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A B S T R A C T

The mechanisms of action of Vagus Nerve Stimulation (VNS) and the biological prerequisites to respond to the
treatment are currently under investigation. It is hypothesized that thalamocortical tracts play a central role in the
antiseizure effects of VNS by disrupting the genesis of pathological activity in the brain. This pilot study explored
whether in vivo microstructural features of thalamocortical tracts may differentiate Drug-Resistant Epilepsy (DRE)
patients responding and not responding to VNS treatment. Eighteen patients with DRE (37.11 � 10.13 years, 10
females), including 11 responders or partial responders and 7 non-responders to VNS, were recruited for this high-
gradient multi-shell diffusion Magnetic Resonance Imaging (MRI) study. Using Diffusion Tensor Imaging (DTI)
and multi-compartment models - Neurite Orientation Dispersion and Density Imaging (NODDI) and Microstruc-
ture Fingerprinting (MF), we extracted microstructural features in 12 subsegments of thalamocortical tracts.
These characteristics were compared between responders/partial responders and non-responders. Subsequently, a
Support Vector Machine (SVM) classifier was built, incorporating microstructural features and 12 clinical cova-
riates (including age, sex, duration of VNS therapy, number of antiseizure medications, benzodiazepine intake,
epilepsy duration, epilepsy onset age, epilepsy type - focal or generalized, presence of an epileptic syndrome - no
syndrome or Lennox-Gastaut syndrome, etiology of epilepsy - structural, genetic, viral, or unknown, history of
brain surgery, and presence of a brain lesion detected on structural MRI images). Multiple diffusion metrics
consistently demonstrated significantly higher white matter fiber integrity in patients with a better response to
VNS (pFDR < 0.05) in different subsegments of thalamocortical tracts. The SVM model achieved a classification
accuracy of 94.12%. The inclusion of clinical covariates did not improve the classification performance. The
results suggest that the structural integrity of thalamocortical tracts may be linked to therapeutic effectiveness of
VNS. This study reveals the great potential of diffusion MRI in improving our understanding of the biological
factors associated with the response to VNS therapy.
Introduction

Epilepsy is characterized by a recurrent occurrence of seizures
stemming from an abnormal, excessive, and/or synchronous neuronal
activity in the brain due to an imbalance between excitation and inhi-
bition of cortical areas [1,2]. While in most cases, antiseizure
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medications (ASM) can completely control epilepsy and render patients
seizure-free, approximately 30% of patients will develop Drug-Resistant
Epilepsy (DRE) [3]. Clinicians can propose resection of the epileptogenic
focus for these patients under the condition that the epilepsy (i) does not
present a multi-focal seizure onset zone, (ii) is not generalized, and (iii)
does not have a seizure onset zone that lies in the eloquent cortex. When
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one of these conditions is not fulfilled, clinicians can consider neuro-
modulation as an adjunctive treatment to ASM, and Vagus Nerve Stim-
ulation (VNS) is among the available options. VNS consists of the
implantation of an electrode around the left vagus nerve and a pulse
generator located under the left clavicula, sending electrical pulses that
depolarize the nerve fibers and trigger action potentials. A previous
retrospective study that included 436 patients aged 1–76 years at the
time of the implantation showed that 63.75% of patients became re-
sponders, corresponding to a >50% reduction in seizure frequency [4].

While VNS has been used for over three decades, its precise mecha-
nisms of action and the biological prerequisites for responding to the
treatment are not fully understood. The activation of a group of
subcortical and cortical brain regions composing the vagal afferent
network is presumed to be the key component inducing antiseizure ef-
fects. In particular, VNS can modulate the activity of the thalamus and, in
turn, disrupt the genesis of pathological activity in the brain [5–10].

Using resting-state functional Magnetic Resonance Imaging (MRI),
increased connectivity of the thalami to the anterior cingulate cortex and
the left insula, as assessed before the implantation, was associated with
better seizure control with VNS in children with DRE [11]. Based on
these results, a Support Vector Machine (SVM) model was built and was
able to discriminate responders from patients with a <50% reduction in
seizure frequency with an accuracy of 88% in an external cohort of pa-
tients [11]. The potential role of the thalamus in mediating VNS efficacy
was strengthened using Diffusion Tensor Imaging (DTI) to assess the
brain microstructure in DRE patients [12]. Larger Fractional Anisotropy
(FA, i.e., a marker of structural integrity) was found in different tracts in
responders to the therapy compared to non-responders, including within
left thalamocortical, limbic, and association fibers. Using DTI metrics in
these tracts, an SVM correctly classified patients based on their responses
with a classification accuracy of 89.5%.

Here, we argue that the role of the thalamus in VNS efficacy may be
better understood using diffusion MRI, a powerful imaging technique for
characterizing the microstructure of white matter tracts that remains
underexploited in the field of DRE. To our knowledge, while the previous
study we referred to used single-shell diffusion MRI [12], no study used
high-gradient multi-shell diffusion MRI to extract microstructural fea-
tures of white matter tracts in DRE patients implanted with a VNS device.
Multi-shell diffusion MRI uses multiple b-values (corresponding to
different gradient strengths and durations) and allows the assessment of
more complex aspects of the tissue microstructure using
multi-compartment models, compared with classical models such as DTI.
Therefore, in the present study, we aimed to assess whether micro-
structural features of subsegments of the thalamocortical tracts, extracted
based on multi-shell diffusion, could help to distinguish patients
responding and not responding to VNS. These investigations are needed
to better understand interindividual differences existing among patients
that could be linked to the therapeutic efficacy of VNS. Moreover, we
explored whether multi-compartment models could provide better
discrimination between patients compared to single-compartment
models. We hypothesize that a higher integrity of thalamocortical
tracts will be found in patients demonstrating greater therapeutic effi-
cacy. Finally, this study aims at creating a SVMmodel to classify patients
based on their response to VNS. Clinical features (demographic and
epilepsy-related features) were added to the model, to evaluate the
ability of clinical data to support and improve the classification of pa-
tients based on their response to VNS.

Material and Methods

Participants

Patients were recruited from the Center for Refractory Epilepsy of
Saint-Luc University Hospital. Inclusion criteria were (i) adult partici-
pants, (ii) with a diagnosis of DRE (persistent seizures despite the use of
at least two ASM administered at correct dosages) (iii) able to understand
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the study protocol, (iv) implanted for at least six months with one of the
following VNS models: DemiPulse® Model 103, DemiPulse Duo® Model
104, AspireHC® Model 105, or AspireSR® Model 16 (LivaNova, Inc.,
London, UK), and (v) patients whose medication did not influence
assessment of VNS response. Exclusion criteria were: occurrence of a
seizure <24h prior to the MRI acquisitions, severe side effects of VNS
reported by the patients such as dyspnea, pain in the neck/ear region, or
gastrointestinal complaints, history of alcohol or drug abuse, the pres-
ence of psychiatric illness, inability to understand the study protocol, and
any MRI contraindication. Response to VNS was determined by the
reference neurologist with the following criteria: patients are considered
as Responders (R) if a >50% reduction in seizure frequency is observed,
Partial Responders (PR) demonstrate a reduction in seizure frequency
between 30 and 50% with positive effects observed when swiping the
magnet in front of the generator manually, and Non-Responders (NR)
present a <30% reduction in seizure frequency. The reference neurolo-
gist estimated response to VNS based on the seizures reported over a
three-month period before the implantation. Moreover, a screening of
medical records was conducted to ensure that no change in medication
could have positively influenced the evaluation of response to VNS. In the
present study, 18 patients were recruited, including 6 R, 5 PR, and 7 NR.
Since therapeutic effects were found in PR – although, to a lower extent,
these patients were grouped with R for statistical analyses. Demographic
data can be found in Table 1. In three NR, the VNS was off for several
reasons: (i) two patients were explanted four months and 2.4 years before
the experiment, and (ii) in one patient, the device was turned off
completely for almost two years due to side effects and a lack of response.
The study received approval by the Ethical Committee of Saint-Luc
University Hospital (reference nr. 2021/18FEV/086). All patients
signed the informed consent prior to any investigation.

Imaging parameters

Imaging data were acquired following the LivaNova guidelines for
MRI. Before entering the MRI room, the output current of the VNS device
was set to 0 mA, and the AutoStim mode was turned off. Imaging data
were acquired using the SIGNA Premier 3T MRI system (GE Healthcare,
Milwaukee, WI, USA) with a 48-channel head coil. T1-anatomical images
were acquired with a Magnetization Prepared – RApid Gradient Echo
(MPRAGE) sequence: TR¼ 2186ms, TE¼ 2.95ms, FA¼ 8�, TI¼ 900ms,
bandwidth ¼ 244.14 Hz, matrix size ¼ 256 � 256, 156 axial slices, im-
aging frequency ¼ 127.77 Hz, voxel size ¼ (1 � 1 x 1)mm3, acquisition
time ¼ 5:26 min. Diffusion MRI data were acquired with a Pulsed
Gradient Spin Echo (PGSE) sequence: TR ¼ 4837 ms, TE ¼ 80.5 ms, and
flip angle ¼ 90�. A high-gradient multi-shell diffusion scheme was used
and consisted of 64 gradients at b¼ 1000 s⋅mm�2 and 32 gradients at b¼
2000, 3000, and 5000 s⋅mm�2, interleaved with 7 b0 images. The in-
plane field-of-view was (220 � 220)mm2, the matrix size was 110 �
110, and the data contained 68 axial slices with a 2-mm thickness (no
inter-slice gap, 2-mm isotropic voxels). A multi-slice excitation scheme
was used during the acquisition with a hyperband slice factor of three to
reduce the acquisition time. The total acquisition time was 13:33 min. A
T2-weighted image was acquired to improve the patient-specific seg-
mentation of cortical areas. The T2-weighted image was acquired using a
Spin-Echo (SE) sequence: TR¼ 2.5 ms, TE¼ 91 ms, FA¼ 90�, matrix size
¼ 255� 255, 141 sagittal slices, voxel size¼ (1� 1 x 1)mm3, acquisition
time ¼ 2:01 min.

Data Analysis

Preprocessing and diffusion models

Preprocessing of the diffusion data was performed using the ElikoPy
pipeline (https://github.com/Hyedryn/elikopy) [13]. The preprocessing
steps included skull stripping (using theDiffusion Imaging inPython library
– DiPy, https://dipy.org/) [14], Rician denoising (Marchenko-Pastur
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Table 1
Demographic and clinical characteristics of the study population.

Characteristics NR (n ¼ 7) R/PR (n ¼ 11) p-value

Age (years) 37.14 � 12.82 37.09 � 8.71 0.61
Sex 3 females – 4 males 7 females – 4 males 0.63
VNS therapy duration (months) 109.28 � 46.98 61.27 � 71.50 0.10
Epilepsy type 7 focal – 0 generalized 9 focal – 2 generalized 0.50
Epilepsy duration (years) 24.71 � 8.85 26.64 � 13.09 0.84
Epilepsy onset age (years) 16.71 � 10.14 10.45 � 8.00 0.18
Epileptic syndrome Lennox-Gastaut: 1/7 Lennox-Gastaut: 1/11 1.00

No syndrome: 6/7 No syndrome: 10/11
Brain surgery Brain surgery: 3/7 Brain surgery: 3/11 0.62

No surgery: 4/7 No surgery: 8/11
Etiology of epilepsy Structural: 3/7 Structural: 4/11 0.76

Viral: 1/7 Viral: 0/11
Genetic: 0/7 Genetic: 2/11
Unknown: 3/7 Unknown: 5/11

Lesion on brain MRI Lesion: 5/7 Lesion: 5/11 0.37
No lesion: 2/7 No lesion: 6/11

Number of ASMs 2 ASMs: 2/7 2 ASMs: 5/11 0.30
3 ASMs: 2/7 3 ASMs: 5/11
4 ASMs: 3/7 4 ASMs: 1/11

Benzodiazepine (daily) intake (number of patients) 2 1 0.53
VNS intensity (mA)a 1 mA: 0/4 1 mA: 1/11 0.05

1.125 mA: 0/4 1.125 mA: 1/11
1.25 mA: 0/4 1.25 mA: 1/11
1.50 mA: 0/4 1.50 mA: 5/11
1.75 mA: 2/4 1.75 mA: 1/11
2 mA: 2/4 2.00 mA: 2/11

VNS frequency (Hz)a 20 Hz: 3/4 20 Hz: 4/11 0.21
25 Hz: 1/4 25 Hz: 2/11
30 Hz: 0/4 30 Hz: 5/11

VNS pulse width (μs)a 250 μs : 3/4 250 μs : 9/11 1.00
500 μs : 1/4 500 μs : 2/11

Rapid duty cyclea,b 0/4 2/11 0.58

NR: Non-Responder, R: Responder, PR: Partial Responder, ASM: Antiseizure medication.
a Values reported after excluding three NR (see text).
b The duty cycle is defined as (ON time þ 4s)/(ON time þ OFF time), and a rapid duty cycle is defined as an OFF time <1.1 min while keeping the duty cycle <50%

[41].
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Principal Component Analysis [15]), Eddy currents correction, suscepti-
bility distortion correction and motion correction [16].

DTI maps were computed using DiPy. The DTI metrics investigated in
this study included Functional Anisotropy (FA), Mean Diffusivity (MD),
Axial Diffusivity (AD), and Radial Diffusivity (RD). Multi-compartment
diffusion models were used to characterize crossing fascicles, i.e., Neu-
rite Orientation Dispersion and Density Imaging - NODDI and Micro-
structure Fingerprinting – MF, a model known to provide near-ground
truth for diffusion-weighted MRI signals and compute metrics that are
biologically more interpretable [17,18]. NODDI maps were computed
with the Diffusion Microstructure Imaging in Python (DMIPY, https
://github.com/AthenaEPI/dmipy) toolbox [19]. Two NODDI metrics
were investigated: the Intracellular Volume Fraction (ICVF), also known
as the Neurite Density Index (NDI), and the Orientation Dispersion Index
(ODI). This model requires two values that are fixed a priori: the isotropic
diffusivity for the cerebrospinal fluid (CSF) (default value of 3*10�3

mm2s�1) and the axial diffusivity of the intra-neurite space (default value
of 1.7*10�3 mm2 s�1). Finally, MF is a multi-compartment model based
on Monte Carlo simulations of the random walk of water molecules
within the brain. The MF metric computed in the present study is the
weighted Fiber Volume Fraction (wFVF) corresponding to the axonal
density of the fibers and is defined as:

wFVFi ¼ ν1;i*fvf1;i þ ν2;i*fvf2;i
ν1;i þ ν2;i

;

where:

- i is the index of the voxel.
- ν1;i is the fraction of occupancy of fascicle 1 in the voxel i (and ν2;i for
fascicle 2).
3

- fvf1;i is the fiber volume fraction of fascicle 1 in the voxel i (and fvf2;i
for fascicle 2).
Tractography

A Fiber Orientation Distribution (FOD) was estimated with the Multi-
Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD)
implemented in MRtrix3 [20]. Tractography was performed with the
tckgen function of MRtrix3 in the diffusion space of the patients. A
second-order integration over FOD - a probabilistic algorithm - was used
to reconstruct the streamlines. A 5-tissue-type segmented image
(including cortical gray matter, subcortical gray matter, white matter,
CSF and pathological tissues) was computed using the 5ttgen command of
MRtrix3 and used for constraining anatomically the tractography and
improve it using biological realistic priors. Streamlines were truncated
and re-tracked during the tractography to avoid poor structural termi-
nations. Tracking parameters included: tracking step size ¼ 0.5 � voxel
size (2-mm isotropic voxel), maximum angle ¼ 15� for all tracts except
tracts projecting to the parietal lobe where 10� was used, minimum
length¼ 2� voxel size, maximum length¼ 100� voxel size, 1000 as the
maximum number of sampling trials at each point, FOD amplitude cut-off
value for terminating tracks ¼ 0.05, and the number of selected
streamlines after all selection criteria have been applied ¼ 10000.

Twelve subsegments of thalamocortical tracts were reconstructed for
each subject (6 left-lateralized and 6 right-lateralized tracts), including
the anterior thalamocortical tracts, the superior thalamocortical tracts,
the posterior thalamocortical tracts (projecting to the parietal cortex, or
the occipital cortex), and the inferior thalamocortical tracts (projecting to
the temporal cortex or the insular cortex) [21]. Candidate gray matter
regions used as inclusion regions for the tractography were extracted in
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the structural space of the subjects with Freesurfer (Linux – centOS
version 7.2), using the T1 and T2-weighted images for the segmentation
of the whole brain. All Regions-Of-Interest (ROIs) were warped into the
diffusion space of the subject after registering the skull-stripped
T1-weighted image to the diffusion space, using the bbregister function
from Freesurfer, and applying the transformation parameters to the
segmented ROI using the mri_vol2vol function from Freesurfer. This step
included a 6-parameter rigid body transformation with the -no-resample
option to avoid losing resolution due to resampling of the structural
image. For the tracking, white matter inclusion regions (defined based on
anatomical knowledge of thalamocortical tracts [21]) were also used as
ROI to improve the tractography. These regions were obtained after
registration of the parcellation from the Johns Hopkins University – In-
ternational Consortium for Brain Mapping (JHU ICBM) DTI-152 Atlas in
the diffusion space of the subject with a two-step process: (i) registering
the template image - ICBM152 (1� 1 x 1)mm3 to the T1-weighted image
(using the Advanced Normalization Tools toolkit - ANTs, Penn Imaging
Computing and Science Laboratory, UPenn, USA, http://stnava.github
.io/ANTs/) of the subject and applying the transformation parameters
to warp the white matter labeled ROI into the structural space of the
subject, and (ii) applying the transformation parameters obtained when
registering the T1-weighted image into the diffusion space of the
subjects.

For tracking all thalamocortical tracts, the Freesurfer-segmented left
and right thalami were used as seed regions for tracking left and right
thalamocortical tracts, respectively. The inclusion ROIs and END regions
used for tracking the subsegments of the thalamocortical tracts were
based on regions previously defined [21] (all regions are summarized in
Table 2). The final tracts are shown in Fig. 1.

Statistical analysis

Statistical analyses were conducted using RStudio (version 4.2.1).
Demographic and clinical features summarized in Table 1 were statisti-
cally compared between R/PR and NR using Wilcoxon Mann-Whitney
tests for continuous variables and Fisher's exact test for nominal data.

Using multivariate linear regressions, diffusion MRI metrics were
modeled in terms of VNS response, using age, sex, ASM intake, epilepsy
duration, VNS therapy duration, and benzodiazepine intake as
covariates.

The Variance Inflation Factor (VIF) values were computed for the
predictors included in the linear models to avoid fitting problems. VIF
values of all predictors were <5 (low correlation between predictors),
with a maximum VIF value of 2.06 found for the sex of the patients. False
Discovery Rate (FDR) correction was applied for all the tracts investi-
gated to correct for multiple comparisons (12 tests in total). Results were
considered as significant for pFDR < 0.05. Trends toward significance
were considered for p < 0.05. For visual purposes, boxplots of diffusion
metrics in R/PR and NR were shown. Tracking of the right posterior
thalamocortical tract projecting to the parietal lobe failed for one patient
Table 2
Inclusion brain regions (Region-Of-Interest, ROI, and END regions) used for the track

Thalamocortical tracts Inclusion ROIs

Anterior Anterior limb of the internal capsule

Superior Posterior limb of the internal capsule
Posterior
Projecting to parietal lobe Posterior limb of the internal capsule
Projecting to the occipital lobe Posterior limb of the internal capsule

Inferior
Projecting to the temporal lobe Retrolenticular part of the internal capsule

Projecting to the insular cortex Retrolenticular part of the internal capsule
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(an NR) due to a right amygdalohippocampectomy associated with a
resection of temporo-occipital dysplasia. Therefore, the diffusion metrics
were investigated in 18 patients for all tracts, except for the right pos-
terior thalamocortical tracts projecting to the parietal lobe, for which 17
patients were included in the analysis.

Support vector machine

Seventeen subjects were included in the discovery cohort - the patient
for whom the tractography failed for the right posterior thalamocortical
tract projecting to the parietal lobe was excluded for consistency pur-
poses in the features used to train the SVM model. An SVM model was
chosen over other existing classificationmodels, as it is known to perform
well on small datasets [22]. The Scikit-Learn Python library (French
Institute for Research in Computer Science and Automation, Rocquen-
court, France) was used to build the SVM model [23]. Data was
mean-centered and scaled to unit variance to reduce sensitivity to the
feature scale and have a faster convergence when fitting the SVM model.

A recursive feature elimination approach was used to determine the
optimal combination of features by removing the least important feature
before refitting the model. A wrapper feature selection approach was
conducted, with an internal filter-based feature selection using the
SelectKBest function that uses F-statistics to classify features based on
their contribution to the target variable – i.e., response to VNS therapy.
Therefore, a model was built using all features and recursively elimi-
nating the least important feature; the model was rebuilt until one feature
(i.e., the most important feature for discriminating R/PR and NR)
remained. Eighty-four diffusion MRI features were considered (12 tracts
– 6 in each hemisphere; 7 metrics in total – 4 DTI metrics, 2 NODDI
metrics, and 1 MF metric). Clinical features were incorporated into the
set of features used for the classification to evaluate their potential in-
fluence in the classification of the patients. The following clinical features
were included: age, sex, duration of VNS therapy, number of ASM,
benzodiazepine intake, epilepsy duration, epilepsy onset age, epilepsy
type (focal or generalized), presence of an epileptic syndrome (no syn-
drome or Lennox-Gastaut syndrome), etiology of epilepsy (structural,
genetic, viral, or unknown), history of brain surgery, and presence of a
brain lesion detected on structural MRI images. Therefore, 96 features
were considered in total for building the SVMmodel. All clinical features
that could be retrospectively extracted from medical records were added
in the present study. The inclusion of these features in the model to
evaluate their potential to discriminate R/PR and NR constitutes inter-
esting investigations, as (i) response rate to VNS is known to increase
with the duration of the therapy [24], (ii) white matter integrity of tracts
composing the vagal afferent network may present specific abnormalities
in different epilepsy types, or epilepsies with different etiologies, (iii)
patients with a shorter history of epilepsy could show a higher likelihood
to respond to VNS [24], and that (iv) lesions detected on MRI or history
of brain surgery could explain changes in white matter microstructure in
fibers composing the vagal afferent network [25,26].
ing of thalamocortical tracts.

END

Frontal lobe: superior frontal cortex, rostral and caudal middle frontal cortex,
pars opercularis, pars triangularis, pars orbitalis, lateral and medial
orbitofrontal cortex and frontal pole
Central gyrus

Parietal lobe: superior parietal cortex, inferior parietal cortex and precuneus
Occipital lobe: lateral occipital cortex, lingual gyrus, cuneus and pericalcarine
gyrus

Temporal lobe: superior, middle, and inferior temporal cortex, banks of the
superior temporal sulcus, fusiform gyrus, transverse temporal cortex, and
entorhinal cortex
Insular cortex

http://stnava.github.io/ANTs/
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Fig. 1. Example of the tractography of thalamocortical tracts extracted in one patient. (a) All subsegments of thalamocortical tracts superimposed with a color index,
and (b) individual thalamocortical subsegments, with the color reflecting the orientation of the fibers.
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A common practice in machine learning is to use kernel functions to
implicitly map the data into a higher-dimensional space to solve a non-
linear classification problem using a linear classifier. Therefore,
different kernel functions were used during the model selection process
to investigate the most suitable function for the classification: linear,
polynomial, Radial Basis Functions – RBF, and sigmoid kernel functions.
Grid search over the hyperparameters was realized for the regularization
parameter (to ensure a trade-off between misclassifications and maxi-
mization of the margin hyperplane) and the gamma-kernel coefficient
(defining the curvature of the decision boundary - only applicable for
polynomial, RBF, and sigmoid kernel functions). Tuning of the hyper-
parameters was done with a nested Leave-One-Out (LOO) cross-
validation to select the best-performing model while avoiding over-
fitting and bias for the estimation of the ability of the model to generalize
to unseen data. Grid search over these parameters (inner cross-validation
loop) was realized over classically reported values: C ¼ [10�4, 10�3, …,
102] and γ¼ [‘scale’, ‘auto’, 10�4, 10�3,…, 102]; with scale¼ 1/(number
of features * data variance) and auto ¼ 1/(number of features).

Due to the small nature of our dataset, the classification accuracy was
also evaluated using the LOO cross-validation technique (outer cross-
5

validation loop). The confusion matrix reporting the true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) pre-
dictions was computed. The final model (best subset of features, most
suitable kernel function, and hyperparameters) was chosen based on a
multi-criterion evaluation that includes:

- F1-score, defined as: 2*(precision * recall)/(precision þ recall), with
precision ¼ TP/(TP þ FP) and recall ¼ sensitivity ¼ TP/(TP þ FN).

- Classification accuracy defined as: (TP þ TN)/(TP þ TN þ FP þ FN).

For the best-performing model, the Receiver Operating Characteristic
(ROC) curve was plotted, and the Area-Under the Curve (AUC) was
computed based on the prediction scores using the roc_auc_score function.

Results

Diffusion tensor imaging

The linear model using the DTI metrics as dependent variables and
controlling for several potential confounds (see methods) revealed a



Fig. 2. Boxplots of DTI metrics in thalamocortical tracts in Responders (R)/Partial Responders (PR) and Non-Responders (NR). Filled stars represent the results of the
linear models that remained significant after FDR correction; Empty stars represent the results of the linear models that were significant without correction only. AD:
Axial Diffusivity, FA: Fractional Anisotropy, MD: Mean Diffusivity, RD: Radial Diffusivity, A: Anterior thalamocortical tracts, I–I: Inferior thalamocortical tracts
projecting to the insular cortex, I–T: Inferior thalamocortical tracts projecting to the temporal lobe, P–O: Posterior thalamocortical tracts projecting to the occipital
lobe, P–P: Posterior thalamocortical tracts projecting to the parietal lobe, S: Superior thalamocortical tracts.
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significantly higher MD in NR compared to R/PR bilaterally in the infe-
rior thalamocortical tracts projecting to the temporal lobe (left: p ¼
0.001, pFDR ¼ 0.01*, right: p ¼ 0.002, pFDR ¼ 0.01*), left posterior tha-
lamocortical tracts projecting to the parietal lobe (p ¼ 0.01, pFDR ¼
0.03*), right inferior thalamocortical tracts projecting to the insular
cortex (p ¼ 0.007, pFDR ¼ 0.02*), and right posterior thalamocortical
tracts projecting to the occipital cortex (p¼ 0.004, pFDR¼ 0.01*) (Fig. 2).
Moreover, a significantly higher RD was found in NR compared to R/PR
in the right inferior thalamocortical tracts projecting to the insular cortex
(p¼ 0.007, pFDR¼ 0.02*), right inferior thalamocortical tracts projecting
to the temporal lobe (p ¼ 0.007, pFDR ¼ 0.02*), and right posterior
thalamocortical tracts projecting to the occipital lobe (p ¼ 0.002, pFDR ¼
0.02*). Linear models of diffusion metrics of models showing significant
6

results after FDR correction (pFDR < 0.05) or trends of significance (p <

0.05) are reported in Supplementary Material 1.
Moreover, while the duration of VNS therapy was used as a covariate

in the statistical models to remove a possible influence on the diffusion
metrics, no significant effect of therapy duration was found in any sta-
tistical model.

Neurite orientation dispersion and density imaging

The linear model using the NODDI metrics as dependent variables
yielded a significantly higher ICVF (or NDI) bilaterally in R/PR compared
to NR in the inferior thalamocortical tracts projecting to the insular
cortex (left: p ¼ 0.02, pFDR ¼ 0.04*, right: p ¼ 0.01, pFDR ¼ 0.04*),



Fig. 3. Boxplots of NODDI and MF metrics in thalamocortical tracts in Responders (R)/Partial Responders (PR) and Non-Responders (NR). Filled stars represent the
results of the linear models that remained significant after FDR correction; Empty stars represent the results of the linear models that were significant without
correction only. ICVF: Intracellular Volume Fraction, NDI: Neurite Density Index, ODI: Orientation Dispersion Index, wFVF: weighted Fiber Volume Fraction. A:
Anterior thalamocortical tracts, I–I: Inferior thalamocortical tracts projecting to the insula, I–T: Inferior thalamocortical tracts projecting to the temporal lobe, P–O:
Posterior thalamocortical tracts projecting to the occipital lobe, P–P: Posterior thalamocortical tracts projecting to the parietal lobe, S: Superior thalamocortical tracts.
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inferior thalamocortical tracts projecting to the temporal lobe (left: p ¼
0.005, pFDR ¼ 0.02*, right: p ¼ 0.004, pFDR ¼ 0.02*), posterior thala-
mocortical tracts projecting to the occipital lobe (left: p ¼ 0.02, pFDR ¼
0.04*, right: p ¼ 0.004, pFDR ¼ 0.02*), and left posterior thalamocortical
tracts projecting to the parietal lobe (p ¼ 0.02, pFDR ¼ 0.04*) (Fig. 3).

Microstructure fingerprinting

The linear model for the MF metrics led to no significant difference
after FDR correction. However, a trend toward a higher wFVF in R/PR
compared to NR was found bilaterally in the inferior thalamocortical
tracts projecting to the insular cortex (left: p ¼ 0.04, right: p ¼ 0.02)
(Fig. 3).
7

Support vector machine

The feature selection technique highlighted different models that led
to the highest classification accuracy and the associated F1-score. The
best model that included the least number of features only used the five
best discriminatory features for the classification. This model reached a
classification accuracy of 94.12% and an F1-score of 95.65%. The
selected features were: MD in left inferior thalamocortical projecting to
the insular cortex (scoreSelectKBest: 12.25, pSelectKBest¼ 0.003), MD in right
inferior thalamocortical tracts projecting to the insular cortex (score-
SelectKBest: 11.50, pSelectKBest ¼ 0.004), RD in right inferior thalamocortical
tracts projecting to the insular cortex (scoreSelectKBest: 11.11, pSelectKBest ¼
0.004), RD in left inferior thalamocortical tracts projecting to the insular
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cortex (scoreSelectKBest: 9.65, pSelectKBest ¼ 0.007) and MD in the right
superior thalamocortical tracts (scoreSelectKBest: 9.56, pSelectKBest¼ 0.007).

The same performance (classification accuracy and F1-score) was
found when using the 13, 63, 64, and 65 best features (Fig. 4a). More-
over, the accuracy remained high regardless of the number of features
chosen for the classification, providing evidence of stability of the model,
and hints that the model is not overfitting. The classification accuracy
and F1-score remained consistently high during the features selection
technique, indicating the stability of the selected model when features
are added for the classification. Hence, to (i) prevent overfitting, (ii)
optimize the computational efficiency, and (iii) enhance the generaliza-
tion properties of the model, the final model chosen was the one showing
the best performance and the minimal number of features for the clas-
sification (i.e., 5 best discriminatory features). At each iteration of the
LOO cross-validation technique, the sigmoid kernel was selected as the
best-performing model, and grid-search over the hyperparameters sug-
gested a top-performing classification for the default values of C ¼ 1, and
γ ¼ 1/(number of features * data variance) ¼ 0.2. These values promote
good generalization by balancing the complexity and smoothness of the
Fig. 4. Model and feature selection techniques for building the final SVMmodel. (a) E
during the recursive feature elimination; (b) Receiver Operating Characteristics (ROC
the Curve (AUC) of 87.88%; (c) Confusion matrix of the final SVM model, showing 5
(FN) prediction and one false positive (FP) prediction.
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decision boundary, which is essential for preventing overfitting in small
datasets. Using this model, the AUC ¼ 87.88%, the sensitivity ¼ 100%,
and the specificity ¼ 83.33%. The corresponding ROC curve and
confusion matrix can be found in Fig. 4b and c, respectively.

The most discriminatory clinical feature selected was the number of
ASM, selected at the 39th position out of 96 features (with a higher
number of ASM in patients with a poorer response to VNS, which was not
significant when comparing groups in the demographic data table –

Table 1).

Discussion

Considering the broadness of projections arising from the thalamus
and projecting to the cortex, modulation of this circuitry with VNS could
disrupt the abnormal and synchronous activity of neurons [10]. The
present pilot study aims to increase our current understanding of the
possible implication of thalamocortical tract integrity in the interindi-
vidual differences in response to VNS using diffusion MRI. Based on the
diffusion metrics extracted, our results suggested a lower integrity in
volution of the classification accuracy and F1-score of the best-performing model
) curve of the final Support Vector Machine (SVM) classifier, with an Area Under
true negative (TN) predictions, 11 true positive (TP) predictions, 0 false negative
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different subsegments of thalamocortical tracts in patients with a poorer
response to VNS.

The thalamus may be a central player in the antiseizure effects of VNS
[5–9]. In addition to the rationale provided in the introduction, an
immunochemistry study carried out in rodents found an increased nu-
clear Fos immunolabelling - a marker for high neuronal activation - in the
habenular nuclei of the thalamus with VNS [5]. Moreover, previous
positron emission tomography studies conducted in humans found a
bilateral increased cerebral blood flow in the thalami following VNS
administration [6–8]. Interestingly, the increased cerebral blood flow
measured in one of these studies correlated with decreased seizure fre-
quency [7]. Using functional MRI, an increased activation in different
cortical areas was found with VNS, while an increase in the thalamus was
reported in 2 out of 5 patients – those who demonstrated improvement in
seizure control after the implantation [9]. Moreover, previous studies
explored the connectivity features of thalamocortical relays in DRE pa-
tients [5,7–9,11]. Indeed, a functional MRI study found an increased
connectivity of the thalami to the anterior cingulate cortex and the left
insula before the implantation, which was associated with a higher
therapeutic efficacy of VNS [11]. Finally, a previous diffusion MRI study
found an increased FA in the left thalamocortical, limbic, and association
fibers in responders to the therapy compared to patients with a <50%
reduction in seizure frequency [12].

In the present study, higher MD and RD were found mainly in sub-
segments of the inferior and posterior thalamocortical tracts in NR.
Although not specific, higher MD and RD could indicate reduced fiber
integrity, including a reduced density of axons and/or lower myelination
[27–29]. Since DTI may suffer from strong assumptions and poor speci-
ficity, multi-compartment models were used to give further insights into
microstructural differences across DRE patients.

High-gradient multi-shell diffusion MRI allowed us to use NODDI and
MF, two multi-compartment models, for extracting microstructural
metrics. While NODDI has been used to characterize white matter
microstructure in an array of neurologic and psychiatric diseases,
including Alzheimer's disease [30], Parkinson's disease [31], epilepsy
[25], or schizophrenia [32], this study constitutes the first investigations
of NODDI and MF metrics in DRE patients implanted with a VNS device.
The lower NODDI-based ICVF found in subsegments of the inferior and
posterior thalamocortical tracts in NR could suggest that the lower
integrity suspected based on MD and RD may arise from a reduced fiber
density. Since trends toward lower MF-based wFVF values were also
found in the inferior thalamocortical tracts (projecting to the insular
cortex), the results from the MF analysis further support the interpreta-
tion of the results obtained from the other diffusion models. Therefore,
this pilot study could suggest that metrics from multi-compartment
models may provide additional insight into microstructural differences
without suffering from the strong assumptions of DTI.

The accuracy of 94.12% reached with the best SVM model only
included classical DTI metrics, suggesting that they may be the best
diffusion metrics to date to support clinical decisions. The best features
selected for the SVM classification mainly involved diffusion metrics in
the inferior thalamocortical tracts projecting to the insular cortex, i.e.,
tracts that also showed significant differences between R/PR and NR in
the multiple regression analyses. Interestingly, a functional MRI study of
the acute effects of VNS found a bilateral activation of the thalami – but
more robustly left-lateralized – and insular cortices, suggesting the
involvement of these brain areas in the antiseizure effects of VNS [33].
Since a lower integrity of white matter tracts connecting these regions
was found in non-responders in the present study, one could suggest that
a lower integrity of these tracts could result in a lower therapeutic effi-
cacy due to possibly impaired communication. While only DTI metrics
were selected for the SVM model, the statistical models that included
multi-compartment features provided additional information on the
microstructural properties of thalamocortical tracts and confirmed the
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interpretation of DTI metrics. However, more research is necessary to
determine whether multi-shell diffusion MRI could guide clinical de-
cisions in the future.

Importantly, the best SVM model did not select clinical features.
These findings reinforce the idea that clinical characteristics may not be
useful for improving the prediction of VNS response [12]. In line with our
results, another 11-year retrospective study that included 365 pediatric
patients built a prediction model and suggested that clinical features
alone were not sufficient to accurately predict VNS response [34].
Furthermore, this reflects the value of diffusion MRI metrics as markers
of VNS response and the potential use of our classification model to pa-
tients implanted with a VNS device for whom clinical data is incomplete.
Indeed, the performance of this model will remain unaffected by chal-
lenges related to the availability of clinical data. Our findings are similar
to a previous DTI study where an SVM model was built (using metrics
from various white matter tracts based on a tract-based spatial statistics
analysis) and reached a classification accuracy of 89.5% when discrim-
inating NR and R. Adding clinical features did not improve the classifi-
cation [12]. This contrasts with another study that used EEG-based
connectivity measures to build a classification model and suggested that
clinical data were useful for predicting VNS response [35]. Although the
comparison between techniques and studies is difficult, one could argue
that DTI connectivity metrics are more powerful than EEG connectivity
metrics in predicting response to VNS, as they may not require a full
clinical characterization of the patients. Future prospective studies
including an extensive clinical characterization of the patients could
confirm these findings. Indeed, a previous study indicated that IQ defi-
ciency may be a predictor for responding to VNS [36]. However,
including this feature – among others – in the classifier developed by
Mithani and colleagues, did not improve the classification of patients
[12].

Although the number of patients included in the present study is
considered acceptable for a population of DRE patients implanted with a
VNS device, it is important to note that the sample size remains relatively
small. Therefore, while the present pilot study aimed at investigating
differences of structural integrity in a pathway involved in antiseizure
effects of VNS between patients showing a good and poor response to the
treatment, a replication of these results is highly needed in a more
extensive cohort of patients with DRE. Moreover, using an external
cohort of patients to validate the SVM classifier built in the present study
is warranted to evaluate the generalization, robustness, and practical
relevance of the model. Besides these limitations, which are intrinsic to
our study design, whether the differences observed in the present study
(i) reflect an inherent inclination to respond more favorably to VNS, (ii)
are linked to seizure activity - given that patients with a poorer response
to the treatment may tend to experience seizures more frequently - or (iii)
reflect the direct and more prominent impact of VNS in reorganizing
tracts in patients with a better response, remains to be clarified. Indeed, a
previous study suggested an increased MD in patients with drug-resistant
temporal lobe epilepsy compared to controls in fasciculi carrying tem-
poral lobe connections that could reflect astrogliosis and microstructure
derangement related to seizure activity in the vicinity of the seizure focus
[37,38]. One of these studies found a higher MD that was associated with
a shorter interval between the last seizure and DTI [38]. In their study, 24
patients had an average of 50 � 54h between the last seizure and DTI
examination, and 6 patients underwent MRI acquisition as outpatients: 5
had a seizure one week before the examination, and one patient had a
seizure 10 min before [38]. While our exclusion criteria involved
excluding patients who had a seizure within 24h prior to the MRI ex-
amination to control for the possible impact of seizures on microstruc-
tural derangement, further studies incorporating hospitalized patients
could provide insight into the potential influence of seizures on diffusion
metrics of multi-compartment models. For our study design, knowing the
exact time of the latest seizure prior to the MRI examination could be
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useful to control for possible seizure-related effects. Moreover, including
a benchmark cohort of epileptic patients characterized by the same
seizure burden as our cohort could be valuable for future research to
extract the effect of VNS and remove possible effects of seizures on tha-
lamocortical integrity. Further studies could only include patients thor-
oughly maintaining a seizure diary to precisely evaluate the reduction of
seizure frequency. This could help to refine the categorization of patients,
by using a continuous variable characterizing VNS response instead of
using a binary classification. Longitudinal studies assessing diffusion
metrics both before the implantation and throughout the treatment could
be interesting to evaluate the modulatory effect of VNS on the integrity of
thalamocortical tracts. Interestingly, the effect of different stimulation
paradigms on thalamocortical integrity could be explored longitudinally.
These investigations could help to better select stimulation parameters to
maximize the neuromodulatory effects of VNS. For example, microburst
stimulation – a paradigm that aims to stimulate with high-frequency
bursts of stimulation – is believed to improve the modulation of the
thalamus [39,40]. Comparing the effect of microburst VNS on thalamo-
cortical integrity with classical stimulation paradigms could validate the
potential of microburst VNS to improve neuroplasticity effects in the
brain. However, further studies are needed to evaluate the potential ef-
fect of this paradigm in improving the response to VNS.

Pre-implantation acquisitions are needed to evaluate the value of
diffusion metrics within thalamocortical tracts to predict VNS response.
However, this pilot study constitutes interesting insights into the vari-
ability in response across implanted patients. Finally, investigations of
the structural-functional associations in DRE patients using a multimodal
approach that includes high-gradient multi-shell diffusion MRI and, for
instance, functional MRI could refine the understanding of the biological
prerequisites for responding to VNS.

Overall, our study highlighted the significant potential of single- and
multi-compartment diffusion MRI models in elucidating interindividual
differences in biological features that could be associated with VNS
response. Investigation of the predictive value of multi-compartment
models in a clinical context, and their potential to unravel the neuro-
modulatory effects of VNS on thalamocortical tracts could be investi-
gated in pre-implantation and longitudinal studies utilizing the
methodology described in this pilot study. These imaging techniques
could contribute to medical decision-making, patient management, and
the innovation of novel clinical treatments in the future.
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