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Abstract : The structural events related to antibody-dependent lymphocyte-mediated cytotoxicity 

(ADLC) have been studied on measles virus-infected cells using human peripheral blood lymphocytes 

(PBL) and anti-measles virus serum. The first event in ADLC was a recognition process occurring 

within 15 min after contact between the infected cells and lymphocytes. Plasma membrane and 

microvilli of adsorbed PBL were specifically attached to virus-induced ridges over nucleocapsids and 

to viral buds. After 30 min, a fraction of adsorbed PBL (K cells) changed shape and extended long 

filipodia toward the target cells which, in turn, showed long villi contacting the PBL. At 4 h, when 

cytotoxicity as measured by chromium release was maximum, K cells had flattened and numerous 

blebs and ruffles formed on their surface. The K-cell alterations varied in intensity with the type of 

measles-infected target cell, but frequently the K cells appeared irreversibly damaged. T- and non-T-

cell fractions were separated, and in situ erythrocyte rosettes were used as markers for subpopulations 

which were easily recognized by scanning electron microscopy. Most of the cytotoxic K cells were 

identified as non-T cells carrying Fc receptors for immunoglobulin G. However, a small subpopulation 

of cells bearing both sheep erythrocyte and Fc receptors was also found to be involved in ADLC by 

chromium release assay as well as by electron microscopy. Some of these interacting T cells extended a 

long uropod on the target cell, but their intracellular structure remained unaltered through ADLC, in 

contrast with the other T cells and the non-T killer cells. This suggests that perhaps some T killer cells 

might remain functional after the cytotoxic interaction with a target cell. 

 

Cells infected with paramyxoviruses display virus-induced morphological changes in their plasma 

membrane. Studies by transmission electron microscopy (TEM) have shown that nu-cleocapsids align 

beneath cell membrane areas which are covered with projections (8, 12-15). During measles virus 

infection of a cell monolayer, immunolabeling techniques combined with thin-sectioning, surface 

replication, and scanning electron microscopy (SEM) have demonstrated that these virus-modified 

areas of the host membrane (ridges) contain viral antigen and hemadsorbing sites (12, 13, 31). In the 

absence of complement, anti-measles antibodies produce a redistribution of the cell membrane 

components and clearing of antigen-antibody complexes (21, 22). 

Antibodies also mediate a cellular immune response, the antibody-dependent lymphocyte cytotoxicity 

(ADLC) (27). This hypersensitive cell-killing activity, which is known to also operate against virus-

infected cells in vivo (17,18), can readily take place during viral infection because it requires the 

presence of nonsensitized Fc receptor-bearing leukocytes and specific antibodies (27, 28, 34). Hence, it 

appears to be an important mechanism of immune response to viral infection. It might be very effective 

in measles virus infection since circulating antiviral antibodies remain present for a lifetime after 

primary infection and since anti-measles virus antibody levels are extremely elevated in the serum and 

cerebrospinal fluid of patients with subacute sclerosing panencephalitis. In ADLC, the primary effector 

cells have been described as nonadherent and nonphagocytic lymphocytes (36), carrying receptors for 

the Fc portion of immunoglobulins (K cells) (28, 34). 

We have studied the attack of two cell lines infected with measles virus (target cells) by peripheral 

blood lymphocytes (PBL) in the presence of anti-measles virus serum. We have characterized the sites 

of recognition between PBL and target cells and observed the interactions between effector cells and 

target cells using TEM and SEM. These observations were correlated with cytotoxicity measurements 

by the 
51
Cr release assay. Differential labeling allowed us to determine which PBL subpopulations 

were involved in this cytolytic process. (Parts of this work were presented at the Fourth International 

Congress for Virology, The Hague, 1978, and at the 79th Annual Meeting of the American Society for 

Microbiology, Los Angeles, Calif, and Honolulu, Hawaii, 1979.) 
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Materials and methods 

 

Cells and viruses. 

 

Vero cells, a continuous line of African green monkey kidney cells, were grown in 75 cm2 plastic 

flasks and on 13-mm glass or plastic cover slips and inoculated at confluency with the Edmonston B 

strain of measles virus as described previously (31). Experiments were performed when giant cells 

were scattered over the cultures. 

MA160 cells (Microbiological Associates, Walkers-ville, Md.), a human prostate cell line, were grown 

in the same manner as the Vero cells. MA72046 cells derived from MA 160 ceils and persistently 

infected with the Mantooth strain of SSPE virus (14) were employed when 90% of the cells had 

measles virus-associated membrane antigen, as detected by immunofluorescence. 

 

 

PBL purification 

 

Lymphocytes were obtained from measles virus seropositive and seronegative human donors and 

separated from heparinized peripheral blood by Ficoll-Hypaque gradient centrifugation (5). The 

mononuclear cells were collected, washed twice in phosphate-buffered saline (PBS, pH 7.2), and 

suspended in RPMI-1640 medium (Microbiological Associates) supplemented with 10% fetal calf 

serum and 1% L-glutamine. Fetal calf serum used in these studies was adsorbed three times with fresh 

sheep erythrocytes. 

 

 

Separation of PBL subpopulations by resetting techniques 

 

Subpopulations of T and non-T lymphocytes were obtained by separating sheep erythrocytes (SE) 

rosetting cells (T cells) from nonrosetting cells using Ficoll-Hypaque density gradient centrifu-gation. 

Equal volumes of a 2% washed sheep erythrocyte suspension and PBL at 5 X 107 cells per ml were 

mixed thoroughly, incubated at 37° C for 5 min, and then at 4°C for 90 min. The SE-PBL mixture was 

then placed on Ficoll-Hypaque gradient and centrifuged at 60 X g for 30 min. A band of nonrosetting 

cells was collected, and rosettes were harvested from the pellet and placed in separate tubes. The SE-

PBL rosettes were dissociated by incubation at 37° C for 20 min followed by treatment with distilled 

water for 30 s. Dissociated rosettes were then mixed with an equal volume of 2x Eagle minimum 

essential medium (Grand Island Biological Co., Grand Island, N.Y.), and the cells were washed twice 

with RPMI-1640 medium. The above-described SE rosetting procedure was repeated once with the SE 

rosetting subpopulation to obtain the final cell fractions. 

The SE nonrosetting population was further treated to isolate the Fc receptor-bearing cells. The SE 

non-rosetting cells were placed in a tissue culture A flask (Corning Glass Co., Corning, N.Y.) and 

allowed to incubate at 37°C for 45 min. The nonadherent cells were gently removed and placed in a test 

tube. Chicken erythrocytes (CE) were incubated for 30 min at 37°C with a subagglutinating dilution of 

rabbit anti-CE immunoglobulin G (IgG) purified by Sephadex G200 filtration and diethylaminoethyl 

(DEAE)-cellulose chromatography. The sensitized cells (CE-AB) were washed twice and suspended to 

2% in RPMI-1640 medium. Equal volumes of nonadherent, SE rosette-negative PBL and CE-AB were 

mixed and incubated at 37 °C for 45 min to allow rosetting. The mixture was then placed on a Ficoll-

Hypaque gradient and centri-fuged at 60 X g for 30 min to separate rosetting (Fc receptor-bearing) 

cells from nonrosetting cells. The CE-AB rosetting cells were harvested from the pellet, and the CE 

were removed by a second distilled water treatment. The CE-AB rosette-positive PBL were washed 

twice in RPMI-1640 medium. 

 

 

51Cr release assay 

 

The 51Cr release assay was performed as previously described (26, 40). Briefly, uninfected and 

measles virus-infected Vero or MA 160 and MA72046 (see Cells and Viruses above) were used as 

target cells. The target cells were incubated with 10 ml of Dulbecco PBS containing 150 µCi of Na2 

51CrO4 (specific activity, >350 mCi/mM, Amersham Corp., Arlington Heights, I11.) for 1 h at 37°C. 
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The cells were washed 4 times, removed by gentle trypsinization and scraping, and resuspended as 

dissociated cells at 5 X 104 viable cells per ml in RPMI-1640 medium supplemented with 5% absorbed 

fetal calf serum and 1% L-glutamine. The target cell suspension was then placed into round-bottom 

microtiter test plates (Linbro Co., Waltham, Mass.) in 0.1-ml volumes. Lymphocyte populations were 

suspended at 5 X 106 cells per ml and added in 0.1-ml volumes. Serum was added to appropriate wells 

in 0.05-ml volumes. The positive serum had a titer of 1:160 by hemagglutination inhibition assay (35) 

and 1:1,280 by ADLC assay and was used at dilutions of 1:80 and 1:320, while the negative serum was 

used at 1:40. The cells were incubated at 37°C for 4 h. Then supernatant fluid was harvested with a 

Skatron automatic supernatant fluid collector (Flow Laboratories, Rockville, Md.), and the 

radioactivity in the fluid was detected with a gamma counter. The total amount of 51Cr available per 

test was determined by placing 0.1 ml of labeled target cells into glass tubes (10 by 75 mm) in triplicate 

and adding 3 ml of distilled water to disrupt the cells. The level of cytotoxicity was determined from 

the mean of triplicate values for each test as follows: 

% Cytotoxicity 

 
where T = target cells, L = lymphocytes, S = serum, and CPM = counts per minute. 

 

 

SEM and TEM 

 

Target cells grown on coverslips were washed twice with MEM. Lymphocytes at 2 X 107 cells per ml 

were placed onto the cover slips in 0.2-ml volumes along with 0.2 ml of serum (with or without 

antibody to measles virus) diluted to 1:80. For in situ rosetting experiments, the cells were then kept at 

37°C for 4 h and then thoroughly washed with MEM to remove noninteracting PBL. A 2% suspension 

of SE or CE-AB or both was added in 1-ml volumes to the cultures after the 4-h incubation. In situ SE 

rosetting was performed at 37°C for 5 min and then at 4°C for 90 min. In situ CE-AB rosetting was 

achieved in 40 min at 37°C. For double rosetting with SE and CE-AB, the cells were incubated at 37°C 

for 5 min and then placed at room temperature for 2 h. At the end of the appropriate time periods, each 

preparation was washed four times with MEM and then fixed in glu-taraldehyde (2% in cacodylate 

buffer 0.1 M, pH 7.2) at room temperature for 1 h. The preparations were washed in cacodylate buffer, 

postfixed in 1% OsO1, processed for SEM or TEM as previously described (31), and observed with an 

ETEC Autoscan scanning electron microscope and with a Philips 201 transmission electron 

microscope. 

 

 

Results 

 

Structural observations during ADLC with unseparated PBL. (i) Early interaction: recognition step 

 

Approximately 15 min after anti-measles antibody and PBL had been added to the culture medium, 

many PBL were adsorbed to the infected monolayer and could not be detached by repeated washings. 

This observation was made with both target cell lines studied. As observed by SEM, all adsorbed PBL 

retained a spherical shape and were covered with short microvilli. TEM examinations of thin sections 

showed a specific attachment of most PBL to modified areas of target cell membrane under which viral 

nucleocapsids were aligned (Fig. 1). Areas of contact were large expanses of PBL membrane or short 

PBL microvilli. In some cases, no clear relationship between PBL adsorbing sites and the presence of 

nucleocapsids under the membrane of target cells could be detected. At this time, no significant 

cytotoxicity was detected by 
r,,
Cr release. 

After 30 min, ca. one-third of the adsorbed PBL were extending long filopodia onto the target cell 

membrane. The target cell itself also extended long villi towards the lymphocyte. 

 

 

(ii) Late interaction: cytotoxicity 

 

After 4 h, ca. 50% of the adsorbed PBL were strongly interacting with the target cell membrane. Many 

persistently infected cells (MA72046) were rounding up and retracting from the glass or plastic 

substrate to which they were still attached by long processes (Fig. 2). These cells and the PBL were 

often intensely damaged: their cytoplasm became less dense and organelles were destroyed. The cell 
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membranes formed giant protrusions and blebs and were often disrupted. At this time, the ADLC, as 

measured by 
r,,
Cr release, was near maximum and subsequently remained approximately the same as 

compared to controls (Fig. 3). 

The membrane of Vero syncytia appeared more resistant to ADLC after 4 h than the membrane of 

persistently infected cells, and the shape and structure of PBL interacting with these giant cells changed 

dramatically. Cytotoxicity levels remained very low on Vero cells. PBL reacting with target cells were 

covered with membrane blebs and ruffles and extended their filopodia over a large area of the target 

cell membrane (Fig. 4 and 5). Some PBL extended a long uropod on the giant cell surface (Fig. 4). 

Contact between PBL membrane and ridges over viral nucleocapsids was frequent, and many virions 

were adsorbed on the PBL or even engulfed by them (Fig. 6). Giant cell villi containing nucleocapsids 

were also seen to converge toward PBL villi (Fig. 6, inset). Part of the target cell containing 

nucleocapsids often invaded the PBL, resulting in an intricate mixture of both cells (Fig. 5). In these 

instances, however, membrane fusion was not clearly observed between target cells and PBL. 

Half of the adsorbed PBL population was not interacting with the target cell surface. These PBL had a 

spherical shape, short microvilli, and normal intracellular structure as seen after 15 min of ADLC. PBL 

were sometimes completely engulfed in the Vero syncytium (Fig. 7). TEM revealed that many 

nonreacting PBL were also attached to areas rich in membrane-bound nu-cleocapsids. 

The distribution of PBL adsorbed on measles virus-infected Vero cells was homogenous and contrasted 

with the localized and clustered distribution of monkey erythrocytes during hemadsorption (31). In 

addition, there was no patch or ring formation of PBL on the target cell surface, in contrast with the 

distribution of viral antigens on giant cells after anti-measles virus antibody treatment (21). 

 

 
51
Cr release from target cells during ADLC by lymphocyte subpopulations 

 

Lymphocytes from measles virus seropositive and seronegative donors were employed as whole or 

fractionated populations in the ADLC-
51
Cr release assay. The double SE rosette separation technique 

yielded a highly enriched fraction of T cells (94.0 ± 1.6% SE rosette-positive cells) which also 

contained 3.8 ± 0.6% Fc receptor-positive cells. The non-T-cell fractions contained 78.5 ± 7.8% C3 

receptor-positive cells, 54.3 ± 4.8% surface immunoglobulin-positive cells and 

60.0 ± 3.7% Fc receptor-positive cells. There was a slight contamination by 2.2 ± 0.6% T cells (SE 

receptor positive) also in this fraction. 

Spontaneous lymphocyte cytotoxicity by each cell population without additional serum was also tested. 

The results are presented as mean specific cytotoxic activity against the measles-infected target cell 

minus the activity against the uninfected cell line. The whole lymphocyte population from three 

seropositive donors gave 26.1  to 31.3% cytotoxicity, whereas the two seronegative donors gave 27.1 

and 44.3% cytotoxicity in the presence of the positive serum at a dilution of 1:80 (Table 1).  
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FIG. 1. Thin section through a PBL adsorbed on a measles virus-infected target cell after 30 min at 

37°C in the presence of anti-measles virus antibody. The PBL is attached to areas of the target cell 

membrane where nucleocapsids are aligned (arrows). Inset: PBL attached by its microvilli to an area 

of the target cell membrane where viral nucleocapsids are less densely packed. X 22,500. 

 

FIG. 2. Killing of persistently infected (MA72046) cell after 4 h at 37° C in the presence of PBL and 

anti-measles virus antibody. The target cell is covered with blebs (b) and is rounding up. Long 

retraction processes are still attached to the glass substrate, ni, Noninteracting PBL; *, structure 

which might be the remains of an interacting PBL. x6,000. 
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FIG. 3. Kinetics of 

51
Cr release at 37°Cfrom MA72046-infected cells (∆) and from MA160 control cells 

(O) in the presence of PBL and positive (------) or negative (- - ------) anti-measles virus serum. 

 

 

The activity dropped significantly when a higher dilution (1:320) of serum was employed (9.6 to 17.8% 

for seropositive donors and 16.3 and 19.6% for the seronegative donors). No significant cytotoxicity 

was seen in the presence of the negative serum nor were the donor lymphocytes from either 

seropositive or seronegative individuals spontaneously cytotoxic. 

The enriched non-T-cell fraction gave cytotoxic activity ranging from 18.3 to 42.9% for the 

seropositive donors and 35.3 and 51.1% for the seronegative donors with the low dilution of positive 

serum (1:80). No significant activity was seen with the non-T cells against either target cell when 

negative serum was employed nor was there any spontaneous cytotoxic activity with this fraction. 

When the T-cell fraction of lymphocytes was employed, we found one (9.4%) of three seropositive 

donors and both (9.6 and 11.3%) seronegative donors with highly significant (P < 0.005) levels of 

cytotoxic activity in the presence of positive serum. Two of the three seropositive donors had 

significant (P < 0.001) activity but at a much lower level (5.8 and 4.9%). This T-cell fraction did not 

have any cytotoxic activity in the presence of negative serum nor were they spontaneously active 

against either of the target cells. 

 

 

Structural observations during ADLC with purified PBL populations 

 

In situ erythrocyte rosetting was performed to identify by surface markers subpopulations of PBL 

interacting and not interacting with the target cell surface. At 4 h, all PBL which rosetted with CE-AB 

and were attached to target cells had undergone structural changes (Fig. 8), although not all interacting 

PBL could be labeled by this technique. In contrast, almost all PBL forming SE rosettes remained 

morphologically unaltered on the target cell (Fig. 9), but all noninteracting cells could not be 

rerosetted. However, a few of them developed one long uropod carrying the receptors for SE (Fig. 

10a). This uropod sometimes created a large fold in the target cell and penetrated deeply into it (Fig. 

10b). 

Finally, a fraction of the T cells purified by SE rosetting was submitted to a CE-AB roset-ting 

separation to obtain a subpopulation of T cells bearing Fc receptors (TFc
+
). Purified TFc

+ 
cells were 

then observed by SEM after 4 h in the presence of antibody. Most of these cells showed uropodial 

extension and were labeled with both SE and CE-AB after double rosetting in situ (Fig. 11). 

 

 

Discussion 

 

In the present study, structural changes occurring in PBL and in target cells during ADLC on measles 
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virus-infected cells were analyzed by TEM and SEM. SEM combined with erythrocyte labeling 

allowed us to identify lymphocyte subpopulations intimately interacting with target cells and having a 

cytotoxic activity demonstrated by biological assay (chromium release). 

 

 
FIG. 4. Scanning electron micrograph of a noninteracting PBL (ni) and of two types of interacting PBL 

(i) on the surface of a measles virus-infected Vero syncytium after 4 h of ADLC. The appearance of the 

interacting PBL at the top is the most frequent one. The PBL at the bottom extends a long uropod (u) 

on the target cell membrane. The latter type of interaction is rarely seen, x 7,500. 

FIG. 5. Maximal interaction between a PBL with a measles virus-infected Vero syncytium after 4 h at 

37° C with anti-measles virus antibody. The target cell membrane is slightly depressed by the PBL and 
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is lying over a large cytoplasmic inclusion of viral nucleocapsids (N). The cytoplasm of the target cell 

has a long extension penetrating deeply into a PBL membrane invagination (arrow). The PBL shows 

vacuolation and increased density, while the cytoplasm of the Vero cell appears lighter and contains 

healthy organelles. X 17,000. 

 

 

 
FIG. 6. Area of strong interaction between PBL and Vero cell infected with measles virus after 4 h of 

ADLC. Long cytoplasmic processes from both cells interweave at contact area. Vero cell extensions 

contain viral nucleocapsids (arrow). A complete virion (arrowhead) is engulfed in the PBL. Inset 

shows a microvillus containing viral nucleocapsids and pointing toward a PBL microvillus. x35,000. 
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FIG. 7. PBL completely engulfed (arrow) in a Vero syncytium induced by measles virus, after 4 h at 

37°C with anti-measles virus antibody. Intracellular debris on the right of the invading lymphocyte 

could be degraded Vero cell cytoplasm. Arrowheads point to viral inclusions. X8,000. 

 

 

TABLE 1. Percent specific ADLC against measles virus-infected target cells by T- and non-T 

lymphocyte subpopulations from seropositive and seronegative lymphocyte donors 

% Cytotoxicity by lymphocyte populations 

Donor lympho-

cytes 

Whole PBL Non-T cell Tcell 

 a b c d e a b c d e a b c d e 

Seropositive 

Positive 

serum 

               

1:80 26.1 29.8 31.3   18.3 42.9 20.4   5.8 4.9 9.4   

1:320 9.6 13.6 17.8   11.4 17.4 9.3   4.2 2.4 4.8   

Negative 

serum 

2.0 1.4 0   2.2 1.3 0.9   1.4 1.1 1.0   

No serum 0.4 0 2.0   1.2 0.4 0.5   0.6 1.3 1.6   

Seronegative 

Positive 

serum 

               

1:80    44.3 27.1    51.1 35.3    9.6 11.3 

1:320    19.6 16.3    30.2 22.4    5.2 5.0 

Negative 

serum 

   1.7 2.1    2.1 1.4    2.3 2.1 

No serum    0.3 0.7    0.6 0.9    1.7 1.9 
a
 Lymphocytes were employed from three donors who were seropositive for measles virus antibody (a, 

b, and c) and from two donors who were seronegative for measles virus antibody (d and e). 

 

 

 Two types of adsorbed lymphocytes which resisted vigorous washing could be easily distinguished by 

morphological criteria. Approximately half of the adhering PBL cells had retained their native shape 

and surface appearance. The other half had undergone dramatic alteration after interaction with the 

target cells. There was a good correlation between the proportion of interacting cells and the 
51
Cr 

release cytotoxicity assay throughout this study. From these observations, we assume that the 

interacting PBL correspond to the antibody-dependent killer cell population (K cells). 

The ADLC activity is mediated by lymphocytes bearing Fc receptors for IgG (28). In our study, the 

interacting PBL could indeed be labeled in situ by CE-AB. Noninteracting lymphocytes were generally 

labeled with SE, confirming at first the general opinion that T lymphocytes are not effective in ADLC 

(6, 25, 34, 39). The sites of recognition for the K cells on the target membrane were clearly associated 

with the surface viral antigens organized over nucleocapsids and were already detected at the end of the 

15-min prolytic phase described by others (33). Although adsorption is an absolute prerequisite for 

cytotoxicity (33, 42), PBL can adhere to the target cells without exerting their cell-killing 

activity (19). Indeed, PBL noninteracting with the target cells were also found adsorbed on areas of the 

membrane over numerous viral nu-cleocapsids. These PBL could be part of a natural killer cell 

population which recognized altered cell surface structures (29) but, as demonstrated with the 

chromium release assay, were unable to kill this particular target cell. 

Lymphocytes interacting strongly with measles virus-infected target cells formed ruffles, blebs, and 

long filopodia. This appearance is somewhat different from the "fried-egg" shape of human 

lymphocytes adhering to immobilized antigen-antibody complexes (1). The "fried-egg" appearance 

seems to be caused by the adhesion to an immobilized substrate, like polylysine-coated glass (B. 

Rentier and J. M. Seigneurin, unpublished data). However, it is not induced by adsorption of 

lymphocytes onto lipid bilayers (20). These differences are thus related to the fluidity of the target. 

The detection in purified T-lymphocyte populations of cells carrying Fc receptors for IgG (7, 10, 11, 

16, 36, 38, 41) suggested that this small subpopulation could be active in ADLC. Measurements of 

51Cr release by MA72046 (measles-infected) cells in the presence of anti-measles serum and separated 

T cells indicated that these TFc
+
 cells accounted for more than one-fifth of the total cytotoxic activity 

exerted by the whole PBL population.  
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FIG. 8. Scanning electron micrograph of an interacting PBL (i), recognized by the blebs and long 

extensions as in Fig. 4, on a Vero syncytium after 4 h at 37° C with anti-measles virus serum and 

addition of CE-AB. The elongated shape with central swelling and the size are characteristic of CE. 

CE-AB rosetting demonstrates the presence of Fc receptors on interacting PBL. One noninteracting 

PBL is unlabeled (ni). Xll,500. 
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FI

G. 9. Scanning electron micrograph of two noninteracting PBL (ni) on a Vero syncytium after 4 h at ST 

with anti-measles virus serum and addition of SE. SE are spherical and smaller than CE. One PBL is 

the center of a complete rosette of at least 7 SE; the other PBL has adsorbed only one SE. Inset: thin 

section reveals PBL microvilli attached to SE. x 11,500; inset, X35,000. 
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FIG. 10. Appearance in SEM and TEM of T lymphocytes extending uropod (u) on target cell (a) The 

cell body of the lymphocyte remains spherical and shows slight ruffling, the uropod interacts with the 

target cell. The thymic origin of this cell is demonstrated by labeling with SE, which are all attached to 

the uropod. (b) TEM reveals that an uropod forming PBL penetrates deeply between two measles 

virus-infected Vero cells. Lymphocyte organelles are present in the uropod. X9,500. 
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FIG. 11. Scanning electron micrograph of an uropod-forming PBL after 4 h at ST with anti-measles 

virus serum and addition of a mixture of SE and CEAB. Adsorption of one SE and 2 CEAB 

demonstrates that this uropod-forming PBL is a T cell carrying Fc receptors. Both SE and CEAB 

adsorb on the uropod (u). One noninteracting PBL (ni) shows spherical shape and short microvilli. X 

12,000. 

 

 

This is a surprisingly high ratio since the Fc receptor-bearing cells represented only ca. 4% of the total 

T-cell population. It might be explained by the fact that some TFc
+ 
cells may be recycled and perform 

several times successively their ADLC activity, while non-T killer cells (K cells) could not. This purely 

speculative assumption is supported by the visual appearance of interacting cells. Non-T killer cells 

strongly interacting with the target cells appear to be irreversibly altered, while TFc
+ 
cells undergo 

limited deformation during interaction, except for a uropod extension. 

Uropod formation by lymphocytes has long been observed and associated with motility (9, 23). It has 

also been described during adhesion to macrophages (30), stimulation by mitogens (3), by anti-IgG 

antibody (37) or by antigen-antibody complexes (4, 1), and even in unstimulated lymphocyte 

populations (24). Biberfeld and co-workers (4) have shown that contact between the effector cell and 

target cell triggers the activation of the killer cell and stimulates the formation of a long uropod which 

causes detachment and lysis of the target cell. However, in our system, uropod formation was 

infrequent and restricted to TFc
+
 cells. The T-cell identity of the uropod-forming lymphocyte has been 

previously suggested (32) and.was confirmed here by consistent in situ resetting with SE. Interestingly, 

the adsorption sites for SE have migrated towards the uropod on the lymphocyte surface. In addition, 

double in situ rosetting with SE and CE-AB clearly demonstrated that the uropod-forming cells 

corresponded to the TFc
+
 subpop-ulation. 

In conclusion, a correlation between electron microscopic observations and biological (chromium 

release) assay has demonstrated the presence of two distinct subpopulations of PBL interacting with 

measles virus-infected target cells and producing a cytotoxic attack directed by antibody. One 

population consists of a group of non-T cells, and the other consists of a small group of T cells, both 

carrying Fc receptors for IgG. Each group displays a distinct type of morphological interaction with the 

target cell, the non-T cells undergoing dramatic deformation and extending filopodia, and the T cells 

forming a large uropod. Neither shows any evidence of membrane fusion with the target cell, but both 

have cytotoxic activity. 
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