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Abstract: In our investigation, we have developed innovative statistical models tailored to predict
specific phenological stages of winter oilseed rape (WOSR) cultivation in Luxembourg. Leveraging
extensive field observations and meteorological data, our modeling approach accurately forecasts
critical growth stages of WOSR, including inflorescence emergence (BBCH 51), initial flowering
(BBCH 60), and cessation of flowering (BBCH 69), capitalizing on accumulated heat units. Our
findings challenge conventional assumptions surrounding base temperatures, advocating for a
specific base temperature of 3 ◦C for winter oilseed rape emergence, consistent with prior research.
Validation via leave-one-out cross-validation yields promising outcomes, with average Root Mean
Square Error (RMSE) values below 1, surpassing analogous studies. Particularly noteworthy is our
model’s performance in predicting crucial growth stages, notably BBCH 60, pivotal for pest control.
Despite advancements, hurdles persist in forecasting late-stage phenological events influenced by
leaf senescence and anticipated climate change impacts, likely accelerating WOSR development and
introducing new risks. In response, cultivar selection strategies informed by individual development
rates and temperature sensitivities emerge as vital mitigation measures. As climate variability
intensifies, precision agriculture assumes paramount importance in optimizing resource allocation
and ensuring sustainable WOSR cultivation practices. Our study advocates for proactive integration
of predictive modeling into adaptive management frameworks, empowering stakeholders to make
informed decisions taking climatic dynamics into account.

Keywords: growth stages; climate change impact assessment; oilseed rape; regional climate change
projections; PMP5.5 modeling platform

1. Introduction

The EU total oilseed area is expected to reach 11.3 million ha in 2026 [1]. While
oilseed yields for sunflower and soybeans are projected to increase, the situation for winter
oilseed rape (Brassica napus L, WOSR) is more demanding, because it is highly sensitive
to unfavorable weather conditions and pest pressure [2]. Besides those challenges, WOSR
has significant socioeconomic importance and several advantages for cropping systems
such as erosion protection, high yields, and breaking of grain-based crop rotations [3–5].
Nevertheless, WOSR requires an intensive management of fertilizers as well as pesticide
application to control diseases and insect pests [6]. Environmental changes like increased air
temperatures and changes in precipitation patterns will also affect biomass production [7,8],
yield, as well as the characteristic phenology of WOSR and its associated pest [9]. Climate
projections indicate a potential temperature rise from 3 ◦C to 5 ◦C, depending on the
emission scenario, until the end of the 21st century [10]. Increased temperatures due to
climate change will highly impact the growth and yield of agricultural crops, for instance
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leading to shorter crop rotations [11,12]. While Borges et al. [13] expect shifts concerning
areas that are suitable for cultivation of WOSR under climate change, the increasing
variability in meteorological extreme events such as droughts and heat waves [14,15] will
influence the growing conditions for WOSR as well as leading to the need for developing
adaptive management strategies and decision support tools for ecological intensification of
this crop [7].

Regional climate change predictions based on multi-model ensemble approaches
are suitable tools to assess the impact of possible future climate realizations on the local
scale [14,16–21]. Air temperatures in Luxembourg have significantly increased during the
20th century [14]. Studies about modeling the response of rapeseed phenology in a climate
change context are scarce [7,19,20], but necessary for predicting the plant performance
under different future climate conditions.

The general response of plants to temperature can be modeled by chilling (cool tem-
peratures) and forcing models (warm temperatures). Depending on the applied model, the
accuracy of the predicted phenology is linked to different levels of uncertainties [21]. Such
models are usually calibrated using phenological observations from a single site or a collec-
tion of sites as it is widely carried out for grapevine phenology [22,23]. Non-linear models
describe the complex relationship between temperature and crop development based on
thermal kinetic conditions. These models normally include temperature thresholds for
optimal plant development. Temperatures above or below these thresholds hamper the
development of the plants [24].

In the present study, we used the Phenology Modelling Platform Version 5.5 [25] to
define models for the simulation of the cardinal growth stages of WOSR (beginning of
inflorescence emergence, beginning of flowering and end of flowering). These growth
stages are of significant importance for phytosanitary aspects, being highly associated with
several insect pests of economic impact [26]. The pollen beetle, Brassicogethes aenues, is
the major pest in WOSR causing damages on young flowering buds leading to a decrease
in the yield of up to 70% [27]. Currently, chemical control by insecticide applications is
common in the growth stages 51 to 59. This strategy fosters the development of insecticide
resistance [28]. With the beginning of flowering (BBCH 60), the pollen beetle can reach
the pollen of already open flowers as a food resource avoiding further damage to the
plant. Therefore, expert knowledge of plant phenology is crucial for the appropriate
control of relevant pests in WOSR. Even by using decision support tools to forecast the
migration of Brassicogethes aenues [9], side effects by chemical applications to non-target
organisms in WOSR are still possible. While WOSR has a high melliferous potential [29]
pollinator species are mostly common in this crop and can be highly affected by insecticide
applications [30]. Forecast systems giving information on the current phenological stage
can be helpful tools to assist the farmer in timing the pesticide applications to guarantee
ecological intensification. So far, some phenological models have been developed in
WOSR [31–33] focusing on biomass allocation as well as seed yield and quality but were
rarely used as decision support tools.

The main objectives of the present study are twofold: (a) to quantify the accuracy of
the model in the simulation of the cardinal phenological stages of rapeseed in Luxembourg
based on a long-term observational data set (2007–2019); and (b) to evaluate the impact of
projected changes in air temperatures on these stages based on a multi-model and multi
emission scenario approach.

2. Materials and Methods
2.1. Phenological Observations and Meteorological Measurements

The data used in this study were collected from field trials conducted over several
years and in multiple locations, observing the phenology of different winter cultivars of
WOSR. The cultivars varied between years and locations, but all were winter cultivars. To
record the phenological stages, observations were made every three days from 2007 to 2019
at different sites. The key by Meier [34] was used to identify the phenological stages. For
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this study, we have chosen the site at Remich [49◦ 54′; 6◦ 36′; 160 m AMSL] as a typical
region for the growth of WOSR in Luxembourg. The sites were continuously monitored,
starting from the inflorescence emergence (also known as the green bud stage BBCH 51),
through initial flowering (BBCH 60) up to the end of flowering (BBCH 69). One hundred
individual plants were randomly selected, the growth stage of each plant was determined
and then the mean growth stage of all plants was calculated, following the methodology
outlined by Lancashire et al. [35].

In conjunction with field observations, meteorological data were gathered from stan-
dard automatic weather stations (AWSs) administered by the “Administration des Services
Techniques de l’Agriculture” (ASTA). Situated within a radius of less than three kilometers
from the WOSR fields, these AWSs provided precise data crucial for our study. The datasets
encompassed various meteorological parameters, including air temperature, precipitation,
wind speed, and cloud cover. To ensure data accuracy and reliability, an automated data
processing chain was used. This chain was tasked with identifying data gaps, plausibility
control, and interpolating missing values. Those quality-controlled datasets are the basis
for the development of the phenological models.

2.2. Climate Change Projections and Bias Correction

The phenological model was driven by time series obtained from a multi-model
ensemble of climate change projections taken from the Coordinated Regional Climate
Downscaling Experiment (CORDEX), which is a part of the World Climate Research Pro-
gramme (WCRP). The aim of EURO-CORDEX is to provide climate change information
at the regional level. To achieve this, daily values of minimum, maximum, and mean
air temperature were extracted for three Representative Concentration Pathways (RCPs)
namely the RCP2.6, RCP4.5, and RCP8.5. Hence, we want to include the RCP2.6 scenario
in our study the number of available ensemble members was comparable low. The dataset
used in this study comprises transient model simulations spanning from 1971 to 2091. To
evaluate the projected levels of changes in basic meteorological variables, we retrieved
time series data of daily maximum and minimum air temperature from a partially stored
version of the EURO-CORDEX data repository. The models utilized in our analysis are
listed in Table 1.

Table 1. Regional climate change projections with model abbreviations, the driving global climate
model (GCM), the regional climate model (RCM) used for the dynamical downscaling as well as
the institutions that are responsible for the model runs; temporal resolution: daily data; time span:
1971–2091.

Model Number Official CMIP5
GCM Name

Modelling
Centre/Group

CMIP5
Institute ID

Official EURO
CORDEX RCM

Name

Modelling
Centre EURO-

CORDEX
Institute ID

M3 HadGEM2-ES CNRM MOHC RACMO22E KNMI
M4 HadGEM2-ES CNRM MOHC RCA4 SMHI
M5 MPI-ESM-LR MPI-M REMO2009 MPI-CSC
M6 MPI-ESM-LR MPI-M RCA4 SMHI

A non-parametric quantile mapping technique was utilized to rectify biases in climate
model outputs by adjusting their distribution to align with the observed data from the
World Meteorological Organization (WMO) station and Findel airport in Luxembourg
(WMO ID = 06590). This method involves transforming the cumulative distribution func-
tion (CDF) of the model output to match the CDF of the observed data through empirical
quantiles, without specifying a parametric form for the distributions. Firstly, the corre-
sponding model output and observed data are sorted separately in ascending order [36].
Then, the empirical CDFs of the model output and observed data based on their respective
rankings are calculated. Subsequently, the quantile mapping function is calculated by
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matching the empirical quantiles of the model output with those of the observed data.
Specifically, for each quantile value, such as the 10th percentile, the corresponding observed
data value is matched with the model output value. The mapping function is obtained by
interpolating between these pairs of quantiles [37]. Finally, the quantile mapping function
is applied to the transient time series of air temperature to correct the bias. The flexibility
of this method allows for the correction of biases across the entire distribution of the model
output, rather than just at specific quantiles. The implementation of this method is carried
out using the R programming language for statistical computing [38], with the aid of the
R-package “qmap” [39].

2.3. Phenological Model

The simulation of phenological stages was carried out using process-based models
that were constructed based on temperature conditions and photoperiods. The selection
and fitting of the models were performed using the freely available Phenology Modelling
Platform PMP5.5 [25], wherein an iterative testing process was utilized to determine the
best-fit model parameters that optimize the climatic requirements for the development
of WOSR. The estimation of the best-fit parameters is based on the method described by
Metropolis et al. [40]. Instead of defining one model for the three different phenological
stages, we defined individual models for each stage. The individual models overperformed
in terms of Root Mean Square Error (RMSE) and model efficiency (EFF), with a single model
for all stages. For the beginning of the inflorescence emergence (BBCH 51), a triangular
function with three parameters Tminimum, Toptimum, and Tmaximum), where Toptimum repre-
sents the optimal temperature from which the accumulated amount of heat units begins
to decline, was used. Further details for this function are given by Hänninen [41]. For the
initial flowering (BBCH 60), the implemented function in the PMP5 model platform of
Richardson et al. [42] was used. It is a modified version of the growing degree day function
with a plateau above the threshold parameter Thigh. For the last stage investigated in our
study, namely the end of flowering (BBCH 69), a parabolic function was used. This function
was described by Chuine and Beaubien [43] and is based on the photosynthetic activity,
has only one parameter Toptimum and consists of implemented by a third-order polynomial
function. Further details including graphical representation of the three functions used in
this study can be found in the manual of the PMP5.5 modeling platform.

2.4. Model Validation and Statistics

The model performance was assessed based on the Root Mean Square Error (RMSE) (1)
and the model efficiency (EFF) (2), which explains the percentage of variance.

RMSE =

√
∑N

i=1(xa,i − xb,i)
2

N
(1)

For the RMSE, xa refers to the observed day of the phenological stage, xb to the
simulated day of the phenological stage and N to the number of observations.

EFF =
(xa,i − xa,i)

2 − (xa,i − xb,i)
2

(xa,i − xa,i)
2 (2)

The EFF varies between −∞ and +1, with +1 describing a perfect fit between ob-
served and estimated data, explaining more variance than the null model (average) with
relates to zero corresponding; and x = averaged observed day of the phenological stage.
Negative EFF values indicate that the model performed worse than the null model. The
variability between observed and simulated days was identified by using the determination
coefficient (R2).

To check the quality of the model, the built-in function “leave-one-out cross-validation”
of the PMP5.5 modeling platform was used. This automatically generates n subsequent
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independent optimizations, where n is the number of data available to fit the model, using
n − 1 data, i.e., excluding one data each time [44]. For the analysis of the future climate
condition, the phenological stages were divided into three 30-year time spans: the reference
scenario (1971–2000), the near future (2021–2050) and the far future scenario (2061–2090).
The Kruskal–Wallis Analysis of Variance (ANOVA) on ranks was used to test the two
future time spans for significant differences (p < 0.001) against the reference time span of
1971–2000 using the SigmaPlot Ver.10 from Systat Software, Inc. San Jose, CA, USA.

3. Results
3.1. Results of the Phenlogical Models

For each of the three phenological stages, individual models were constructed using
the functionalities of the PMP5.5 modeling platform. The code for these models is provided
in Appendices A–C as XML files, representing direct outputs from the modeling process
(Appendix A for BBCH stage 51, Appendix B for BBCH stage 60, and Appendix C for
BBCH stage 69). The outcomes of these individual models are depicted in Figure 1.
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Figure 1. Predicted versus observed Day of Year (DOY) of BBCH 51, BBCH 60 and BBCH 69 based
on the output of the PMP5.5 modeling platform driven by meteorological observation from 2007 to
2019 and field observations of the BBCH stages. Upper and lower dashed lines indicate a confidence
interval (99%). The small histograms indicate the absolute frequencies between the measured and
modeled data for each model.
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For the initial BBCH stage, the mean predicted Day of Year (DOY) is 89.1, while the
mean observed DOY across all years is 90.1 (R2: 0.864, mean RMSE: 0.67). The largest
disparity between observed and predicted DOY was 14.9 days in 2008, whereas the smallest
difference was 0.3 days in 2016. Notably, this 14.9-day difference is also the most significant
among all three analyzed phenological stages. In 93% of cases, the differences between
observed and predicted values did not exceed 3 days. Leave-one-out cross-validation
revealed consistent results, with the lowest RMSE value of 0.37 excluding the year 2008.

For BBCH stage 60, the mean predicted DOY is 104.6, compared to the mean observed
DOY of 105.4 across all years (R2: 0.89, mean RMSE: 0.54). The highest difference, 7.2 days,
was once again observed in 2008. In 79% of cases, disparities between observed and
predicted values did not exceed 3 days.

Regarding the final stage (BBCH 69), the average modeled DOY was 136.1, compared
to the mean observed DOY of 139.8 (R2: 0.886, RMSE: 0.8). Notably, the maximum difference
of 11.7 days occurred in 2015, contrasting with previous stages. While all three predictive
models generally exhibit a tendency to predict earlier growth stages than observed in the
field, the disparities are evenly distributed, as illustrated by the histograms included in
Figure 1.

3.2. Simulation of Future Phenological Stages

The dynamical downscaled multi-model ensemble approach yielded conclusive results
on the impact of climate change on the phenological stages of WOSR. Using the PMP5.5
software, the selected stages were analyzed for the three different RCPs (RCP2.6, RCP4.5,
and RCP8.5), with four ensemble members for input data. The reference period from 1971
to 2000 was compared to near and far future time spans of 30 years, and the results of the
four ensemble member realizations of each RCP were pooled for further statistical analyses.
Figure 2 displays boxplots of the results from the phenological modeling platform for each
RCP and BBCH stage.

For BBCH stage 51, as shown in Figure 2 and Table 2, the reference period had a mean
DOY of 96.3. The near future shows an earlier onset of the beginning of inflorescence
emergence, with an average of 6 days earlier. In the far future, a further earlier onset is only
observed for RCP4.5 and RCP8.5, as no further increase in the air temperature is projected
until the end of this century for RCP2.6. For RCP4.5 and RCP8.5, a continuous shift towards
an earlier onset of this stage was projected. These results provide clear evidence of the
impact of climate change on the phenological stages of WOSR, highlighting the need for
actions to mitigate those effects, because of increased frost risks in the near future.

Table 2. Multi model mean of the DOY of BBCH 51, 60 and 69 for the reference period 1971–2000 (R)
near future 2021–2050 (NF) and far future 2061–2090 (FF) for the RCP2.6, RCP4.5 and RCP8.5. All
differences between R, and NF, FF are statistically significant (p < 0.001).

BBCH Stage RCP2.6 RCP4.5 RCP8.5

R NF FF NF FF NF FF

BBCH 51
Mean 97.17 92.17 91.085 91.61 89.21 90.67 84.43

Variance 72.15 64.26 53.38 74.48 60.74 59.39 45.90

BBCH 60
Mean 116.25 111.22 110.06 111.00 107.64 110.69 103.50

Variance 51.93 56.33 44.69 68.63 107.64 48.75 36.08

BBCH 69
Mean 146.51 142.68 142.98 142.57 140.90 142.98 140.40

Variance 55.58 38.58 41.12 27.44 72.68 68.88 41.04
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Figure 2. Boxplots of the three different BBCH stages for the climate change scenarios RCP2.6, RCP4.5
and RCP8.5, with the reference scenario, R (1971–2000), the near future, NF (2021–2050) and far
future scenario, FF (2061–2090). The Boxplots were created as follows: The lower and upper hinges
correspond to the first and third quartiles of the data. The upper and lower whisker extends from the
hinge to the largest and lowest value no further than 1.5 times the Inter-Quartile Range. Data beyond
the end of the whiskers are called ’outlying’ points and are plotted individually as grey dots.

The BBCH stage 60 results display similar trends as the observed for BBCH stage 51.
It is predicted that there will be a shift of six days for all RCPs in the near future, with
only RCP8.5 showing a pronounced shift of an additional six days in the far future. These
differences are statistically significant (p < 0.05) for all three RCPs. Figure 2 shows the
overall pattern of the data, with marginal variations in the dates of BBCH 51 and BBCH
60 between the NF scenarios and RCP2.6 FF scenario. However, the far future RCP4.5
and RCP8.5 scenarios show stronger variations with medians ranging between 84 and 88
for BBCH 51 and 102 to 107 for BBCH 60. There are only slight differences between the
medians for the climate scenarios for BBCH 69, with values ranging between 139 and 142.

4. Discussion

Utilizing extensive field data and corresponding meteorological records, we con-
structed statistical models to forecast distinct phenological stages of WOSR cultivation in
Luxembourg. Through process-based modeling techniques, our analysis discerned the
predictability of inflorescence emergence (BBCH 51), initial flowering (BBCH 60), and
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cessation of flowering (BBCH 69) with high precision (R2 > 0.86), relying on accumulated
heat units as a key determinant. Notably, we pinpointed an optimal temperature range of
11.2 ◦C to 12.7 ◦C (Toptimum) for these critical growth stages, underscoring the physiological
significance of this temperature window in shaping WOSR phenological development.
Other studies [3,7] used considerably lower base temperatures of 3 ◦C or 5 ◦C which were
applied for all phenological stages. According to Marshall and Squire [45], the optimal base
temperature for the emergence of winter oilseed rape is 3 ◦C. Consequently, these threshold
temperatures could rather represent an optimum for the model predictions than for the
underlying processes of a phenological stage or be specifically relevant for stages of the
plant development of BBCH 51 and higher. While in our approach soil temperature was
not considered due to a lack of those measurements at the ASTA stations, this parameter
was investigated by Drebenstedt et al. [8]. They described an acceleration of development
during spring by increased soil temperatures. Precipitation was not considered because
the relatively deep root system of WOSR makes it rather resilient to normal drought stress
conditions [7].

The outcomes derived from the PMP5.5 modeling platforms demonstrate a satisfactory
level of performance, proven by the alignment of model outputs with field observations.
Notably, our analysis reveals average RMSE values below 1, indicative of a slight improve-
ment over analogous investigations. Farré et al. [46] calculated the beginning of flowering
of canola by using the APSIM model with an RMSE of 4.7 days. It is important to note
that for the growth stage BBCH 60, which is of the highest relevance for controlling the
pollen beetle because no further chemical applications are allowed, our model showed a
very good performance. Furthermore, for the benchmark of the model performance, the
uncertainty due to the frequency of growth stage observations in the fields of 3 days must
be considered.

As described in other studies the predictions were less accurate for the phenological
stage BBCH 69 (end of flowering). This might be attributed to the fact that in the later
growth stages, most of the leaves on the terminal raceme are lost due to senescence by
translocation of nitrogen to the already developing pods and no longer contribute to the
photosynthetic activity of the plant [32,47]. According to Morrison et al. [48] increasing air
temperature led to increases in the maximum individual leaf area. Due to the photosyn-
thesis gap and corresponding changes in plant chemistry, air temperature is no longer the
key driver for phenological development [49]. The problem of modeling the effect of leaf
senescence was already discussed by Gabrielle et al. [32].

According to studies of Pullens et al. [7], and Junk et al. [14,15], the region of Luxem-
bourg will face significantly higher air temperatures, especially when taking the RCP8.5
scenario into account. The benefit of elevated air temperature conditions might be a higher
availability of nutrients and therefore promotion of biomass production [50]. Consequently,
higher air temperatures during early phenological stages could accelerate the plant devel-
opment, making WOSR more vulnerable to low temperatures in spring [51]. Such a shift
towards the beginning of the year is especially observed for RCP8.5 for the far future scenar-
ios and needs to be compensated by higher developmental rates during later phenological
growth stages in order to reach maturity [7]. The current study indicates a significant
impact of global change on WOSR production in Luxembourg. On average, a shift towards
an earlier onset of approximately 7 days for the two future periods in comparison to the
reference timespan was detected. This shift in phenology is in line with results from the
literature. In an earlier study, Junk et al. [20] have shown that the onset of the growth stage
of stem elongation of WOSR occurs between 3.0 and 3.3 days earlier per decade under
future climate conditions.

Twenty-three different cultivars of WOSR (8 open-pollinating and 15 hybrid cultivars)
were grown on the different test sites including the individual rate of development and
temperature sensitivity. The identification of WOSR varieties with a phenological develop-
ment later in the season might play an important role in agriculture in order to reduce the
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effect of low temperatures or late frost events [7]. More data would be necessary for the
selection of suitable varieties for adaptive management strategies.

Due to climate change the use of tailored decision support tools for precision agricul-
ture is becoming of even more importance. Increased future variability of meteorological
parameters will result in higher uncertainties for yield and biomass production as well as
economic income for farmers [52]. WOSR is an important element in crop rotations, which
are highly affecting the amount of insect pests as well as the outbreak of plant diseases.
Nevertheless, with the high requirements of WOSR towards fertilizers and pesticides,
ecological intensification is only possible via smart solutions like decision support tools
for appropriate timing of agricultural management steps. Therefore, we proposed such an
approach for predicting important growth stages of WOSR, enabling the farmer a better
timing for chemical pest control. Our model approach was able to predict the beginning of
inflorescence emergence, flowering and end of flowering with low uncertainties compara-
ble to other studies from the literature. Further work is required to cover the whole model
chain from the phenological development of WOSR until real yield forecasts under future
climate conditions. Additionally, previous studies have indicated that calibration of WOSR
phenology from one location/country might be used for more global applications [53].

5. Conclusions

In conclusion, our study presents a comprehensive set of statistical models tailored for
predicting specific phenological stages of WOSR cultivation in Luxembourg. Leveraging
extensive field observations and corresponding meteorological data, our models accurately
forecasted inflorescence emergence, initial flowering, and cessation of flowering, highlight-
ing the pivotal role of accumulated heat units and identifying an optimal temperature range
crucial for phenological development. Our findings contribute to a better understanding of
WOSR growth dynamics under current and future climate conditions. Evaluation via the
PMP5.5. modeling platforms showcased promising results, with our model outperforming
comparable studies and exhibiting particular performance in predicting critical growth
stages relevant to pest control.

However, challenges persist, notably in predicting late-stage phenological events
influenced by leaf senescence. These challenges underscore the necessity for cultivar
selection strategies attuned to temperature sensitivities and the adoption of tailored decision
support tools to mitigate associated risks.

In the face of escalating climate variability, precision agriculture emerges as a cor-
nerstone for sustainable WOSR cultivation, offering avenues for ecological intensification
while optimizing resource allocation. Our study advocates for the proactive integration of
predictive modeling into adaptive management frameworks, empowering stakeholders to
navigate evolving climatic conditions and safeguard the resilience of WOSR production
systems in Luxembourg and beyond.
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Appendix A

XML file of the PMP5.5 model configuration for the BBCH stage 51.
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XML file of the PMP5.5 model configuration for the BBCH stage 60.
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