of DM calibration performed, as the injected aberrations may not corre-
spond exactly to the ones finally produced by the DM. The pixel scales also contain some
uncertainty (which are provided for the recent datasets, see Section 6.2.1). Finally, there is
a small decentering between the simulations and the pre-processed SCExAO data. This is
handled directly during training with the SimAE with additional tip-tilt modes predicted
by the encoder. Some of these aspects are addressed in Section 6.4.

Ultimately, the various analysis performed seem to indicate that the pre-existing aber-
rations play the most important role in the discrepancy between simulations and in-lab
data. The fact that a single pupil plane is considered also puts some limits to the complete-
ness of the simulator and the optimization that can be performed.

6.3 Supervised learning tests
In this section, ResNet models are first trained in a supervised way on each of the three
early datasets presented previously. As done in other chapters, the models take in-focus
and out-of-focus PSFs as input to predict Zernike coefficients. Results obtained with the
recent datasets align with those presented in this section.

6.3.1 Performance in three aberration regimes

The results in terms of RMS WFE for the three datasets are illustrated in Figure 6.6, for 103

test samples. Residual WFEs are on average around 15, 25, and 170 nm RMS for the low,
medium and high aberration regimes, respectively. The performance with the supervised
CNN approach appear relatively good on SCExAO data, and more training data would
improve the accuracy of the predictions.

As discussed in Section 6.2.3, there is a discrepancy between the DM command labels

124



6.3. Supervised learning tests

10 20 30 40 50 60 70 80
RMS WFE (nm)

1

10

100

Fr
eq

ue
nc

y

input
residuals

(a) 50 nm RMS

50 100 150 200
RMS WFE (nm)

1

10

100

Fr
eq

ue
nc

y

input
residuals

(b) 130 nm RMS

50 100 150 200 250 300 350
RMS WFE (nm)

1

10

100

Fr
eq

ue
nc

y

input
residuals

(c) 260 nm RMS

Figure 6.6 One-shot phase prediction errors on the test samples with SCExAO in-lab
datasets in three aberration regimes: 50, 130 and 260 nm RMS. One model for each dataset
is trained in a supervised manner.

and the true phase maps. During supervised training, the neural network effectively mod-
els this discrepancy, so it does not impact performance during model evaluation. However,
this implies that while the predictions are accurate relative to the commands, they do not
accurately represent the true wavefront present in the system. As a consequence, during
control operations, the model predictions from the observed PSFs would present inaccu-
racies. For instance, in a situation where the instrument’s state would be the same as when
the datasets were gathered, the model would predict a zero correction, making it ineffec-
tive. Supervised models would therefore limit the correction capabilities on the instrument,
hence the motivation for an unsupervised approach, as explored in Section 6.4.

The possibility to quickly re-train a model on a new data domain can also offer in-
creased performance when few data are available. This type of approach is addressed in
the next section.
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Figure 6.7 Phase residual errors for models trained only with in-lab data (9 × 103 samples;
blue), with simulated data (5 × 105 samples; red), and fine-tuning the simulation-based
model with 9 × 103 in-lab frames (purple). A test set composed of 103 samples is used to
make the predictions and compute the residual phase errors.

6.3.2 Transfer learning from simulations

Transfer learning techniques aims at re-training a pre-trained model on a different data
domain than the previous one. This approach enhance models that have been pre-trained
on large datasets, which is especially beneficial when the target domain data is limited and
labels are difficult to obtain. As a result, significant improvements in performance and
reductions in training time can be potentially achieved.

In this section, transfer learning between simulations and SCExAO data is explored, to
demonstrate how simulations can help improve the performance of models based on small
in-lab datasets.

Updating the entire network

Experiments are performed by re-training all the CNN layers at once. A first model is
trained on a large dataset containing 5×105 simulated samples. As a second step, the
model is initialized with the obtained pre-trained weights, and is then fine-tuned on in-
lab datasets of several sizes. Figure 6.7 illustrates the obtained performance on the in-lab
test sets, with a fined-tuned model re-trained on 9×103 SCExAO lab data. With a median
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Figure 6.8 Performance comparison of models trained on lab data only (blue), trained on
simulated data only (red), and fine-tuned on smaller amounts of lab data (purple). Models
are trained on increasing dataset sizes along the x-axis, with median input WFE of 50 (a),
130 (b) and 260 (c) nm RMS. The evaluation is performed on 100 test samples and the
2–98th percentiles define the error bars.

input WFE of 130 nm RMS (gray), this new model allows reaching median residuals of
10 nm RMS (purple) instead of 19 nm RMS (blue). The performance is also compared to
using the model trained on 5×105 simulated samples and performing tests with the in-lab
dataset. Much higher phase residuals are then obtained (around 50 nm RMS, red).

To prove the benefits of such approach on smaller in-lab datasets, varying training
dataset sizes are used. The evaluation is always performed on the in-lab test sets com-
posed of 103 samples, and the results are shown in Figure 6.8 for the three aberration
regimes. When the model is only trained on lab data, no phase correction is achieved us-
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ing datasets of 10 and 20 lab samples, and the performance improves with larger datasets.
As mentioned above, prediction errors are quite high when only training the models on the
simulated data. However, by pre-training on the large simulated dataset and fine-tuning the
model on lab data, important improvement is obtained when few in-lab data are used. For
instance, in the medium aberration regime, re-training on 10 samples results in residuals
around 30 nm RMS.

The trend is consistent in both low and high aberration regimes, as shown in Figure 6.8.
This underscores the potential of fine-tuning a model directly on the instrument using only
10 acquired PSFs, for instance, each produced with different DM-generated aberrations.

Layer-wise tuning

Fine-tuning all the CNN layers at once may be the most straightforward way to transfer
learning. However, selectively fine-tuning a subset of layers could lead to faster training
times while maintaining similar performance. The Resnet-34 architecture, for instance,
is organized into four layer groups that perform convolutions, batch normalization and
ReLU activations. These layer groups are highlighted with different colors in Figure 2.3a.
As an example, the first layer group of ResNet-34 contains about 6000 parameters, while
the entire architecture comprises 13 millions parameters. To investigate the benefits of
selectively fine-tuning specific layers, different sets of layer groups are re-trained from
previously models that had been pre-trained on simulations, as described earlier.

Overall, loss of performance is observed when re-training on specific layers, although
the drop is minor if only the first layer group is fined-tuned. This may be explained by the
fact that the difference between data domains should be accounted for close to the input as
it corresponds to small scale differences within the PSFs. Not updating the second layer
group may still be limiting because its connection with the first group may no longer be
smooth enough.

Besides, the gain in training time is negligible with Resnet-34 because the time taken
by the backward pass through the model is under the time variation occurring between
epochs. However, this approach could potentially help reduce training time when using
very large architectures containing billions of parameters, although such extensive training
may offer limited benefits for NCPA predictions using CNNs. Re-training the first layers
would nonetheless be the strategy to adopt in this case, as the difference between data
domains would arise in the focal-plane images at small spatial scales.
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6.3.3 Closed-loop performance

As presented in Section 4.3.6, closed-loop corrections can help achieve increased per-
formance. Experiments are performed on a recent SCExAO in-lab dataset (described in
Section 6.2.1) to test the stability of the method. A dataset composed of 104 training sam-
ples is generated on the instrument with aberrations following a uniform WFE distribution
between 0 and 350 nm RMS. A ResNet-50 model is then trained on this dataset directly
on SCExAO. During the testing procedure, a phase map sampled from the same WFE dis-
tribution is applied to the DM to inject aberrations in the system via one channel of the
SCExAO shared memory. The resulting PSFs obtained from the VAMPIRES cameras are
fed successively to the trained model and each prediction is applied to the DM via another
shared memory channel.

As illustrated in Figure 6.9a and 6.9b for a given input aberration case, the in-focus and
out-of-focus PSFs are mostly free from speckles. The differences with the PSFs without
added aberration (“original”) are very small. The residual WFEs for ten different cases
(Figure 6.9c) reach a low and stable state at around 18 nm RMS on average. The benefits
of using datasets containing WFEs uniformly distributed is highly motivated, and these
experiments confirm the results obtained before with simulations.

6.4 Simulator-based autoencoder
The simulator-based autoencoder method presented and tested on simulations in Chapter 5
showed promising features, as it does not require labels to train the models, and it incor-
porates a known physical process into a deep learning architecture. In this section, the
method is applied on SCExAO data to investigate whether the differentiable simulator is
capable of reproducing the data with enough fidelity to achieve proper phase retrieval.

6.4.1 Model performance

ResNet-50 models are trained on the early datasets. The Poisson loss as defined in Equa-
tion 5.1 is used with in-lab data, since photon noise is for now considered to be dominant.
The Figure 6.10 (top) showcases the results for the low and medium aberration regimes.
The RMS WFE for each test sample is plotted with respect to its corresponding input
WFE. The residual WFEs rise with the input aberrations, and poor predictions arise for a
few outliers (up to ∼100 nm RMS), while the minimum error is 23 nm RMS. Any impre-
cision in the simulator or the presence of pre-existing NCPAs may limit the performance,
especially in the low aberration regime. The prediction error per Zernike mode is also
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Figure 6.9 Closed-loop PSF corrections on the SCExAO bench over ten iterations. (a):
In-focus PSFs through the successive correction steps for a randomly selected sample.
The “initial” frame corresponds to the aberration state generated with the DM, and the
“original” frame is the PSF without added aberrations (i.e., only pre-existing instrumental
phase errors are present). (b): Same for the out-of-focus PSF. (c): The evolving RMS
WFE over the iterations for ten different input WFEs. The iteration 0 corresponds to the
input WFE.
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Figure 6.10 Top: Residuals errors with respect to the input WFE for each test sample. The
mean value for the residuals and the input WFE are indicated in dashed horizontal and
vertical lines, respectively. Bottom: Prediction error per Zernike mode. The results are
obtained with the model trained on data at around 50 and 130 nm RMS (blue and orange,
respectively).

shown in Figure 6.10 (bottom). The performance along the modes appear mostly constant,
although two low-order modes and one high-order mode perform worse for both datasets.
An example of predicted phase and reconstructed PSFs is shown in Figure 6.11.

The 260 nm RMS dataset, however, gives very poor phase reconstruction. A solution
found to solve the problem is to use a model pre-trained on data containing fewer aberra-
tions. A model initialized with pre-trained weights from the 130 nm RMS model yields
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Figure 6.11 Example of predictions by the SimAE on SCExAO lab data for a given test
sample. The dataset used to train the model contains a median 130 nm RMS of aberrations.
Top: Phase map computed from the predicted coefficients by the encoder, together with
the reference phase, which is not given to the SimAE during training. Middle and Bottom:
Reconstructed in-focus and out-of-focus PSFs, respectively. These reconstructions are
noiseless.

about 97 nm RMS of residuals, using 9 × 103 training and validation samples as well. Re-
sults are shown in Figure 6.12 between the model trained from scratch and the pre-trained
one. The prospects for improvement in such aberration regime are very high, and more
training data are required to leverage the method.

Regarding the recent data acquired, the model performance is not as good. The gain
in terms of RMS WFE observed on a recent dataset centered at 130 nm RMS is only 13%
on average, compared to a 67% decrease in residual WFE observed in the early dataset at
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Figure 6.12 Performance of the SimAE on SCExAO in-lab data with a median input WFE
of 260 nm RMS. (a): Histogram of the phase residuals among the 1000 test samples. The
performance is compared with and without using the model trained on 130 nm RMS to
initialize the weights (red and orange, respectively). (b): Mean residual errors on each
Zernike mode. (c): Inputs and predictions for one test sample: phase maps (top), in-focus
and out-of-focus PSFs (middle and bottom, respectively).
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Figure 6.13 Median phase maps computed from the test prediction set, for the low and
medium regime datasets (left and middle, respectively). The difference between the two is
also shown on the right. The color bars indicate values in nanometers.

the same aberration regime. Since the SimAE is trained on the PSFs, it is worth assessing
the amount of PSF reconstruction error. To quantify this, the mean-square error (MSE)
between the reconstructed and input PSFs is computed, with both PSFs scaled using min-
max normalization for comparability across datasets. For the recent dataset, an average
MSE of 9.6% is observed on the in-focus PSFs, with a relatively high standard deviation
among the test samples (8%). In contrast, the model trained on the early dataset achieves
an MSE of 1.8%, with a standard deviation almost equal to the average MSE. This clearly
indicates that the SimAE cannot reconstruct the recent PSFs with as much fidelity as the
early PSFs. To achieve more consistent results across datasets, further developments on
the simulator’s robustness are therefore needed.

Even for the early datasets on which the SimAE performs well, the evaluation may be
limited by the inaccuracy of the Zernike coefficient labels. It may therefore be beneficial to
estimate the pre-existing phase aberrations present the dataset, i.e., the aberrations without
adding ones with the DM. One potential way to achieve this is to recover the median of the
predictions, assuming the pre-existing phase remained constant throughout the data acqui-
sition process. Figure 6.13 shows the computed median phase for the low and medium
regimes. The similarity between the phase maps suggest a common pattern across both
datasets, corresponding to a phase error of 17 nm RMS. By subtracting this median map
from the predicted NCPAs, the residual RMS WFE is reduced by 33% and 11% for the
50 nm and 130 nm RMS dataset, respectively.

Another way to account for these pre-existing phase errors is to learn them as parame-
ters within the simulator in a two-step approach.
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Figure 6.14 Learned pre-existing NCPAs during the pre-training procedure. Left: Learned
phase aberrations for the in and out-of-focus paths (blue and red, respectively). Right:
commands sent to the DM to produce the aberrations on the instrument (green) and total
aberrations (blue and red for each optical paths).

6.4.2 Two-step approach: learning pre-existing aberrations

Because of the inherent NCPAs present in the system during data collection procedure,
the SimAE would not be able to produce in the latent space the Zernike coefficients that
corresponds to the DM commands. To be able to effectively evaluate the performance with
labels, it is useful to first try to estimate these pre-existing aberrations.

One possible way to do that is to first train the simulator of the SimAE to learn the
pre-existing NCPAs in the SCExAO system. To do that, the known Zernike coefficients
corresponding to the DM commands are defined as the input of the simulator. A second-
phase training then consists in training the full SimAE (encoder + decoder) to predict these
commands and have a proper evaluation using the labels.

The learned NCPAs are shown in Figure 6.14. The estimated amounts are very small
compared to the DM commands, as expected. However, low-order aberrations appear as
important as the higher-order ones, while we expect modes such as defocus, astigmatism
or spherical aberrations to be stronger in an optical system. Moreover, by comparing the
in-focus and out-of-focus paths, we can see that there are no consistent structure, while
the differential path between the two is very limited on SCExAO (one lens). It is there-
fore unlikely that these predicted NCPAs exactly represent the pre-existing aberrations on
SCExAO. Differences between the simulator and the real instrument beyond phase aberra-
tion most likely play an important role here. These learned NCPAs are probably compen-
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sating for the difference between the simulator and the real instrument to a certain extent.
Using the learned NCPAs in the evaluation process provides only for slight improvement
in the estimated phase accuracy: an 11% decrease in terms of RMS WFE for the medium
aberration regime dataset, for instance.

6.4.3 Variational inference

As described in Section 5.4, the variational approach allows predicting phase uncertainties
by estimating distribution parameters. The early datasets in the three aberration regimes
used in this chapter have been generated following a uniform distribution for each Zernike
mode. The predicted distribution parameters from the encoder should therefore be the
minimum a and maximum b of the uniform distribution. Since the Zernike coefficients
used to generate the datasets were sampled from a uniform distribution, the reparametriza-
tion trick defined in Equation 5.6 is not valid in this case. The reparametrization trick
rather becomes

z = a + (b − a) � ε, (6.1)

where ε is a random variable sampled from a uniform distribution defined in the range [0,
0.01].

The prior distribution is also updated to follow a uniform one. The results are com-
pared to the deterministic autoencoder in Figure 6.15 for the medium aberration regime.
The residual WFE is shown for 100 different test samples, and 100 predictions are per-
formed to obtain a median value and a standard deviation used to make error bars. As with
simulations (Section 5.4), the median performance is similar between the two approaches
(around 40 nm RMS).

It can be noticed that the median predictions from the VAE per test sample only rarely
align with the AE predictions, as it has also been observed with simulations (Figure 5.15).
The KL divergence has an impact on the model training, depending on the prior distri-
bution considered. In some aberration regimes, this leads to reduced retrieval accuracy,
while in other regimes, it results in more accurate outcomes (see Section 5.4). As a con-
sequence, the VAE model behave differently from the AE when processing a given input
sample, leading to variations in the results.

It can also be noticed that the error bars in the case of the SimVAE vary between sam-
ples. This added information is useful to account for the quality of the prediction, which
could be taken into account to apply wavefront correction, as explained in Section 7.2.
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Figure 6.15 Performance of the simulator-based autoencoder on a dataset centered around
130 nm RMS for 100 test samples. The variational approach (red) is compared to the
deterministic one (blue).

6.4.4 Method refinements

The application of the SimAE to in-lab data has shown that the method can be successfully
applied beyond simulations. However, performance can vary significantly across datasets.
Several components of the method have started to be explored, and further enhancements
are needed to increase the robustness of the SimAE.

Gaussian likelihood loss

Using the Poisson loss, as defined in Equation 5.1, may not be the most appropriate choice
for real data due to the presence of additional noise sources. A more suitable approach
can be to model the noise as having a global Gaussian distribution, considering not only
photon noise but also thermal and readout noise from the cameras. As a consequence, a
Gaussian negative log-likelihood loss would be appropriate. This loss function is defined
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as
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where µ̂i is the flux per pixel given by the decoder and σ̂i is the standard deviation per
pixel predicted by the encoder as an additional output.

Tests conducted on the in-lab data using this loss function reveal that the morphology
of the predicted σ̂ closely resembles the reconstructed PSFs µ̂. Moreover, the pixel val-
ues of the σ̂ maps are in the order of the square root of µ̂. This suggests that the data
predominantly contains Poisson noise. For images acquired with cameras producing more
significant Gaussian-distributed noise, the loss function of Equation 6.2 would be more
relevant.

Simulator parameter tuning

As previously discussed, a more realistic simulator than the one used in this chapter might
be necessary to improve the SimAE performance. Several components of the simulator
have already been explored and implemented in the method, including trainable simulator
parameters. Firstly, inconsistencies in the centering of the PSFs between simulations and
real data have been addressed by learning the tip-tilt modes in addition to the NCPAs
being reconstructed. Moreover, the angle of rotation between the pupil and focal planes,
although known, still presents some uncertainty. Differentiable rotation with a learnable
angle has been implemented, ensuring that the reconstructed are properly aligned with the
inputs.

Other parameters have been explored without much success. For instance, the non-
uniformity of the pupil amplitude has been optimized. A plausible model for this pupil
non-uniformity is a 2D Gaussian profile, since laser sources often display a Gaussian beam
profile. Nonetheless, learning the mean and covariance of this Gaussian pattern within the
simulator has resulted in only modest improvements in a few cases. An alternative is to
acquire an image of the instrument’s pupil, which could be achieved in SCExAO using
the pupil viewing camera (see Figure 6.1c, top left). Furthermore, the uncertainty on
the camera pixel scales can also affect reconstruction accuracy. These parameters cannot
be directly optimized because they influence the frame padding size during propagation,
which must be a floating-point value rather than a PyTorch tensor. As an alternative,
adding minor blurring to the reconstructed PSF has been considered. This added blurring
can nonetheless limit the performance due to the loss of fine details in the PSFs, and early
tests did not yield noticeable improvements.
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6.5 Discussion
The deep learning approaches developed in this thesis have been successfully applied to
the SCExAO instrument. Supervised CNNs have demonstrated good capabilities, with
models being quickly trainable within the instrument system itself. However, the perfor-
mance remains constrained due the relatively small dataset sizes used in these studies.
While generating larger datasets is feasible on SCExAO, it makes experiments more cum-
bersome to replicate. Transfer learning has started to be investigated, and further studies
are necessary to fully harness its potential. It will be crucial to explore how much it can
be gained to transfer simulator-based autoencoder models from simulations to laboratory
settings, and subsequently from the lab to on-sky scenarios. For closed-loop corrections,
building in-lab datasets with a uniform distribution of wavefront errors has shown ex-
cellent results. Another WFE distribution being considered is a logarithmic distribution,
which leans towards low aberration levels. This is justified because, in closed-loop correc-
tions, residual aberrations quickly reach low aberration levels, and having models training
to handle predominantly these WFE levels could enhance the corrected PSFs.

Assessing the capacities of the SimAE compared to a CNN should be further explored
with the instrument. Because the SimAE has for reference an ideal simulator rather than
an inaccurate baseline, it may be able to correct the pre-existing phase itself. However,
this will ultimately depend on the simulator’s fidelity. Experiments presented in this chap-
ter have shown that PSF reconstruction should still be improved to obtain more consistent
results over time. Future on-sky applications will be challenging given the dynamical na-
ture of the atmospheric turbulence residuals combined with other sources of disturbance.
To increase the robustness of the models, including synthetic AO residuals during dataset
acquisition has notably started to be addressed. These AO screens could notably be inte-
grated in the decoder of the SimAE. The deep neural network approaches developed in this
thesis have the potential to efficiently adapt to changing conditions, making them highly
valuable for achieving robust on-sky results.
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7.1 Summary
Instrumental phase aberrations, and in particular, non-common path aberrations, represent
an inherent limitation for the detection of exoplanets. These phase errors deteriorate the
performance of focal-plane coronagraphs, and the resulting speckles in the science images
hinder the detection of faint companions close to their star. This thesis thereby explores
new ways to estimate phase aberrations from focal-plane images using deep learning tech-
niques. The idea behind deep learning with artificial neural networks is to build non-linear
models that are efficient, fast, and applicable to any instruments.

It is first demonstrated in Chapter 3 that deep convolutional neural networks can be
effectively trained to retrieve phase maps from simulated point-spread functions. These
models perform well under different regimes, and they exhibit strong robustness to vary-
ing input phase aberrations, photon noise and spatial frequency contents. A particularly
promising CNN variant examined in this chapter is the mixture density network (MDN),
which provides prediction uncertainties and helps in monitoring the phase sign ambiguity.

Compared to standard iterative approaches, neural networks offer advantages such as
increased robustness, faster predictions, and independence from initial guesses. A com-
parison with the Gerchberg-Saxton algorithm (Orban de Xivry et al., 2021) underscores
the advantages of this deep learning approach. While other focal-plane wavefront sens-
ing methods might offer superior solutions in some cases, making proper comparisons is
challenging since they are usually tailored to specific instruments.

An approach leveraging the modulation introduced by vortex coronagraphs is notably
developed in Chapter 4, allowing to solve the sign ambiguity while maintaining a 100%
science duty cycle. This vortex phase diversity approach is tested on both scalar and vector
vortex coronagraphs, across various aberration regimes and photon noise levels. In terms
of performance, phase residuals under 1 nm RMS are achieved for input WFEs around
70 nm RMS when observing a magnitude-6.2 star in the K band (∼10% bandwidth). At-
mospheric turbulence residuals included in the data only reduce the performance by a few
nm RMS. These studies also reveal that training CNNs can be challenging with highly
aberrated PSFs (e.g., 350 nm RMS over 88 Zernike modes).
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In a real system, obtaining reliable and accurate labels for phase aberrations is chal-
lenging due to the presence of unknown pre-existing aberrations in the instrument. Unsu-
pervised models are relevant to mitigate this problem because they can be trained solely on
the observed data. A simulator-based autoencoder (SimAE) architecture developed in this
thesis demonstrates that such models can readily be applied for FPWFS. The architecture
contains a CNN as an encoder and a differentiable simulator as a decoder, reconstructing
the observed PSFs and predicting the aberrations as Zernike coefficients in the latent space
between the encoder and the decoder. Experiments with simulated datasets are presented
in Chapter 5 using both classical and vortex phase diversity. The performance obtained
with the SimAE is comparable to that of a standard CNN, with both approaches reaching
the expected theoretical limit across a large range of conditions. However, the SimAE has
the major advantage of not requiring ground truth phase information during the training of
the models. Variational inference is also explored and implemented in the SimAE, by pre-
dicting posterior distribution for Zernike coefficients as well as incorporating prior knowl-
edge about them. This provides uncertainties for each prediction, influencing potential
decisions for NCPA corrections. While early results with the simulator-based variational
autoencoder models are very encouraging, further studies are needed to fully harness the
approach.

The application of these deep learning methods on a real instrument has been car-
ried out, thanks to a collaboration with the Subaru/SCExAO team started during this
PhD thesis. Both supervised and unsupervised approaches have thus been tested on the
VAMPIRES module at visible wavelengths, as presented in Chapter 6. Offline predic-
tions have been successfully performed, by training models using datasets gathered in-
laboratory, showing good phase retrieval performance. Pre-training models on large sim-
ulated datasets notably allows reaching better performance on small in-lab datasets. This
represents great prospects to quickly fine-tune models on the bench and then on-sky.
Closed-loop experiments on SCExAO also display robust convergence, achieving resid-
ual WFEs of 15 nm RMS on average. The SimAE approach performs well in terms of
PSF reconstruction and phase estimation. Since the decoder part of the architecture guides
the learning instead of relying on labels, pre-existing aberrations do not affect phase esti-
mation. Comparing the results with the supervised method is not straightforward, as the
predictions in this case reflect the labels, which correspond to the DM commands, and
not the actual aberrations present in the instrument. The SimAE approach still faces some
limitations due to the simulator being imperfect. Recently gathered datasets have shown
degraded performance, which motivates further studies on improving the robustness of the
architecture and the simulator in particular. SCExAO is a collaborative instrument that
is regularly modified, causing the PSF quality to fluctuate over time. As a result, even
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robust models might need to be retrained or at least fine-tuned based on previously trained
models.

Deep learning models offer a flexible framework and fast inference speeds, which are
appreciable features for on-sky applications. The requirement on speed is, however, not
very stringent as we expect the lifetime of NCPAs that produce quasi-static speckles to be
on the order of minutes. On-sky applications will naturally come with their own challenges
and discrepancies unpredicted by simulations and laboratory setups. Future work should
focus on enhancing the robustness of these models, refining transfer learning techniques,
and exploring their integration with more complex simulators and real-time adaptive optics
systems.

7.2 Perspectives
The results presented in this thesis highlight the capabilities of deep learning for focal-
plane wavefront sensing. From these advancements, several promising avenues should be
explored. On-sky validation of the methods is particularly crucial, and such tests are ex-
pected to be carried out on Subaru/SCExAO. There are several challenges arising with on-
sky observations, as they introduce atmospheric turbulence residuals which dynamic can
disturb NCPA sensing. Additionally, target stars are generally much dimmer than calibra-
tion sources used in laboratory settings, increasing the level of photon noise in the images.
Beyond NCPA correction, addressing the low-wind effect (LWE) is also important. The
LWE represent a significant limitation for SCExAO, producing low-order aberrations on
the images that standard wavefront sensors cannot detect and correct (Vievard et al., 2019).
The deep learning-based FPWFS techniques developed in this thesis are very promising
to address this issue as well.

The vortex phase diversity approach developed in this thesis will also undergo labo-
ratory tests in the near future. Potential applications of this proposed method could rely
on including a polarizing beam splitter downstream of the VVC to collect both circular
polarization states separately, either on a single or on two distinct sensors. Work in this
direction has already been initiated by the PSILab team on the Vortex Optical Demonstra-
tor for Coronagraphic Application (VODCA) bench of the University of Liège, using a
linear polarizer and a quarter-wave plate (QWP) to obtain polarized light behind a VVC.
Upcoming in-lab experiments will offer a clearer perspective on potential challenges and
limitations. Additionally, a new vector vortex phase mask has been recently installed in
SCExAO. The future inclusion of a QWP downstream of the vortex phase mask, coupled
with the already existing polarizing beam splitter in VAMPIRES, would allow to test the
vortex phase diversity approach with a VVC in-lab and on-sky. Since the simulation-based
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Chapter 7. Conclusions

FPWFS experiments work well even with a single image obtained behind an SVC, it ap-
pears that this flavor of vortex coronagraph offers an interesting alternative to the VVC, no-
tably because it would operate without any additional optical components. Advancements
in scalar vortex technology with newly manufactured masks will offer a great opportunity
to enhance the proposed phase diversity approach thanks to this polarization-independent
vortex coronagraph flavor.

From the deep learning methodologies developed in this thesis, several promising av-
enues emerge. Regarding the variational approach, further enhancements can be made by
improving robustness and incorporating uncertainties in the wavefront correction strategy.
The SimVAE has been implemented in a static scenario, which has not provided much ad-
ditional benefit compared to a deterministic approach. However, for control applications
in an adaptive optics system, inferring distributions might allow to select the best solution
based on the smallest standard deviation among predictions. The control gain could then
be adjusted according to the level of uncertainty. Additionally, upgrading the simulator
to incorporate all optical layers and components present in SCExAO would make the re-
constructed PSFs more realistic, thereby improving the performance of this autoencoder
approach. Furthermore, using a differentiable optical package such as δLux (Desdoigts
et al., 2023), could facilitate broader adoption and customization of the architecture within
the community.

Beyond VAEs, recent generative modelling techniques could also be exploited for FP-
WFS. Most particularly, diffusion models have shown great prospects for solving inverse
problems (Ho et al., 2020; Yang et al., 2023). By transforming simple distributions into
complex images, diffusion models can process noisy inputs into probabilistic predictions
in a robust way. The potential benefits of using a reinforcement learning (RL) approach
could also be explored. RL has already been successfully implemented for adaptive optics
applications (Nousiainen et al., 2024; Pou et al., 2024; Gutierrez et al., 2024), employing
different strategies to address non-linearities in the wavefront sensor and correct temporal
errors. Applying RL to focal-plane wavefront sensing and NCPA correction could be ex-
plored, and it would be interesting to assess whether RL offers performance improvements
over the methods developed in this thesis. However, unlike CNNs, RL models are difficult
to train and highly sensitive to hyperparameters, which can make their implementation
challenging.

Ultimately, an essential area for investigation is the potential presence of exoplanets in
focal-plane images, as the phase inference may be impacted by such signals. Having robust
models is therefore important, and training the models with data containing exoplanet
signals could be necessary. Another solution involves the dual-polarization VVC approach
presented in Chapter 4. By subtracting the two post-VVC images, the planetary signal
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7.2. Perspectives

would then be cancelled, preventing any interference in the predictions.
Forthcoming extremely large ground-based telescopes and space observatories will

present new challenges for focal-plane wavefront sensing. The substantial costs and in-
creasing complexity of these instruments will complicate the implementation of standard
model-based algorithms. In this context, the advantages offered by deep learning methods
could be invaluable, unlocking new capabilities to directly detect and characterize faint
exoplanets near their host stars.
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APPENDIXA
Pupil impact on the Vortex performance
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Figure A.1 Contrast curves for central obstructions of 15% (left) and 0% (circular aperture,
right). The case without coronagraph and aberrations (blue) is compared to adding a vortex
phase mask without aberrations (orange), at the initial NCPA level (green), and after NCPA
correction (red).

As discussed in Section 4.12, the contrast achieved after wavefront control is limited for
large central obscurations, which cause important flux leak through the vortex phase masks
even if the wavefront is flattened. For instance, the secondary mirror of the Subaru Tele-
scope masks 30% of the aperture, and contrasts obtained after closed-loop simulations with
such an annular pupil design are shown in Figure 4.12. Smaller central obscurations are,
however, more often encountered in telescopes, such as a 15% obscuration at the VLTs.
Contrast results with such a pupil aperture are shown in Figure A.1 (left), using the same
configurations as in the experiments in Section 4.12. The contrast gets much lower com-
pared to Figure 4.12, although the drop in contrast at 4 λ/D is not present anymore. For
a circular entrance pupil (Figure A.1, right), the contrast at intermediate separations reach
values below 10−5. The contrast for a non-aberrated wavefront is not displayed because
all light is cancelled by the VVC (only numerical errors are present). The corresponding
images after correction for both pupils are shown in Figure A.2.
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Appendix A. Pupil impact on the Vortex performance
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Figure A.2 Evolution of post-VVC PSFs through iterations with central obstruction of 15%
(top) and 0% (bottom). Left: Initial PSF. Middle: PSF after first correction/iteration. Right:
PSF after 10 iterations. Top: 70 nm RMS. Bottom: 350 nm RMS. The PSFs are shown
after a power-law normalization to emphasize the residual speckles, and the wavefront
aberration level of the PSFs is indicated at the top of each corresponding image.
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APPENDIXB
Asymmetric pupil for the Vortex

Figure B.1 Aperture asymmetries of different sizes in the Lyot plane. Left: No obstruction.
Middle: 10% obstruction. Right: 20% obstruction.

In the context of a project for the METIS instrument, which is being built for the Extremely
Large Telescope, the CNN-based focal-plane wavefront sensing approach is tested behind
a VVC with an asymmetric pupil defined in the Lyot plane. An annular pupil in the Lyot
plane (before the Lyot stop) is first defined, with a 30% central obstruction. From this
setup, three cases are tested: without asymmetry, with an asymmetric bar taking 10% of
the pupil, and finally with a bar taking 20% of the pupil (Figure B.1, from left to right).
Models are then trained on datasets generated with these Lyot pupils. The following data
and parameters are considered: 20 and 100 modes, an input WFE of 300 nm RMS, SNRs
of 100 and 1000 (detector plane), the Efficientnet-b0 architecture, 104 data samples, a
batch size of 32 and a learning rate of 10−3.

Results on each Zernike mode, using the metric of Equation 4.1 are shown in Fig-
ure B.2 for 20 and 100 modes. All modes are relatively well reconstructed, although the
odd modes in the case of the asymmetric pupil show strong degradation when trained on
100 modes. Performance comparison on the phase residuals in the different cases are dis-
played in Table B.1. Using one PSF with an asymmetric pupil allows performing FPWFS.
There is, however, a substantial degradation of the performance compared to using out-of-
focus phase diversity. Increasing the obstruction to 20% yields slightly better performance
in the case of 100 modes, although the optical throughput will be then decreased due to the
larger mask. It can be also noticed that with 20 modes, increasing the obstruction reduces
the performance, making a 10% mask more relevant overall.
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Appendix B. Asymmetric pupil for the Vortex

Figure B.2 RMS WFE for each Zernike mode with classical phase diversity (red) and with
pupil asymmetry (blue). Left: 20 modes. Right: 100 modes. Results with 10% and 20%
obstructions are shown in the case of 20 and 100 modes, respectively.

Dataset
Sym Sym Asym: 10% Asym: 20%

in-focus in-out-focus in-focus in-focus
20 modes; SNR=1000 243 6 12 42
20 modes; SNR=100 242 32 53 45

100 modes; SNR=1000 252 30 94 80
100 modes; SNR=100 262 108 162 151

Table B.1 Residual RMS WFE on the phase residuals (in nm) with or without an asym-
metric pupil. The median input WFE is 300 nm RMS.
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