Development of a high-order solver for inductively coupled plasma

Corthouts Nicolas, Hillewaert Koen, May Georg, Magin Thierry

Context of research

Torch Test chamber $Re \sim 100$ *Ma* ~ 0.001 $\rho \simeq \rho(T)$.

Goal: Simulation of **complex physics** with **less constraints on the mesh** + instabilities.

ICP: segregated approach of previous solvers

ICP: segregated approach of previous solvers

Pros

- It works (see Magin, 2004).
- Allows to freeze the electric field in unsteady simulations.

ICP: segregated approach of previous solvers

Pros

- It works (see Magin, 2004).
- Allows to freeze the electric field in unsteady simulations.

Cons

• Convergence can be hard to achieve (O(1000) iterations with COOLFluiD).

A multi-domain solver

Two approaches

- MONOLITHIC: system solved as a whole.
- COUPLED: two solvers that exchange interface data.

A multi-domain solver

Two approaches

- **MONOLITHIC: system solved as a whole.**
- COUPLED: two solvers that exchange interface data.

The numerical method: HDG

- 1. **Local systems** of element size solved directly.
- 2. **A global system** smaller than the global DG system.

Multi-domain HDG

Weak Conservativity

$$
\int_{\Gamma} \left[\hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.
$$

Weak Conservativity

$$
\int_{\Gamma} \left[\hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.
$$

Weak imposition of BC

$$
\hat{f}_1=\hat{f}_1(w_1,q_1,w_{bc},q_{bc})
$$

Weak Conservativity

$$
\int_{\Gamma} \left[\hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.
$$

Weak imposition of BC

$$
\hat{f}_1=\hat{f}_1(w_1,q_1,w_{bc},q_{bc})
$$

Weak Kinematic Conditions

$$
\int_{\Gamma} \mathcal{F}(\lambda_1, \lambda_2) \mu dS = 0
$$

Interface conditions $T^f = T^s$ $k_f \nabla T^f = k_s \nabla T^s$ $\mu(T)$, $k(T)$ + axisymm.

Application: Conjugate heat transfer

$\overline{}$

AUSM numerical flux + low-mach preconditioning (Magin 2004) and Damped Newton-Raphson method. 7

Application to ICP: Qualitative results

Temperature profile

 $T_{min} = 350 \text{ K}$ T_{max} = 11000 K

Temperature profile

 $T_{min} = 350 \text{ K}$ T_{max} = 11000 K

Electric field profile

$E_{min} = 0$ V $E_{max} = 3650 \text{ V}$

Temperature profile

 $T_{min} = 350 \text{ K}$ T_{max} = 11000 K

Electric field profile

$$
E_{min} = 0 \text{ V}
$$

$$
E_{max} = 3650 \text{ V}
$$

Power dissipated in the facility

 $P_{min} = 0$ W/m³ $P_{max} = 10^{11}$ W/m³

Convergence history

- Damped inexact Newton-Raphson + GMRES(50)-ILU.
- Current adaptation to match dissipated power.

Application to ICP: quantitative results for the mini-torch

Comparison with results of previous ICP code (AUSM flux, $p = 2$, swirl = 45°).

Application to ICP: oscillations near the wall

Temperature oscillations in the near wall region.

ICP: mesh comparison

FV mesh

ICP mesh

- A versatile tool has been implemented in the HDG code.
- Works on unstructured mesh.
- High-order ICP simulations are now possible.
- Possibility of extending to various physical situation.
- High order methods are prone to oscillations. We are working on them.

For the interested reader

