From Sadi Carnot to Carnot batteries

A presentation of research activities at the thermodynamics laboratory of ULiege

Carnot Commemorative Session

Herrick Conferences at Purdue University, July 17th 2024

Introduction The impact of "Reflexions" (1824)

- Published 200 years ago by Sadi Carnot (28-year-old)
- Not a success: almost no sales (less than 600 copies)
 - not enough practical
 - didn't conform to conventional "scientific" writing style?
 - not sent to major Academies of Sciences (Paris, London,...)
- Latter recognized as the foundation of the 2nd Law of thermodynamics
- (hopefully largely digitized)

What are more specifically the contributions?

Introduction

The impact of "Reflexions" (1824)

- The maximal power is related to the **temperatures** Temperature (and not pressure) is the critical variable.
- 2. The cycle must be **closed** for analysis The piston expander, the boiler, the condenser and the pump(s) considered as a whole.
- 3. The maximal performance is not function of the nature of the working fluid Going beyond the debate between air and water
- 4. Carnot cycle is reversible Pursuing the work of his father on reversibility

Most information presented here and in next slides was found in Hanlon, Robert. Block by Block: The Historical and Theoretical Foundations of Thermodynamics, Oxford University Press, 2020.

Introduction

The impact of "Reflexions" (1824)

Introduction

The impact of "Reflexions" (1824)

- The supporting caloric theory was wrong...
 but it hasn't prevented Carnot to draw the right conclusions (2nd Law).
- 1842: Mechanical Equivalent of Heat (1st Law) discovered/quantified by Mayer and (then, though independently) Joule.

Carnot's legacy is of tremendous importance in the context of:

- Electrification of heating/cooling
- Energy storage needs
- Waste heat valorization
- ...

What is (modestly) illustrated in this presentation

Agenda of the presentation

- 1. Introduction
- 2. Heat engines: Organic Rankine Cycle Power systems
- 3. Heat pumps
- 4. Hybridization of heat engines and heat pumps
- 5. Combination of heat pump and heat engines
- 6. Take-away messages

Organic Rankine Cycles

"Vapors of all substances capable of passing into a gaseous condition, as of alcohol, of mercury, of sulphur [sic], etc., may fulfil the same office as vapor of water". (Carnot's Reflexions (1824) translated by Thurston, 1880)

Organic Rankine Cycles

Context

- Tremendous amount of waste heat around 100-250°C
- ORC is a promising solution with still room for improvement.

Research topics

- Waste heat recov. exchangers (limited pressure drop, cost)
- Use of natural fluids (cyclo-pentane), oil/fluid mixture properties
- Active Charge Management/charge sensitive modeling.
- Use of thermal storage to damp heat source fluctuations
- FDD/Predictive maintenance
- Dew point cooling towers

2 MWe ORC installed in a slab reheating furnace

Charge-sensitive test bench (cyclo-pentane)

Coupling with dew point cooling tower

Heat pumping and air-conditioning

Context

- Electrification of heating and cooling sectors
- Need of cheap, efficient, and multi-term energy storage solutions
- = > Abandoned **flooded** slate **mines**: massive storage (500,000 m³)

Heat pumping and air-conditioning

Massive thermal energy storage

Research questions

- Water-to-water HP + PV panels
- Hot storage (50-40°C): 6840 m³
- Cold storage (10-5°C): 20000 m³ (currently partially regenerated naturally: a cold user is being sought)
- Investigate the possibility to store heating and cooling energies for building HVAC and commercial refrigeration.
- "RE-entracking" energy storage:
 maximization of self-consumption of local
 PV production (95.2%).
- Simulated yearly (heating) COP of 2.86

Hybridizing heat engines and heat pumps

Combining heat engine and heat pump cycles allow to derive heat-driven heat pumps, chillers, polygeneration systems.

(first VC refrigeration machines were driven by steam engines)

Hybridizing heat engines and heat pumps *Multi-energy generation machines*

Multigeneration of cooling, heat and electricity (CCHP) based on one single machine valorizing a low-grade heat source. Research question 2-phase scroll compressor design (2020-2026)175 Thermal source 150 125 Comp Exp Temperature [°C] Exp 100 End-user heating Exp 50 25 13 Comp End-user cooling 1000 1200 1400 1600 1800 2000

Regen-by-two: Next REnewable multi-GENeration technology enabled BY TWO-phase fluids machines.

Entropy [J/(kg.K)]

Hybridizing heat engines and heat pumps *Multi-energy generation machines*

- Compressor prototype design:
 - Larger pressure losses in supply/discharge ports
 - Larger under-pressure losses with low quality
- Test bench: tests with inlet quality around 40% have been achieved

Prototype of $2-\varphi$ compressor

Measured isentropic effectiveness

Reversibility of heat engines

Carnot batteries

Thermal energy storage

Heat pump

Heat engine (ORC)

$$\eta_{P2P} = \frac{W_{HE}}{W_{HP}} = COP_{hp} \; \eta_{ORC} = \eta_{II}^{hp} \eta_{II}^{ORC} COP_{HP}^{carnot} \eta_{ORC}^{carnot}$$

Reversibility of heat engines

Carnot batteries

Research questions

- Design and control optimization
- \circ Performance can be improved when valorizing waste heat (trade-off η_{P2P} , η_{II} and ho_{el})
- o Immersion of ORC evaporator/heat pump condenser with a compact **PCM storage** (no secondary fluid => less ΔT_{pinch}): 20 kW_{th} heat pump with $T_{cd}=130^{\circ}C$ (Sehrene EU project)

Source: Antoine Laterre et al., Extended mapping and systematic optimisation of the Carnot battery trilemma for subcritical cycles with thermal integration, Energy, Volume 304, 2004

Reversibility of heat engines

Inversible heat pump/ORC units for Carnot batteries

5-kWe prototype of reversible CB

- Active charge management: maximization of the refrigerant in ORC and HP modes
- Dynamics and services to electricity grid (day ahead, tertiary reserves (mFRR)).

Reversibility of heat engines Inversible heat pump/ORC units for Carnot batteries

Ice thermal storage can be used for covering cooling demand: case study of an off-grid Nigerian farm

Source: B. Guo and V. Lemort. « Designing of an off-grid reversible heat pump/organic rankine cycle system for electricity and cooling demands of a nigerian family farm. » In 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. ECOS2024, 2024.

Take-away thoughts

Temperature

- Temperature glides, temperature lifts = key optimization variables
- Temperature pinch should be reduced/eliminated
- Low $\Delta T =>$ high heat transfer area, larger flow rates => high ΔP (fans, pumps)
- High temperature heat pumps opens avenues to R&D

Reversibility

- Heat pump + ORC + TES = electricity (+heat/cold) storage: "Carnot battery"
- Inversible machines

Fluids

- "All fluids are perfect but there is no perfect fluid": technical (and other) constraints
- Trade-off between criteria
- Oil-fluid mixture properties

Cycle versus compressor/expander

- Two-phase scroll compressors remove constraints on cycle design
- High temperature compressors are needed.

Thank you for your attention! Thank you to the contributors to this presentation

Vincent Lemort
Vincent.Lemort@uliege.be

The **Decagone** project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101069740

The **REGEN-BY-2** project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement n° 851541

The project "REPTES - Renewable plants integrated with pumped thermal energy storage for sustainable satisfaction of energy and agricultural needs of African communities" is funded under LEAP-RE programme, which has received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement 963530. This work was also supported by the Fonds de la Recherche Scientifique - FNRS under Grant(s) n°R.8003.23.

The **Sehrene** project has received funding from the European Union's Horizon Europe research and innovation program under grant agreement No. 101135763

www.carnot2024.uliege.be