R₂* age variations in subcortical structures in young adults at 7T

Mikhail Zubkov¹, Kerrin Pine², Pierre-Louis Bazin³, Nasrin Mortazavi¹, Siya Sherif¹, Puneet Talwar¹ Laurent Lamalle¹, Christophe Phillips¹, Fabienne Collette¹, Anneke Alkemade⁴, Evgeniya Kirilina² Nikolaus Weiskopf², Gilles Vandewalle¹

¹ University of Liège, GIGA Research, GIGA-CRC Human Imaging Unit, Liège, Belgium
² Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
³ Full brain picture Analytics, Leiden, Netherlands
⁴ University of Amsterdam, Amsterdam, Netherlands

M.Zubkov@uliege.be

Introduction

3580

Ultra-high field (UHF) MRI is a promising modality for imaging small subcortical structures. Quantitative MRI

Results

High quality, 0.6 mm resolution, co-aligned maps of qMRI parameters R_2^* , PD, R_1 , and MTsat were obtained in all participants. Bilateral striatum, the right subthalamic nucleus, and left periaquedactal gray matter showed significant (FDR-corrected p < 0.05) R_2^* increase with age. Other areas and qMRI parameters showed dependency below significance threshold.

(qMRI), allows mapping MR-parameters of these structures in hope of assessing their function in healthy population, and in neurodegenerative disorders.

An example of subcortical structures delineation based on UFH-qMRI data

Methods

21 healthy volunteers underwent the multiparameter mapping (MPM¹) scan at 7T MRI. Quantitative parameters were derived from the images with the hMRI toolbox². Subcortical structures were parcellated by Multi-contrast Anatomical Subcortical Structures Parcellation (MASSP³) tool. Generalized linear models were built to analyze the association between median qMRI values and age.

7T MRI with Magnetom Terra (Siemens Healthineers) 1-Tx/32-Rx head coil (Nova Medical)

3×FLASH-based ME 3D sequences (PDw/MTw/T1w) TR: 19.5 ms, FA: 5/5/20°, GRAPPA with R=2×2 TE×6: 2.3 to 14.2 ms (PDw/T1w) TE×4: 2.3 to 9.44 ms (MTw) Voxel Size: 0.6 mm isotropic Slice plots through the GLM models, which exhibit significant age dependency of qMRI parameters. Each plot shows the fitted response values as a function of a single predictor variable, with the other predictor variables held constant. The 95% confidence bounds for the response values are also shown.

Discussion

We provide a first set of values that show age-variation in quantitative MRI parameters obtained at UHF in small subcortical structures in healthy young adults. The detected variations in R_2^* , which have been previously reported, but only for larger brain structures and at lower-field MRI⁴, can reflect age-related iron accumulation.

To increase the changes detection power, this study will be complemented by a larger sample of older individuals.

SE/STE-EPI-based B₁ mapping

Gamma-family GLM: Y ~ age + BMI + sex

R₁, R₂*, PD and MT as response variables with multiple comparison correction applied for each parameter separately

References

- 1. Weiskopf et al. 2013, Frontiers in Neuroscience (7)
- 2. Tabelow et al. 2019 NeuroImage (194)
- 3. Bazin et al. 2020 eLife (9)
- 4. Callaghan et al. 2014 Neurobiology of Aging (35)

