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Abstract: This study aims to contribute to the characterization of Katangese Copperbelt’s (DR
Congo) mining wastes and soils polluted with trace metals, using pollution indices and direct
concentration measurements. This study also evaluated the use of these indices in assessing the
success of remediation projects. Data from previous studies and samples collected from six types
of discharge and one polluted soil were used to address the first objective. Soil and plant samples
were collected at Kipushi and Penga Penga for the second objective. The results reveal very high
concentrations of As, Cd, Co, Cu, Mn, Pb, and Zn in all mine tailings and polluted soils, compared
with local references. The degree of contamination (DC) values (from 72 to 5440) and potential
ecological risk (RI) values (from 549 to 162,091) indicate very high-risk situations associated with
polluted discharges and soils. Regarding revegetation trials, the results show lower concentrations
and RIs in tree rhizospheres compared with unamended areas at both sites. However, trace metal
concentrations are higher in tree rhizospheres compared with local references, and RI values are
in the considerable risk range for Penga Penga (RI = 533) and in the very high range (>1500) for
Kipushi. Bioconcentration factor values are below 1, indicating low accumulation in roots, wood, and
leaves, and low risk of contamination of the trophic chain. In this context, it seems that the pollution
indices used are suitable for characterizing pollution and prioritization for remediation. However,
there seems unsuitable for assessing the effectiveness of phytotechnology processes based on metal
stabilization. Direct plant performance measurements combined with direct measurements of metals
in substrates and plants to assess transfer and efficiency are more appropriate.

Keywords: trace metals; tailing; polluted soil; phytotechnology; potential ecological risk index;
Katangese Copperbelt

1. Introduction

Mining activities in the Katangese Copperbelt (KCB, DR Congo) for more than a
century generated great quantities of mining waste. These result from ore extraction in
mines and metallurgical processes for ore purification; a typology of mining waste in the
KCB is provided in the literature [1–3]. Mining is responsible for metal dissemination and
the related pollution of the environment, as reported by numerous studies. Mining wastes
cover large areas and are an important component of the landscape in the KCB, leading
to socio-environmental and public health issues. Several studies have demonstrated the
negative impact of mining activities on soils [4–6], surface, and groundwater [7,8]. Human
exposure occurs via consumption of contaminated agricultural products [9,10] and fish [11]
as well as direct ingestion of contaminated dust and water [8]. Evidence of the impact of
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high exposure to trace metals in the KCB is well documented. Banza et al. [12] produced
one of the first reports highlighting the high exposure of populations living close (0–3 km
and 3–10 km) to a mining site or refinery in KCB, with all analyzed trace metals being above
the World Health Organization’s (WHO) threshold values. Several studies have reported
the link between high exposure and the occurrence of specific diseases [13–17]. This high
human exposure is exacerbated by the proximity of mining wastes and polluted sites to
densely populated cities and urban areas.

Reducing or limiting human exposure to trace metals in the KCB needs a well-
conceived remediation plan at a regional scale. Results from trials of mining waste and
polluted soil remediation in the KCB are reported in the literature. Remediation is mainly
based on the use of metal-tolerant plant species in phytoremediation strategies [18–21] or
the use of woody species to enhance or improve the production of ecosystem services from
vegetation to be installed on mining wastes and contaminated soils [10,22,23]. In addition,
reclaiming mining wastes based on their valorization in the industry, to extract metals of
interest (Cu, Co, Zn, etc.) and reduce their concentrations in the “new” discharged wastes
has been proposed [1,24–26]. To date, no study of the remediation trials of polluted rivers
and lakes has been reported.

Up to now, most reported studies were limited to comparing metal concentrations in
waste and contaminated soils to thresholds from the Democratic Republic of the Congo
regulation or international standards or assessing the potential of mining waste to release
metals into the environment. However, no study has evaluated the risks associated with
mining waste and polluted soils based on the pollution indices, and none has used these
indices to evaluate the performance of remediation trials in the KCB.

In this context, pollution indices are relevant tools for assessing the hazardousness of
mining waste, sediments, and soils in the environment. Used as a means for integrating the
concentrations of a certain number of metals to quantify the level of contamination and the
risks associated with mining wastes and contaminated sites for humans and the environ-
ment, these indices could potentially also be used to prioritize areas for remediation [27].
Numerous indices of the hazardousness of mining waste and contaminated sediments and
soils have been developed to assess the risk associated with concentrations of individual
(single indices) or several metals (multiple pollution indices) [28–30]. Among the most
widely used are the enrichment factor and the contamination factor as single indices, and
the degree of contamination, the pollution index, and the potential ecological risk index
as multiple pollution indices. The use of indices based on metal concentrations to assess
the potential risks for humans and the environment is well documented [31–35]. However,
their use in assessing the success of remediation trials is very poorly documented, with
most of the studies limited to assessing the risks and identifying the phytoremediation
potential of plant species [36–41].

Taking into account all the aspects described, the overall objective of this study was
to contribute to the assessment of the ecological risks associated with high concentrations
of trace metals in polluted soils and to evaluate the effectiveness of revegetation trials
in reducing ecological risks in reclaimed soils. More specifically, the objectives are to
(i) characterize the contamination of mining waste and polluted soils in the KCB, using
pollution indices as a tool for setting remediation priorities and (ii) evaluate the potential of
these indices as tools for assessing the success of remediation trials based on revegetation
with woody species. The results of this study are useful for identifying priorities and
improving remediation processes for sites polluted with trace metals in the KCB.

2. Materials and Methods
2.1. Study Area

This study was conducted in the KCB, in the south-east of the Democratic Republic of
the Congo. This region is rich in Cu and Co ores and has localized deposits of Zn, Mn, and
U, making it one of the world’s most important regions in terms of mineral supply [42,43].
KCB extends over an area more than 500 km long and 50 km wide from Kolwezi to Sakania
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(Figures 1 and 2). Its climate is humid subtropical with a rainy season from October to April
and a dry season from May to September. Average annual rainfall ranges from 1200 mm to
1400 mm, and the mean annual temperature is 20 ◦C [44]. The region’s dominant soil types
are laterites, tropical ferruginous soils, ferralitic soils, and vertisols [45]. The dominant
vegetation in the region is miombo open forest [46].

Environments 2024, 11, x FOR PEER REVIEW 3 of 19 
 

 

2. Materials and Methods 
2.1. Study Area 

This study was conducted in the KCB, in the south-east of the Democratic Republic 
of the Congo. This region is rich in Cu and Co ores and has localized deposits of Zn, Mn, 
and U, making it one of the world’s most important regions in terms of mineral supply 
[42,43]. KCB extends over an area more than 500 km long and 50 km wide from Kolwezi 
to Sakania (Figures 1 and 2). Its climate is humid subtropical with a rainy season from 
October to April and a dry season from May to September. Average annual rainfall ranges 
from 1200 mm to 1400 mm, and the mean annual temperature is 20 °C [44]. The region’s 
dominant soil types are laterites, tropical ferruginous soils, ferralitic soils, and vertisols 
[45]. The dominant vegetation in the region is miombo open forest [46]. 

 
Figure 1. Spatial distribution of various mining discharges and polluted soil around the main towns 
in the Katangese Copperbelt. CFSCu = wastes from concentrates of Cu sulfides by flotation, 
CFSCuZn = wastes from concentrates of Cu and Zn sulfides by flotation, COCuCo = wastes from 
concentrates of Cu and Co oxides, DP = deposit from smelting emissions, Sc = slag, SR = river sedi-
ments from mining plants. 

Figure 1. Spatial distribution of various mining discharges and polluted soil around the main
towns in the Katangese Copperbelt. CFSCu = wastes from concentrates of Cu sulfides by flotation,
CFSCuZn = wastes from concentrates of Cu and Zn sulfides by flotation, COCuCo = wastes from
concentrates of Cu and Co oxides, DP = deposit from smelting emissions, Sc = slag, SR = river
sediments from mining plants.
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flotation, (C) river sediments contaminated by wastes released by mining plants, (D) wastes from
concentrates of Cu and Co oxides, (E) slag from the smelting process of copper.

2.2. Source of Data on Metal Concentrations

Primary and secondary data sources were used for this study. Primary data came
from sample collection and analysis by the research team. A total of 95 samples were
collected from mining wastes and contaminated soils and sediments (from rivers) in the
KCB. Secondary data were obtained from articles and grey literature (doctoral dissertations,
Master’s theses) based on work carried out in the KCB, as summarized in Table 1.

Table 1. Studies characterizing metal concentrations in different types of polluted soils within
the KCB.

Reference Aim of the Study Analyses

Kaniki [1] Environmental characterization of mining and
metallurgical wastes

pH, As, Cd, Cu, Co, Fe, Pb, Mn, and Zn.
Extraction with aqua regia

Kitobo [24] Remediation and reclamation of sulfide mine tailings pH, As, Cu, Co, Pb, and Zn. Leaching test and
extraction with HCl and NaOH

Ngenda [25] Feasibility of the valorization of wastes from the
Kolwezi zinc plants

pH, As, Cu, Co, Pb, and Zn. Leaching test and
with HCl and NaOH

Tshibanda [26] Improving the metallurgical treatment of Cu-Zn sulfides
from mining wastes in Kolwezi.

As, Al, Cd, Co, Cu, Hg, Pb, Zn, Mn, Fe, Ti, S, and
Ni. Leaching test and X-ray fluorescence analysis

Narendrula et al. [4] Assessing trace metal concentrations in polluted soils
from smelting activities

pH, As, Al, Cd, Cu, Fe, Co, Pb, Zn, Mn, Mg, and
Ni. Extraction with aqua regia

Mees et al. [47] Concentrations and forms of heavy metals around two
ore processing sites

pH, As, Cr, Cd, Cu, Fe, Co, Pb, Zn, Mn, and Ni.
Extraction with aqua regia

Pourret et al. [48] Modeling of cobalt and copper speciation in
metalliferous soils

Co, Cu, Fe, Mn, Mg, and Ca. Extraction with
HF + HClO4 + HCl

2.3. Assessment of the Potential for Reducing the Ecological Risk Indices through Revegetation
with Woody Species

To assess the potential for reducing the ecological risk of mining wastes and contami-
nated soils by revegetating with woody species, soil samples were taken in a long-term
experiment (over 15 years) in the Kipushi tailing (contamination from concentrates of Cu
and Zn sulfides by flotation) and in the residential plots of the Penga Penga neighborhood
(soil contaminated by deposits from the Gécamines Cu-smelter, see Shutcha et al. [19].
Details of the experiment are provided in the work by Mwanasomwe et al. [22] for Kipushi
and in the work by Langunu et al. [10] for Penga Penga. The rhizosphere of the woody
species considered corresponds to the layers of amendments that have been filled in the
planting holes (Figure 3). In the Kipushi tailing, samples were collected from the rhizo-
sphere surface horizons (0–20 cm) of five woody species: Acacia auriculiformis A. Cunn.
ex Benth., Albizia lebbeck (L.) Benth., Cupressus lusitanica Mill., Leucaena leucocephala (Lam.)
de Wit, and Syzygium guineense (Willd.). In Penga Penga, the species considered were
Mangifera indica L., Persea americana Mill., and Syzigyum guineense. Leaf, wood, and root
samples were collected in both sites. Ten leaf samples per individual were collected on ten
trees of each species. They were then bulked for each individual for a total of ten bulked
samples per species. Wood samples (diameter of 5–7 cm) were collected from two branches
for each individual. Two root samples (300–500 g) with diameters ranging from 2 to 15 mm
were taken from each tree individually selected. Root, wood, and leaf samples were taken
from the same individuals as the soil samples from the rhizosphere.
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mine tailings.

2.4. Chemical Analysis

Air-dried samples were sieved at 2.0 mm, and a subsample was crushed to 200 µm.
Methods were described in the work by Lienard and Colinet [31]. Soil pH was measured
potentiometrically in a 1:2.5 (w/v) suspension in water and 1N KCl, while total organic
carbon (TOC) was determined using the Springer–Klee method. Major (Ca, Mg, K, P)
and trace (Fe, Mn, As, Cd, Co, Cu, Pb, Zn) element concentrations were determined
after, respectively, (a) extraction with ammonium acetate-EDTA (0.02 M) at pH 4.65 (w:v
1:5 ratio) and agitation for 30 min (referred to as available metal concentration) for major
elements, and (b) aqua regia digestion following ISO 11466 (referred to as total metal
concentration). The concentrations in the solutions were measured using flame atomic
absorption spectrometry (AAS, Varian 220, Agilent Technologies, Santa Clara, CA, USA)
for major elements, except P (colorimetry), and ICP-OES for aqua regia contents.

Leaf and root samples were washed with distilled water, then rinsed with 1% alconox
solution to remove soil particles and avoid contamination [49], while bark was removed
from wood. All samples were oven-dried at 95 ◦C for 72 h for leaves and 120 h for roots and
wood. Samples (root, wood, and leaf) were ground to powder before being mineralized
in a mixture of 65% HNO3 and 75% HClO4. A total of 2 g of homogenized samples were
weighed into a 150 mL beaker and attacked with 30 mL of mixed 65% HNO3 and 75%
HClO4 on a plate for a cold reaction during 16 h; then, the solution was heated until the
solid residues remained; after cooling, 5 mL of 10% HCl was added unto the residues,
poured into a 25 mL volumetric flask, and diluted to the mark. Concentrations of As, Cd,
Pb, Cu, Co, and Zn were determined using ICP-OES.

2.5. Calculation of Risk Indices

The enrichment factor (EF), the degree of contamination (DC), and the potential ecolog-
ical risk (RI) were used as indices to assess the hazardousness of trace metal concentrations
in mine tailings and affected soils in the KCB. All these indices were determined according
to Håkanson’s guidelines [27].

The EF was used to determine the degree of metal enrichment in discharges and soils
compared with natural levels. It was calculated using Fe as the reference element [50,51]
according to Formula (1). Five enrichment levels are described as a function of EF val-
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ues [29]: depletion to mineral enrichment if EF < 2, moderate enrichment if 2 ≤ EF < 5,
significant enrichment if 5 ≤ EF < 20, very high enrichment if 20 ≤ EF < 40, and extremely
high enrichment if EF > 40.

EF = (Csample/Fesample)/(Cref/Feref) (1)

where Csample = the concentration of the metal in the sample; Fesample = the concentration
of iron in the soil; Cref = the concentration of the reference soil metal; and Feref = the
concentration of the reference soil iron.

The DC is calculated on the basis of the sum of the contamination factor (CF) values for
each trace metal analyzed (Formula (2)). The CF is calculated on the basis of the trace metal
concentration values in the waste/soil samples and those of the reference geochemical
background (3). Following the DC, four categories of contamination were used: low degree
of contamination if DC < 8, moderate degree of contamination if 8 ≤ DC < 16, considerable
degree of contamination if 16 ≤ DC < 32, very high degree of contamination if DC > 32.

DC = ∑CF (2)

CF = Csample/Cref (3)

where DC is the degree of contamination of a given release/soil, CF is the contamination
factor for a particular metal, Csample = the concentration of the metal in the release/soil
analyzed, and Cref = the concentration of metal in the reference soil from the region.

The RI is the sum of the ecological risk factor (Er) values for each metal (Formula (4)).
The Er is used to determine the potential risk that each metal in the substrate presents to the
environment and human health. The Er calculation involves the contamination factor (CF)
and the toxicological response factor (Tr) values for each metal (Formula (5)). Er values
were calculated using empirical values for the Tr of each metal (Table 2) [30,51].

RI = ∑Er (4)

Er = CF × Tr (5)

where RI = potential ecological risk index; Er = ecological risk factors (for each metal);
Tr = the toxicological response factor for a given substance; and Cf is the contamination
factor. The Tr values for heavy metals found by Hamid et al. [52] are given in Table 2.
Based on the Er values, the categories of ecological risk related to a single metal are as
follows: Er < 40, low ecological risk; 40 ≤ Er < 80, moderate ecological risk; 80 ≤ Er < 160,
considerable ecological risk; 160 ≤ Er < 320, high ecological risk; and Er ≥ 320, very
high ecological risk. With regard to RI, the categories are as follows: RI < 150 = low
risk; 150 ≤ RI < 300 = moderate risk; 300 ≤ RI < 600 = considerable risk; RI ≥ 600 = very
high risk.

Table 2. Toxicological response factor (Tr) by Hamid et al. [52].

Elements Toxicological Response Factor

As 10

Cd 30

Co 5

Cu 5

Mn 1

Pb 5

Zn 1
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In addition to the RI, the bioconcentration factor (BCF) was calculated to assess the
amount of trace metals taken up in roots, wood, and leaves of woody species planted
at Kipushi. BCF is the ratio of metal concentration in organs to that in soil/substrate
(Formula (6)) [53,54].

BCF = Ctree tissue/Csoil (6)

where Ctree tissue is the metal concentration in a given tissue and Csoil is the pseudo-total
metal concentration in the soil.

2.6. Statistical Analyses

Descriptive statistical tests were applied to the mineral concentration data from the
KCB mining wastes and polluted soils considered in this study. Detection Limit (DL)/2
imputation methods were used to integrate all data < DL in all analyses [55]. The Shapiro–
Wilk normality test was applied to assess the distribution of data. As the data were not
normally distributed, even after logarithmic transformation (no transformation for pH),
the non-parametric Kruskal–Wallis test was applied to compare the concentration values of
each parameter analyzed among the sites. Principal component analysis (PCA) was applied
as a multivariate model to compare sites by integrating all the parameters analyzed.

Data from woody species revegetation trials and tree plantations at Penga Penga
were also subjected to a Shapiro–Wilk normality test. The logarithmic transformation
having corrected the data distribution, Student’s t-test was applied to compare the mineral
conditions and RI of the surface horizons of the rhizospheres of woody species and those
of the surrounding unamended areas. The t-test was applied separately for each of the
two sites (Kipushi and Penga Penga). A two-factor ANOVA was applied to compare metal
concentrations in roots, wood, and leaves at Kipushi. The factors considered were species
and organ. All analyses were performed using R Studio (4.0.1).

3. Results
3.1. Concentration of Trace Metals in Mining Wastes and Contaminated Soils

Table 3 shows the descriptive statistics applied to parameters analyzed on KCB’s
mining wastes and polluted soils. The range of pH values (water and KCl) observed
for polluted sites (pHwater: 4.0–10.6; pHKCl: 3.5–11.7) entirely covered that observed in
unpolluted forest soils (pHwater: 4.0–7.3; pHKCl: 3.8–5.8). Table 3 also highlights the
high concentrations of metals in the mining wastes and contaminated soils considered
in this study, compared with the forest soils taken as reference, and also shows very
high average concentrations compared with the international thresholds. Similarly to
Fe, which is a major element (9890–320,000 mg kg−1), all the measured trace elements
showed high levels of variability. Cu and Zn were the trace metals with the highest
average and ranges of concentrations; respectively, 12,657 mg kg−1 (116–75,000 mg kg−1)
for Cu and 13,250 mg kg−1 (0.02–200,000 mg kg−1) for Zn. The range of concentrations
for the other elements was <0.003–12,159 mg kg−1 for As, <0.001–17,414 mg kg−1 for Cd,
2.52–2300 mg kg−1 for Co, 15–9600 mg kg−1 for Mn, and <0.003–58,000 mg kg−1 for Pb.

The Kruskal–Wallis test applied to all of the analyzed parameters showed strong vari-
ations between sites (Appendix A Figure A1). Slag (Sc) had the highest pH values (p < 0.05)
(pHwater slag = 5.6–10.6 vs. 4.0–8.7 for other substrates). It is noted that classes cover ranges
from acidic to strongly basic conditions and therefore pH should seldom be considered
as an indicator of waste nature. Wastes resulting from Cu-Zn sulfide concentration by
flotation (CFSCuZn) showed higher concentrations (p < 0.05) of As, Pb, and Zn, with values
ranging from 7.8 to 12.2 mg kg−1 for As (vs. <LOQ-2395 for others), 498 to 58,000 mg kg−1

for Pb (vs. <LOQ-8000 for others), and 10 182 to 200,000 mg kg−1 for Zn (vs. 0.02–65,000
for others). Cd concentrations were higher (p < 0.05) in river sediments, with values of
24–17,414 mg kg−1 (vs. 0.003–2395 for others). Co concentrations were higher in wastes
from Cu-Co oxide concentration and in slag, with respective values of 4310–26,700 mg kg−1

and 910–23,000 mg kg−1 vs. <LOQ-4900 mg kg−1 and 11–3839 mg kg−1 for the other sub-
strates. For Cu, the Kruskal–Wallis test shows similar concentrations in all wastes and soils,
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except for river sediments. The latter showed lower concentrations (p < 0.05) compared
with all other discharges (116–12,113 mg kg−1 for river sediments vs. 313–75,000 mg kg−1

for other discharges). The remarks made about pH can also be made about the metal
content; even if there are significant differences between groups of wastes, the frequency
distributions usually overlap each other.

Table 3. Descriptive statistics for concentrations of pH, Fe, and trace metals (mg kg−1) in mining
wastes and contaminated soils and sediments from the Katangese Copperbelt. n = number of samples,
SD = standard deviation, CV = coefficient of variation, Min = minimum, Max = maximum, Q1 and
Q3 = first and third quartile, LOQ = Limit of Quantification, Reference = reference soil in the region
[56,57], IT = international thresholds [30,58].

pHwater pHKCl Fe As Cd Co Cu Mn Pb Zn

n 78 88 75 66 124 122 125 69 125 122
Mean 6.2 5.8 64,764 1578 1751 826 12,657 939 2096 13,250

SD 1.48 1.78 76,707 2695 4225 2673 14,048 1909 7613 41,111
Min 4 3.5 9890 <LOQ <LOQ 2.52 116 15 <LOQ 0.02
Q1 5.13 4.8 21,800 30.6 <LOQ 29.55 1317.5 109.5 31 15

Median 5.87 5.4 37,850 314 28 94.13 7977 174 52 41
Q3 7.02 5.8 57,150 1420 245 351 19,513 750 712 694

Max 10.6 11.7 320,000 12,159 17,414 23,000 75,000 9600 58,000 200,000
CV 24 30 119 178 243 315 149 198 370 317

Skewness 1.13 1.98 2.19 2.59 2.52 4.79 5.18 2.89 5.46 3.69
Kurtosis 1.10 3.72 3.52 6.37 5.06 24.66 39.42 8.38 32.7 12.82

Reference
Mean 5.6 4.4 62,954 - 1.3 20 187 119 40 69
Min 3.9 3.8 8971 - 0.1 0.1 3.1 4.3 0.3 2.0
Max 7.3 5.8 112,000 - 1.9 38 456 370 82 180

IT - - - - 5 40 200 - 100 300

Projection of the variables in the CP1 × CP2 plane (59.1% total variation) of the PCA
shows trends observed with the KW test (Figure 4). CFSCuZn are associated with the
highest concentrations of As, Pb, and Zn, while SR is associated with the highest Cd
concentrations but the lowest Cu concentrations. Slag and COCoCu are associated with the
highest Co and pH values. Other wastes occupy intermediate positions.
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concentrates of Cu sulfides by flotation, CFSCuZn = wastes from concentrates of Cu and Zn sulfides
by flotation, COCuCo = wastes from concentrates of Cu and Co oxides, DP = deposit from smelting
emissions, Sc = slag, SR = river sediments from mining plants.

3.2. Ecological Risk Associated with Trace Metal Concentrations

The values for EF and CF were generally above 1, indicating enrichment and trace
metal contamination. Only seven values (out of 42) for each index were less than or equal
to 1. The DC values of all mining wastes and contaminated soil show very high levels
of contamination as they exceeded 32 (Table 4). The decreasing order of DC values can
be classified as follows: SR (5440) > CFSCuZn (2027) > Slag (338) > COCoCu (180) > DP
(155) > CFSCu (72). The high DC values are mainly due to Cd for SR; Zn, Cd, and Pb for
CFSCuZn; Zn and Co for slag; and COCoCu and Cu for DP.

Table 4. Contamination factor (CF) and degree of contamination (DC) values for samples col-
lected from mining wastes and contaminated soils and sediments from the Katangese Copperbelt.
CFSCu = wastes from concentrates of Cu sulfides by flotation, CFSCuZn = wastes from concentrates
of Cu and Zn sulfides by flotation, COCuCo = wastes from concentrates of Cu and Co oxides,
DP = soil contaminated by deposit from smelting emissions, Sc = Slag, SR = river sediments from
mining plants.

Substrates
CF

DC
As Cd Co Cu Mn Pb Zn

CFSCu 0.001 7.7 2.9 59.2 1.1 0.5 0.4 72
CFSCuZn 176 593 3.7 61 3.4 222 968 2027
COCoCu 2.4 0.001 147 27.4 0.8 1 1.1 180

DP 6.3 20.8 9.4 71.8 0.1 18.3 28.6 155
Sc 0.1 0.001 131 39.6 7.6 21.3 138 338
SR 36.5 5388 2.9 3.8 0.2 7.2 0.9 5440

RI values indicate high potential ecological risks associated with trace metal concentra-
tions in all study sites. The decreasing order of RI values is as follows: SR (162091) > CFSCuZn
(21959) > DP (1219) > slag (1109) > COCoCu (905) > CFSCu (549) (Table 5). The trends in
the metals influencing RI values are the same as those observed for DC values. It should be
noted, however, that DP presents a higher potential ecological risk index compared to slag,
contrary to the trends observed with DC values.

Table 5. Ecological risk factor (Er) and potential ecological risk index (RI) values for soil sam-
ples in mining wastes and contaminated soils and sediments from the Katangese Copperbelt.
CFSCu = wastes from concentrates of Cu sulfides by flotation, CFSCuZn = wastes from concen-
trates of Cu and Zn sulfides by flotation, COCuCo = wastes from concentrates of Cu and Co oxides,
DP = soil contaminated by deposit from smelting emissions, Sc = Slag, SR = river sediments from
mining plants.

Substrates
Er

RI
As Cd Co Cu Mn Pb Zn

CFSCu 0.001 233 15 296 1.1 2.9 0.4 549
CFSCuZn 1760 17,792 18.8 305 3.4 1111 968 21,959
COCoCu 24 0.04 736 137 0.8 5.2 1.1 905

DP 63.6 625 47.4 359 0.1 94.4 28.6 1219
Sc 1.6 0.04 657 198 7.6 107 138 1109
SR 366 161,653 14.7 19.4 0.2 36.1 0.98 162,091
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3.3. Impact on RI and BCF Values of the Localized Excavation and Replacement Approach
for Revegetation
3.3.1. Profile of Edaphic Conditions and RI Values

The results show a better fertility status in rhizospheres of trees at both sites with
higher concentrations (p < 0.05) of P, K, and TOC compared with unamended areas (Table 6).
In contrast, total trace metal concentrations were lower in the rhizospheres compared to
the unamended areas at both Kipushi and Penga Penga. Co was the only exception to the
general trend with higher concentrations in the rhizosphere of trees (932 ± 407 mg kg−1)
compared to unamended areas (102 at ± 57 mg kg−1) in Kipushi.

Table 6. pH, total organic carbon (TOC), bioavailable major elements (extraction with CH3COONH4
+ EDTA), pseudo-total trace metal concentrations, and potential ecological risk index (RI) values
in surface horizons (0–20 cm) of unamended areas and tree rhizospheres in the Kipushi tailings
pond from copper–zinc sulfide concentration by flotation and in polluted soil at Penga Penga.
Mean ± standard deviation. Comparisons between unamended areas and rhizosphere conducted
separately at Kipushi and Penga Penga. Values with the same letter (a,b) are not different after the
Student’s t-test (p < 0.05).

Kipushi Penga Penga Reference
(Forest Soil)Unamended Rhizosphere Unamended Rhizosphere

pHKCl 7.9 ± 0.2 a 7.0 ± 0.2 b 5.8 ± 1.7 b 7.7 ± 0.3 a 4.4 (3.8–5.8)

TOC (%) 2.2 ± 0.3 b 4.5 ± 1.9 a 1.4 ± 0.5 - 2.3 (1–5)

Ca (mg kg−1) 10,060 ± 4002 a 4098 ± 425 b 11 ± 5.2 b 75 ± 43.7 a -

Mg (mg kg−1) 2790 ±1824 a 2242 ± 352 b 1.7 ± 0.5 - -

P (mg kg−1) 40 ± 14.1 b 148 ± 79 a 1.4 ± 0.5 - -

K (mg kg−1) 20 ± 1.4 b 144 ± 49 a 1.2 ± 1.1 b 99 ± 36 a -

As (mg kg−1) 2934 ± 2141 a 314 ± 155 b 1578 ± 2695 a 12.8 ± 14.2 b -

Cd (mg kg−1) 159 ± 77.4 a 48 ± 16 b 1751 ± 4225 a 8.7 ± 12 b -

Cu (mg kg−1) 9269 ± 1825 a 3533 ± 814 b 12,657 ± 14,048 a 1379 ± 1371 b 187 (20–456)

Co (mg kg−1) 102 ± 57.1 b 932 ± 407 a 826 ± 2673 a 182 ± 113 b 20 (7.1–38)

Pb (mg kg−1) 4291± 1113 a 557 ± 230 b 2096 ± 7613 a 142 ± 131 b 40 (7.0–82)

Zn (mg kg−1) 22,723 ± 11,670 a 6725 ± 2650 b 13,250 ± 4111 a 467 ± 312 b 69 (26–180)

RI 5704 ± 3222 a 1522 ± 400 b 1532 ± 503 a 533 ± 493 b

The results show lower RI values in the rhizospheres of trees planted at Kipushi and
Penga Penga. At Kipushi, the averaged RI value was 5704 ± 3222 in the unamended areas
while it was 1522 ± 400 in the rhizosphere of the trees. At Penga Penga, the RI value was
1532 ± 503 in the unamended areas while it was 533 ± 493 in the tree rhizospheres.

3.3.2. Accumulation in Plant Tissues and Bioconcentration Factor Values at Kipushi

Co, Cu, and Zn concentrations were lower (p < 0.05) in wood compared with roots
and leaves. Cu concentrations were higher in roots (57.3 ± 22.5 mg kg−1) than in leaves
(17.8 ± 4.2 mg kg−1). Co and Zn concentrations were similar in roots (Co = 3.8 ± 2.2,
Zn = 289 ± 195 mg kg−1) and leaves (Co = 2.7 ± 1.3, Zn = 293 ± 126 mg kg−1) but lower
in wood (Co = 1.2 ± 0.8, Zn = 67 ± 37 mg kg−1). All BCF values were below 1, including
all tissues (roots, wood, and leaves) of all species and all three metals analyzed, ranging
between 0.0004 and 0.09 (Figure 5). For all metals, BCF values were lower in wood
compared to roots and leaves.
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4. Discussion
4.1. Metal Concentrations and Ecological Risks Associated with Polluted Soil and Wastes in KCB

The wide variability in the values between mining wastes (for all parameters con-
sidered) in this study reflects the heterogeneity of the mineralogical composition of ores
extracted from the KCB’s metalliferous deposits, as well as the metallurgical processes
and other treatments after their release from the plants. The variability in the chemical
and mineralogical composition of the deposits in the KCB is well documented and can be
explained by the history of their emergence during geological eras [59–61]. Furthermore,
the nature of ores (and therefore their chemical composition) leads to the application of
different metallurgical schemes and the use of different inputs [62–64]. For example, ox-
ide ores are subjected to hydrometallurgical processes, while sulfide ores are subjected
to smelting processes [24,60]. The influence of ore origin is illustrated by the higher Zn
concentration values in the tailing ponds from the concentration of Cu and Zn sulfide ores,
while Co concentration is higher in discharges from Cu and Co oxide ores. In contrast, high
pH values in wastes from ore concentrations (Cu and Zn sulfide ores, Cu sulfide ores, etc.)
stored in sedimentation ponds most often illustrate the influence of treatments applied to
the discharges, notably the application of lime for pH neutralization [2,3,65]. The high Ca
and Mg values support this explanation.

Unsurprisingly, trace metal concentrations are much higher in mining wastes and
contaminated soils compared to those reported from the reference geochemical background
of non-metalliferous soils [56,57] as well as those reported from non-anthropized metallif-
erous soils [66]. This result explains the high values of DC (Table 4) and RI (Table 5). For
example, the DC and RI values of mining wastes were 2 to 170 times (DC: 72–5440) the
threshold of “high contamination” (DC > 32) and 1 to 270 times the threshold for “very
high risk” (RI = 549–162,091). Such high levels of DC and RI are rarely reported in the
literature [67–73] and would place KCB among the most trace-metal-polluted regions in
the world. In line with the high DC and RI, all the studied soils and discharges show
very high average concentrations when compared with international reference threshold
values [54,58]. These results support the exceptionally high levels of trace metal expo-
sure in KCB populations as reported by several authors over the past 15 years, indicating
concentrations of Cd, Co, U, Cu, and Zn above the threshold in the urine, blood, and
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semen, leading to oxidative DNA disorders, infertility, malformation in newborn babies,
and cancer in people living near mining activities [12,13,15,16].

The results emphasize the contribution of certain trace metals, such as Cd and Pb, in the
high ecological risk related to mining waste due to their toxicological characteristics despite
relatively lower concentration levels compared to metals such as Cu and Zn (Table 5). They
underline the need to analyze an extended set of trace metals for a better ecological risk
assessment. For example, including all potentially harmful metals would help to refine the
risk assessment associated with mining waste. In addition, given that the contamination
classification usually used is not relevant for the sites studied, as we found DC values well
over 32, we suggest that DC news and the use of other pollution indices be developed.

4.2. Revegetation on the Basis of Excavation and Replacement and Ecological Risk Index

Revegetation trials with woody species installed since 2005 were based on the lo-
calized excavation of planting sites followed by the replacement of polluted sediments
and soils with organic matter [10,23]. The present study represents a first assessment of
the ability of this approach to reduce ecological risks using indices, the previous ones
being based mainly on edaphic conditions (based on AA-EDTA extractable Co, Cu, and
Zn concentrations) and metal concentrations in aboveground organs without subtracting
the influence of dust. The results of this study confirm an improvement in conditions in
the rhizosphere surface horizons of the evaluated woody species (Table 6), thanks to better
organic matter, P and K values, and generally lower trace metal concentrations compared
with the surface horizons of the surrounding unamended substrates. Nevertheless, trace
metal concentrations remain high (compared with regional references), probably due to the
metal release from surrounding substrates, as argued by Langunu et al. [10] for the case of
Penga Penga but also demonstrated for other regions [74]. Kaniki’s [1] leaching test results
also support the mobility of metals in the discharge of Cu and Zn sulfide concentrates
at Kipushi.

The potential ecological risk index was lower in the amended and planted areas thanks
to lower concentration levels, particularly of the most hazardous metals such as Cd and
Pb (Table 6). Nevertheless, the RI values correspond to considerable (300 ≤ RI < 600) to
high (RI ≥ 600) risks. In other words, based on trace metal concentrations, the rhizospheres
of trees planted in the Kipushi tailing disposal and the Penga Penga polluted soil, made
up of organic matter and other inorganic amendments (in the case of Penga Penga, e.g.,
termite mound soil, etc.), have been progressively enriched in trace metals to (total) con-
centrations that present significant ecotoxicological risks for the environment and human
health. Although current results do not allow us to estimate trends with any certainty, con-
centrations in the rhizosphere may increase if metal release continues. This phenomenon
of metal migration from contaminated substrates to rhizospheres made up of uncontami-
nated soil improvers should be further investigated in future studies. Such investigations
will provide a better understanding of the success of revegetation methods for polluted
sediments and soils based on localized excavation and replacement with unpolluted soil
and soil improvers.

Nevertheless, the survival and performance of species over the last 15 years [22] com-
bined with low accumulation levels and low BCF values (<0.2 for all species and the three
metals analyzed, Figure 5) demonstrate a reduction in metal mobility and bioavailability.
In this context, measurement of the ability of amendments to reduce metal mobility and
prevent their transfer to other environment components seems to be key for the assessment
of the success of such remediation approaches.

4.3. Implications for Remediation of Polluted Soil

The results of this study reveal the extremely high levels of contamination and signifi-
cant ecological risks associated with high concentrations of trace metals in mine tailings
and polluted soils and sediments in the KCB. These observations justify the ongoing search
for advanced remediation and risk reduction techniques, which have been examined by
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several studies over the last two decades [1,2,24,25]. The approaches suggested by these
studies include physico-chemical processes aimed at reducing the high concentrations
of trace metals in the soil. In particular, the recovery of mining waste by metallurgical
processes, as proposed by Kaniki and Tumba [2] and Mambwe et al. [3], is essential for
reducing trace metal concentrations. This should be considered before revegetating certain
polluted sites with metal-tolerant plant species [10,18,19,21,23], which can contribute to
limit the spread of contaminants in the environment and reduce human exposure. Fur-
thermore, for the urban and densely populated areas established on the polluted soils
of Penga Penga, a more participatory approach, as recommended by Mwanasomwe [74],
should be envisaged to take better account of the needs of the populations and the best
technical itineraries for the remediation of polluted urban areas with trees and herbaceous
species [19]. However, it appears that there is currently no coordinated strategy to address
the issue of contamination on a regional scale in the KCB, nor are there systematic methods
for assessing the effectiveness of different rehabilitation techniques. The results of this
study highlight the need to develop an integrated approach to environmental remediation,
considering the different characteristics of mining waste and polluted soils, as well as their
proximity to residential areas and sensitive ecosystems. In addition, our results highlight
the importance of extending remediation efforts to all types of mining waste, including
river sediments and copper and zinc sulfide flotation residues.

The results of the assessment of the remediation tests on mine tailings and polluted
soils show that the ecological risk values remain high in the amended areas vegetated
with woody plants, although they are lower than in the non-vegetated areas. These results
suggest that the ecological risk associated with trace metal concentrations in amended areas
of KCB mine tailings and polluted soils potentially increases over time due to the release of
metals from unamended matrices by a lateral transfer [10,22].

In this case, the use of pollution indices to assess the effectiveness of remediation
seems inadequate as these indices mainly focus on the concentrations and toxicological
characteristics of trace metals [51,75], without taking into account the ability of remediation
techniques to prevent the dissemination of metals in the environment. It is important to
note that not all phytotechnology methods aim to reduce trace metal concentrations in the
polluted soil medium. Phytostabilisation, for instance, being a strategy that aims to contain
metals on site and prevent their dispersion, may be more effective in areas with high
polymetallic contamination [76–78]. It would be useful to associate indicators of trace metal
stability in these matrices, by describing their physical characteristics and using appropriate
extraction techniques to assess their mobility. In addition, the bioconcentration factor (BCF)
and direct measurement of concentrations in the aboveground tissues of plants are more
relevant indicators for assessing the success of techniques based on metal stabilization.
These measurements make it possible to assess the success of the method in preventing
the spread of metals in the trophic chain. The results of this study and those of Langunu
et al. [10] support this approach. On the other hand, the use of the potential ecological
risk index may be more appropriate for assessing phytotechnology methods aiming to
extract and reduce the level of trace metal concentrations in soil and sediment, such as
phytoextraction [78].

5. Conclusions

This study used pollution indices to assess the ecological risks associated with KCB
mining waste and soils polluted by trace metals and to evaluate the effectiveness of revege-
tation trials in reducing potential ecological risks in remediated soils. The results confirm
the high ecological risks related to the high concentrations of trace metals and the high
values of the RI for the mining waste and contaminated soils examined in this study. They
also provide information on the variability of the risks associated to the various types of
mining wastes and contaminated soils with potential implication on the prioritization and
selection of the most suitable strategies of remediation.
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The evaluated remediation strategy shows the effectiveness of amendment in reducing
the mobility and bioavailability of metals through the observation of low BCF values. It
also led to a reduction in IR in the rhizospheres of the trees, even though their values still
represent a considerable ecological risk. Thus, the pollution indices used in this study
are not suitable for assessing the effectiveness of phytotechnology methods based on
stabilization, suggesting the development or use of other pollution indices that take into
account the reduction in trace metals mobility and bioaccessibility, such as the BCF.

Future studies should better assess the dynamics of metal enrichment in rhizospheres
after filling planting holes with unpolluted soil improvers and the implications for long-
term human exposure risks. They should also focus on developing indices that take into
account the reduced mobility of elements in substrates subject to remediation.
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Appendix A

Figure A1. Comparison of metal concentrations in different types of discharge. CFSCu = wastes
from concentrates of Cu sulfides by flotation, CFSCuZn = wastes from concentrates of Cu and Zn
sulfides by flotation, COCuCo = wastes from concentrates of Cu and Co oxides, DP = deposit from
smelting emissions, Sc = slag, SR = river sediments from mining plants. Values are represented by
the mean ± standard deviation; min, means, and max. Means with the same letter (a, b, c) are not
significantly different (p < 0.05).
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68. Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indexes as useful tools for the comprehensive evaluation of the
degree of soil contamination-A review. Environ. Geochem. Health 2018, 40, 2395–2420. [CrossRef] [PubMed]

69. Jiang, F.; Ren, B.; Hursthouse, A.; Zhou, Y. Trace Metal Pollution in Topsoil Surrounding the Xiangtan Manganese Mine Area
(South-Central China): Source Identification, Spatial Distribution and Assessment of Potential Ecological Risks. Int. J. Environ.
Res. Public Health 2018, 15, 2412. [CrossRef] [PubMed]

70. Al-Robai, S.A. Ecological risk assessment of heavy metals in soils near a water dam in Baljurashi, Saudi Arabia, and their
accumulation in Dodonaea viscosa. Sustainability 2023, 15, 15646. [CrossRef]

https://doi.org/10.1016/j.jafrearsci.2012.09.008
https://doi.org/10.1016/j.gexplo.2014.11.011
https://doi.org/10.1007/s11104-007-9405-3
https://doi.org/10.1007/s10661-015-4360-6
https://doi.org/10.1016/j.chemosphere.2018.10.066
https://doi.org/10.3389/fpubh.2022.889130
https://doi.org/10.1007/s11356-015-4521-8
https://doi.org/10.1016/j.scitotenv.2019.135126
https://doi.org/10.1016/j.envres.2020.109466
https://www.ncbi.nlm.nih.gov/pubmed/32344207
https://doi.org/10.3844/ajessp.2021.125.135
https://doi.org/10.1016/j.jafrearsci.2005.08.003
https://doi.org/10.1016/j.jafrearsci.2005.08.001
https://doi.org/10.1007/s00126-015-0582-3
https://doi.org/10.1180/EMU-notes.20.5
https://doi.org/10.3390/ijerph13040393
https://www.ncbi.nlm.nih.gov/pubmed/27043601
https://doi.org/10.1007/s10653-018-0106-z
https://www.ncbi.nlm.nih.gov/pubmed/29623514
https://doi.org/10.3390/ijerph15112412
https://www.ncbi.nlm.nih.gov/pubmed/30384406
https://doi.org/10.3390/su152115646


Environments 2024, 11, 122 18 of 18

71. Hoque, M.M.; Islam, A.; Islam, A.R.M.T.; Pal, S.C.; Mahammad, S.; Alam, E. Assessment of soil heavy metal pollution and
associated ecological risk of agriculture dominated mid-channel bars in a subtropical river basin. Sci. Rep. 2023, 13, 11104.
[CrossRef]

72. Simon, L. Potentially harmful elements in agricultural soils. In PHE, the Environment and Human Health; Bini, C., Bech, J., Eds.;
Springer: Dordrecht, The Netherlands, 2014; pp. 85–150.

73. Oliva, S.R.; Mingorance, M.D. Assessment of Airborne Heavy Metal Pollution by Aboveground Plant Parts. Chemosphere 2006, 65,
177–182. [CrossRef] [PubMed]

74. Mwanasomwe, K.L. Amélioration du Procédé de Phytostabilisation Avec les Espèces Ligneuses Pour la Production des Services
Écosystémiques en Milieux Pollués Urbains et Périurbains de L’arc Cuprifère Katangais. Ph.D. Thesis, Université de Liège, Liege,
Belgium, 2022; p. 217.
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