Development of a high-order solver for inductively coupled plasma

Corthouts Nicolas, Hillewaert Koen, May Georg, Magin Thierry

Context of research

Torch Test chamber $Re \sim 100~~Ma \sim 0.001~~
ho \simeq
ho(T).$

Goal: Simulation of **complex physics** with **less constraints on the mesh** + instabilities.

ICP: segregated approach of previous solvers

ICP: segregated approach of previous solvers

Pros

- It works (see Magin, 2004).
- Allows to freeze the electric field in unsteady simulations.

ICP: segregated approach of previous solvers

Pros

- It works (see Magin, 2004).
- Allows to freeze the electric field in unsteady simulations.

N-S = f(Maxwell)

Cons

 Convergence can be hard to achieve (O(1000) iterations with COOLFluiD).

A multi-domain solver

Two approaches

- MONOLITHIC: system solved as a whole.
- COUPLED: two solvers that exchange interface data.

A multi-domain solver

Two approaches

- MONOLITHIC: system solved as a whole.
- COUPLED: two solvers that exchange interface data.

The numerical method: HDG

- 1. Local systems of element size solved directly.
- 2. A global system smaller than the global DG system.

Multi-domain HDG

Weak Conservativity

$$\int_{\Gamma} \left[\hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.$$

Weak Conservativity

$$\int_{\Gamma} \left[\hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.$$

Weak imposition of BC

$$\hat{f}_1 = \hat{f}_1(w_1, q_1, w_{bc}, q_{bc})$$

Weak Conservativity

$$\int_{\Gamma} \left[\hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.$$

Weak imposition of BC

$$\hat{f}_1=\hat{f}_1(\textbf{w}_1, \textbf{q}_1, \textbf{w}_{bc}, \textbf{q}_{bc})$$

Weak Kinematic Conditions

$$\int_{\Gamma} \mathcal{F}(\lambda_1,\lambda_2) \mu dS = 0$$

Interface conditions $T^{f} = T^{s}$ $k_{f} \nabla T^{f} = k_{s} \nabla T^{s}$

 $\mu(T), k(T) + axisymm.$

Application: Conjugate heat transfer

$\bullet \bullet \bullet \bullet \bullet \bullet$

$\bullet \bullet \bullet \bullet \bullet \bullet$

$\bullet \bullet \bullet \bullet \bullet \bullet$

 $\longrightarrow I_c$: need to match P_{target}

AUSM numerical flux + low-mach preconditioning (Magin 2004) and Damped Newton-Raphson method.

Application to ICP: Qualitative results

Temperature profile

 $T_{min} = 350 \text{ K}$ $T_{max} = 11000 \text{ K}$

Application to ICP: Qualitative results

Temperature profile

 $T_{min} = 350 \text{ K}$ $T_{max} = 11000 \text{ K}$

Electric field profile

E_{mir} E_{max} =

$$E_{min} = 0 V$$

 $E_{max} = 3650 V$

Temperature profile

 $T_{min} = 350 \text{ K}$ $T_{max} = 11000 \text{ K}$

Electric field profile

Power dissipated in the facility

 $P_{min} = 0 \text{ W/m}^3$ $P_{max} = 10^{11} \text{ W/m}^3$

Convergence history

- Damped inexact Newton-Raphson + GMRES(50)-ILU.
- Current adaptation to match dissipated power.

Application to ICP: quantitative results for the mini-torch

Comparison with results of previous ICP code (AUSM flux, p = 2, swirl = 45°).

Application to ICP: oscillations near the wall

Temperature oscillations in the near wall region.

ICP: mesh comparison

FV mesh

ICP mesh

- A versatile tool has been implemented in the HDG code.
- Works on unstructured mesh.
- High-order ICP simulations are now possible.
- Possibility of extending to various physical situation.
- High order methods are prone to oscillations. We are working on them.

For the interested reader

Brought to you by Universit	de Li ŵge Cart 📜 Join AIAA Institution Login Log In
ANYWHERE Chiter words / phrases / DOI / ISBN / keywords / authors / etc	Q Advanced search
Home Journals v Books v Meeting Papers Standards Other Publications v AIAA.org V	/ideo Library
Meeting Paper Home For Authors AIAA SciTech Forum Home	
Hybridized Discontinuous Galerkin Method for Multiphysics Problems: Application to Inductively Coupled Plasmas Nicolas Corthouts, Koen Hillewaert, Georg May and Thierry Magin Published Online: 4 Jan 2024 • https://doi.org/10.2514/6.2024-1819	Figure References Related Details Orlando, FL https://doi.org/ 10.2514/6.2024-1819 Crossmark
Abstract:	Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
This paper presents one of the first high-order simulations of inductively coupled plasma (ICP). First, a multi-domain solver using a variant of discontinuous Galerkin method, called the hybridized discontinuous Galerkin method, is developed. This multi-domain solver is verified on an analytical conjugate heat transfer problem, showing that the order	Topics