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1 Main result

Consider the optimization problem

(Pinit) : min ¢’z

s.t. Ax =b
x>0,
with A € R™*™ b € R™, ¢ € R".

Assumption 1 There exist matrices P, P, € R™*™'  Q € R"™" and a matriz
A € R™ X" sych that

(i) AQ =P A
(ii) PTA = A'QT
(iii) PLPIb="b
(iv) QQTc=c
(v) Q>0.

Using the notations introduced in Assumption 1, we can define another linear
optimization problem

(Pasmay) : min ¢’ Qx’
st. Az’ = PJb
' > 0.
Lemma 1 If 2’ is feasible for (Psmau) then x = Qx’ is feasible for (Pinit).

Proof: The nonnegativity of z is implied by the fact that @ > 0 and 2’ > 0.
We then check that the constraints of (P;,;). To this end, we replace x by Qz’
in the left-hand-sides of the constraints. We obtain successively

AQz' = P A's’ = P PTb=b,



where the first equality is obtained by Assumption 1(i), the second equality by
the feasibility of @’ for (Psmau) and the last equality by Assumption 1(iii). O

We now turn to the dual problems. Let us first write the problems. The dual
of (Pinit) reads
(Dinit) : max b u
st. ATu<c
u free.

The dual of (Psmain) reads

(Dsmany) : max b Py’
st. ATy < QTe
u' free.
Lemma 2 Ifu is feasible for (Dsman) then u = Pou' is dual feasible for (Dipi)-
Proof: We replace u by Pyu’ in the constraints of (D;,;:) and we obtain
ATPo = QAW < QQTe =,

where the first equality is obtained by Assumption 1(ii), the inequality is ob-
tained by the dual feasibility of v’ and the fact that @Q > 0 and the last equality
by Assumption 1(iv). O

Lemma 3 The objective value of a feasible solution &' of (Psmau) s equal to
the corresponding objective value of v = Q.

The objective value of a dual-feasible solution v of (Dsmau) is equal to the
corresponding objective value of u = Pyu/.

Proof: This follows from the fact that ¢’2 = ¢” Qa’ and b"u = b7 Pyu'. O
We conclude with the following corollary.

Corollary 1 If (z/,u’) is an optimal primal-dual pair for (Psmau) — (Dsmair)
then (z,u) = (Qa', Pu’) is an optimal primal-dual pair for (Pinit) — (Dinit)-

2 One way to construct a matrix ()

One way to construct a valid (orthogonal) matrix @) that satisfies Assumption
1(iv) is explained in the following. Assume that we split the vector ¢ in r blocks
c= (c(l) ---¢("). Furthermore, we assume that that the sign of every element
in the same block ¢ is the same.



Lemma 4 The matriz
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satisfies part (iv) and (v) of Assumption 1. Furthermore QTQ = I.

Proof: The nonnegativity of @) is straightforward.
We compute
B (cHT
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Q" = T

Observe that the absolute value can be dropped because all components of ¢(?)
have the same sign. Hence
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QQ"c = 6(2)(”&)#)||2 =c.

Similary, it can be readily verified that QTQ =TI . O

3 Fixing @)

Assumption 2 We assume that Q is fized as in Lemma 4 and has the form

]

Q= L]

We explore the complexity of finding P;, P, that allow us to satisfy conditions
(i)-(iil) of Assumption 1.

Lemma 5 If Assumption 2 is satisfied, then the columns of Q are eigenvectors
of QQT with eigenvalue 1 and all other eigenvalues are 0.

Proof: This follows from the fact that QQTQ = Q and the fact that QQ7 is of
rank n'. O

If QTQ = I, and if we multiply condition (ii) of 1 by @, we observe that A’
must take the form A’ = P AQ. However, assuming A’ = P AQ does not
necessarily imply that condition (ii) of Assumption 1 is satisfied. The following
lemmas show under which conditions this holds true.



Lemma 6 We consider (a) the linear space L C R+ defined by L := ker ([AT | — QD,
(b) its projection projgm L C R™ be on the first m components, (c) a basis
{B1,...Bx} C R™ of this projection, where k = dim (projgm L C R™) and (d)

the matrix B := [ Bl - | B ] € R™*k. Under Assumption 2, for all

U € R¥*™' letting Py = BU implies that Assumption 1(ii) is met.

Proof: We want to prove that assuming P, = BU implies that P{ A = P§ AQQT.
By (c), (d) and the construction of P, = BU, every column p of P satisfies
p € projgm L. Using (b), we know that for every column p € R™ of Py, there
exists a vector v € R such that 2; € L. As a result, by (a), we have

([AT | — Q]) ( 5 ) = 0. Writing this for every column p of P, we get that

1%
AT P, = QV. So, regardless of the values in V, the columns of A7 P, belong to
the column space of Q. By Lemma 5, they belong to the eigenspace of QQT
for the eigenvalue 1, hence QQT AT P, = AT P, which is exactly the transpose
of what we want to prove. O

there exists a matrix V € R *™ guch that ([AT ] = Q)) ( £ ) =0, ie.

In the following, we want to find P; such that conditions (i) and (iii) of As-
sumption 1 are met. To present the next results, we need a few definitions.

Definition 1 For A € R™*" gnd Q € R™ "', b e R™, we define:

o B € R™*F to be the projection on the first m coordinates of a basis of

ker([AT —Q)),
o M € R™*(m=U be an orthogonal basis of the column space of (AQ | b),

o C € R™ ! to be a basis of the orthogonal space of the column space of

(AQ [ b).

Lemma 7 Under Assumption 2, assuming Py, = BU, conditions (i) and (iii)
of Assumption 1 are equivalent to finding matrices P € R™** and V € R*™
such that

PBT = mMT +VTCT. (1)

Proof: Using Lemma 6 and Assumption 2, we know that A’ = P,ATQ. If
we rewrite conditions (i) and (iii) using A’ = P§ AQ, we obtain respectively
P PTAQ = AQ and P, P{b = b which can be reinterpreted as the fact that
the columns of AQ and b must be eigenvectors of P;PJ with respect to the
eigenvalue 1. Since P, = BU, it means that P, PJ can be written P,UT BT
which in turn must have the columns of AQ) and b as eigenvectors with eigenvalue
1. This can be rewritten as

PUTBT = yMT +VTCT,

where V € R>xm, O



Observe that (1) is a linear system with m(k + 1) unknowns and m? equations.
Finding a solution with P with a lower rank allows us to find a folded problem
with a lower size.



