

Mitigation of alkali-silica reaction through carbonation of recycled concrete aggregates

S. Grigoletto¹, J. Hubert¹, J. Duchesne², B. Bissonnette³, F. Michel¹ and L. Courard¹

¹ Urban and Environmental Engineering, University of Liège, Belgium
 ² Department of Geology and Geological Engineering, Université Laval, Québec, Canada
 ³ Department of Civil Engineering and Water Engineering, Université Laval, Québec, Canada

https://www.icaar.ca/

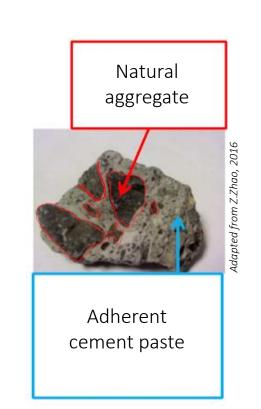
May 18th- 24th, 2024 Ottawa, Ontario, Canada

INTRODUCTION

Concrete recycling

- Constant increase of concrete production volume
 → Increase in natural aggregates consumption
- Concrete = largest part of C&D waste
 - \rightarrow Waste management more and more challenging

Preservation of natural resources and promotion of circular economy


→ Use of **recycled concrete aggregates** (RCA)

https://www.icaar.ca/

Recycled Concrete Aggregates and ASR

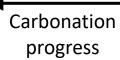
- Cement paste porosity higher
 - Water absorption \uparrow
 - Mechanical performances \downarrow
- Limitation of RAC utilization: lower mechanical and durability performances
- In particular, secondary induced expansion due to ASR may happen
- Many factors influencing ASR in the new concrete
 - Original aggregate reactivity
 - Expansion degree of the primary ASR
 - RCA production procedure
 - Exhibition of new faces

 \rightarrow influence properties of concrete made of RCA

RCA Carbonation

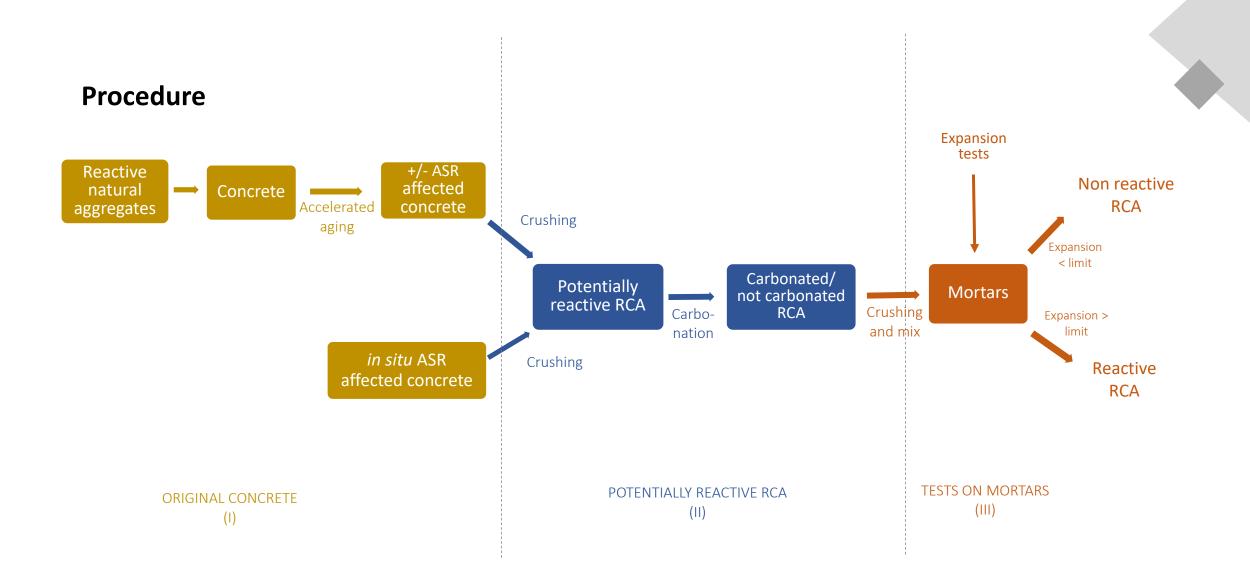
• Various methods to enhance RCA performances, among which carbonation treatment

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$


- CaCO₃ precipitates gradually and fills the pore of the mortar paste of the RCA
 - RCA water absorption $\downarrow~$ and concrete transport properties $\downarrow~$

INTRODUCTION

- pH \downarrow and alkali hydroxides quantity \downarrow


 \rightarrow could be beneficial regarding ASR as well

MATERIALS AND METHOD

Materials

- Portland cement (CEM I 52.5 N 0.68% Na₂O_{eq})
 - RCA manufacturing
 - Reactivity tests (mortar samples)
- 3 types of aggregates (4/20)

Natural reactive aggregatesTournaisis siliceous limestoneDensity
(kg/m³)WAI24
(%)Sand (0/4)26770.3Gravels (2/7 - 7/14 - 14/20)26600.5

RCA from an ASR affected structure

Obtained by crushing concrete elements retrieved from the Champlain Bridge

Transverse beam (C-B)

Pile (C-P)

Manufactured potentially reactive RCA

Produced from laboratory concretes manufactured with fine and coarse Tournaisis aggregates

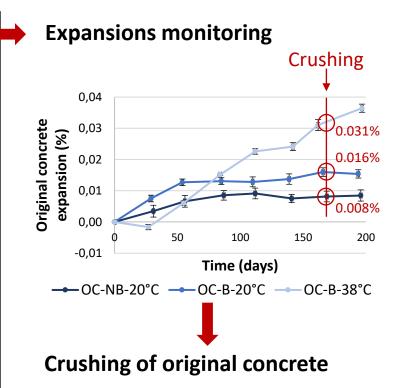
https://www.icaar.ca/

6

May 18th- 24th, 2024 Ottawa, Ontario, Canada

Manufactured potentially reactive RCA

Production of original concrete


• 70 x 70 x 280 mm³

		Boosted	Not boosted
Cement		395	395
NaOH		3	-
Water		204	207
Sand		657	657
Coarse aggregates	2/6.3	173	173
	6.3/14	423	423
	14/20	518	518
Plasticizer 1		1	1

Mix proportions (kg/m³)

- Storage
- Climatic chambers in water saturated atmosphere
- 20°C and 38°C

Sieved to recover coarse RCA (4/20 mm)

https://www.icaar.ca/

MATERIALS AND METHOD

Carbonation of RCA

- Equipment: 2 air-tight incubators ٠
- Test conditions: ٠
 - Atmospheric pressure ٠
 - $T^{\circ} = 39^{\circ}C$ ٠
 - [CO₂] = 20% ٠
 - 60% RH (saline solution) ٠
 - 11 days ٠
- Applied to the 4/20 mm fraction ٠

https://www.icaar.ca/

https://www.icaar.ca/

Reactivity tests on mortars (NF P18-594)

- Fast screening test (4 days)
- Measurement of length variations before and after curing in autoclave

 $\epsilon_i (\%) = \frac{L_{1i} - L_{0i}}{L_0}$ with L_0 = 140 mm

- 2 Cement/Aggregates (C/A) ratios : 0.5 and 1.25
- Expansion limit = 0.15 %
 - potentially reactive (PR) if average expansion > for at least one C/A ratio
 - pessimum effect when expansion does not decrease when C/A ratio increases

Crushing of the 4/20 mm RCA

- Use of a jaw crusher
- Sieving to obtain a 0.16/5 mm recomposed sand having the required grain size

Samples preparation

- 40 x 40 x 160 mm³
- 24h at 90% RH 20°C + 24h in water at 20°C

Curing in autoclave

https://www.icaar.ca/

• 5h at 127°C and 1.5 bars

	C/A ratio	0.5	1.25	
	Sand (g)	1200	720	
	Cement CEM I 52.5 (g)	600	900	
•	Mixing water with NaOH (ml)	300	450	
	<i>Mix proportions</i>			

May 18th- 24th, 2024 Ottawa, Ontario, Canada

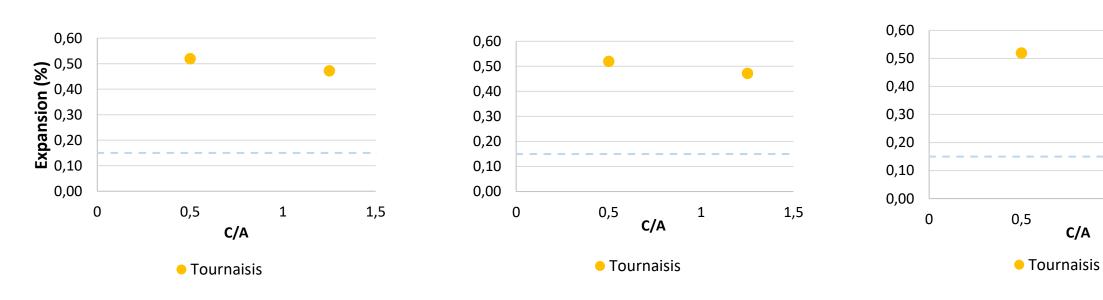
4% Na₂O_{eq} of cement mass

https://www.icaar.ca/

Reactivity tests on mortars (NF P18-594)

Adjustments

- Higher water absorption → pre-saturation (Delobel et al., 2016)
- Risk of RCA alkali lixiviation \rightarrow slight washing (Adams et al., 2012)
- Crushing of coarse RCA \rightarrow modified chemical and physical properties
- RCA coming from alkali-boosted concrete manufactured in the laboratory
 → artificial alkalinization deducted to the quantity of NaOH needed to
 reach 4% Na₂O_{eq}



11

Manufactured potentially reactive RCA

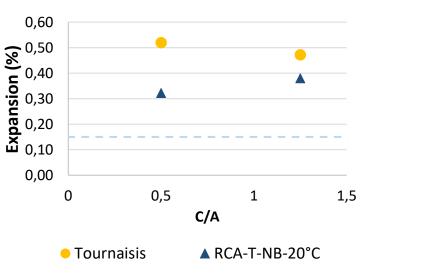
Original concrete expansion: 0.008 %

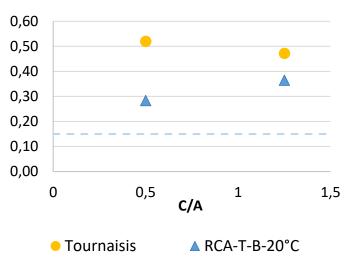
https://www.icaar.ca/

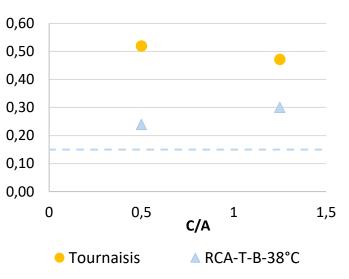
May 18th- 24th, 2024 Ottawa, Ontario, Canada

0.016 %

1,5


0.031 %

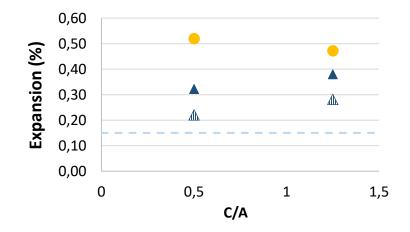

1

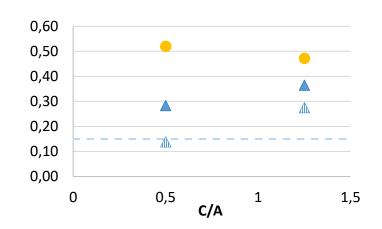

Manufactured potentially reactive RCA

Original concrete expansion: 0.008 %

0.016 %

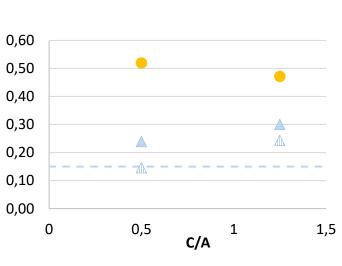
https://www.icaar.ca/




Manufactured potentially reactive RCA

Original concrete expansion: 0.008 %

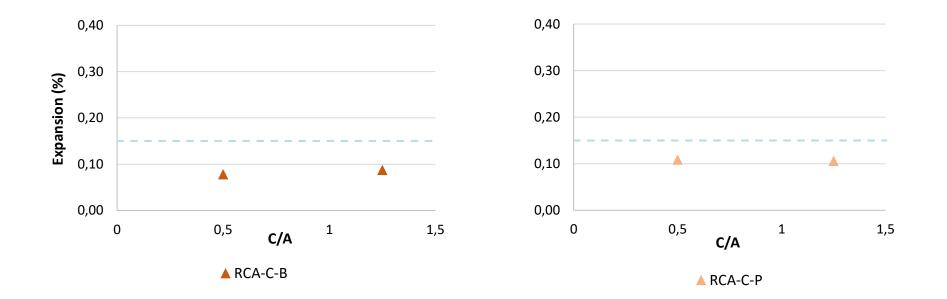
https://www.icaar.ca/



● Tournaisis ▲ RCA-T-NB-20°C ▲ RCA-T-NB-20°C-C

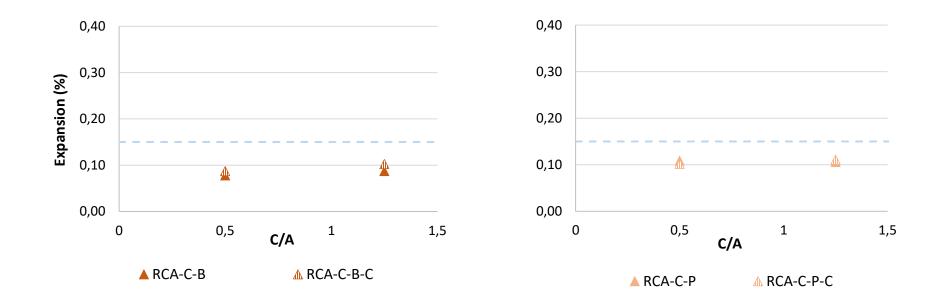
0.016 %

● Tournaisis ▲ RCA-T-B-20°C ▲ RCA-T-B-20°C-C


Tournaisis A RCA-T-B-38°C A RCA-T-B-38°C-C

0.031 %

14


RCA from an ASR affected structure

https://www.icaar.ca/

RCA from an ASR affected structure

https://www.icaar.ca/

- Manufactured potentially reactive RCA
 - Mortar expansions < original aggregate, but still > 0,15% (with pessimum effect)
 - The higher the original concrete expansion, the lower the RCA mortar expansion
 - Expansion significantly decreased by carbonation
 But does not seem to be sufficient → combined with SMCs ?
- RCA coming from Champlain Bridge
 - Classified as non-reactive aggregates
 - No influence of carbonation
- Need to perform long term tests on concrete to confirm these results, as they should be more suitable.

Thank you! Questions?

sophie.grigoletto@uliege.be

www.uee.uliege.be

May 18th- 24th, 2024 Ottawa, Ontario, Canada