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1 Main result

Consider the optimization problem

(Pinit) : min cTx

s.t. Ax = b

x ≥ 0,

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

Assumption 1 There exist matrices P1, P2 ∈ Rm×m′
, Q ∈ Rn×n′

and a matrix
A′ ∈ Rm′×n′

such that

(i) AQ = P1A
′

(ii) PT
2 A = A′QT

(iii) P1P
T
2 b = b

(iv) QQT c = c

(v) Q ≥ 0.

Using the notations introduced in Assumption 1, we can define another linear
optimization problem

(Psmall) : min cTQx′

s.t. A′x′ = PT
2 b

x′ ≥ 0.

Lemma 1 If x′ is feasible for (Psmall) then x = Qx′ is feasible for (Pinit).

Proof: The nonnegativity of x is implied by the fact that Q ≥ 0 and x′ ≥ 0.
We then check that the constraints of (Pinit). To this end, we replace x by Qx′

in the left-hand-sides of the constraints. We obtain successively

AQx′ = P1A
′x′ = P1P

T
2 b = b,
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where the first equality is obtained by Assumption 1(i), the second equality by
the feasibility of x′ for (Psmall) and the last equality by Assumption 1(iii). �

We now turn to the dual problems. Let us first write the problems. The dual
of (Pinit) reads

(Dinit) : max bTu

s.t. ATu ≤ c
u free.

The dual of (Psmall) reads

(Dsmall) : max bTP2u
′

s.t. A′Tu′ ≤ QT c

u′ free.

Lemma 2 If u′ is feasible for (Dsmall) then u = P2u
′ is dual feasible for (Dinit).

Proof: We replace u by P2u
′ in the constraints of (Dinit) and we obtain

ATP2u
′ = QA′Tu′ ≤ QQT c = c,

where the first equality is obtained by Assumption 1(ii), the inequality is ob-
tained by the dual feasibility of u′ and the fact that Q ≥ 0 and the last equality
by Assumption 1(iv). �

Lemma 3 The objective value of a feasible solution x′ of (Psmall) is equal to
the corresponding objective value of x = Qx′.
The objective value of a dual-feasible solution u′ of (Dsmall) is equal to the
corresponding objective value of u = P2u

′.

Proof: This follows from the fact that cTx = cTQx′ and bTu = bTP2u
′. �

We conclude with the following corollary.

Corollary 1 If (x′, u′) is an optimal primal-dual pair for (Psmall) − (Dsmall)
then (x, u) = (Qx′, Pu′) is an optimal primal-dual pair for (Pinit)− (Dinit).

2 One way to construct a matrix Q

One way to construct a valid (orthogonal) matrix Q that satisfies Assumption
1(iv) is explained in the following. Assume that we split the vector c in r blocks
c = (c(1) · · · c(r)). Furthermore, we assume that that the sign of every element
in the same block c(i) is the same.
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Lemma 4 The matrix

Q =


|c(1)|
‖c(1)‖

|c(2)|
‖c(2)‖

. . .


satisfies part (iv) and (v) of Assumption 1. Furthermore QTQ = I.

Proof: The nonnegativity of Q is straightforward.
We compute

QQT =


c(1)(c(1))T

‖c(1)‖2
c(2)(c(2))T

‖c(2)‖2

. . .

 .

Observe that the absolute value can be dropped because all components of c(i)

have the same sign. Hence

QQT c =


c(1) (c

(1))T c(1)

‖c(1)‖2

c(2) (c
(2))T c(2)

‖c(2)‖2
...

 = c.

Similary, it can be readily verified that QTQ = I . �

3 Fixing Q

Assumption 2 We assume that Q is fixed as in Lemma 4 and has the form

Q =


|c(1)|
‖c(1)‖

|c(2)|
‖c(2)‖

. . .

 .

We explore the complexity of finding P1, P2 that allow us to satisfy conditions
(i)-(iii) of Assumption 1.

Lemma 5 If Assumption 2 is satisfied, then the columns of Q are eigenvectors
of QQT with eigenvalue 1 and all other eigenvalues are 0.

Proof: This follows from the fact that QQTQ = Q and the fact that QQT is of
rank n′. �

If QTQ = I, and if we multiply condition (ii) of 1 by Q, we observe that A′

must take the form A′ = PT
2 AQ. However, assuming A′ = PT

2 AQ does not
necessarily imply that condition (ii) of Assumption 1 is satisfied. The following
lemmas show under which conditions this holds true.
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Lemma 6 We consider (a) the linear space L ⊆ Rm+n′
defined by L := ker

([
AT | −Q

])
,

(b) its projection projRm L ⊆ Rm be on the first m components, (c) a basis
{β1, . . . βk} ⊂ Rm of this projection, where k = dim (projRm L ⊆ Rm) and (d)
the matrix B :=

[
β1 | · · · | βk

]
∈ Rm×k. Under Assumption 2, for all

U ∈ Rk×m′
, letting P2 = BU implies that Assumption 1(ii) is met.

Proof: We want to prove that assuming P2 = BU implies that PT
2 A = PT

2 AQQ
T .

By (c), (d) and the construction of P2 = BU , every column p of P2 satisfies
p ∈ projRm L. Using (b), we know that for every column p ∈ Rm of P2, there

exists a vector v ∈ Rn′
such that

(
p
v

)
∈ L. As a result, by (a), we have([

AT | −Q
])( p

v

)
= 0. Writing this for every column p of P2, we get that

there exists a matrix V ∈ Rn′×m′
such that

([
AT | −Q

])( P2

V

)
= 0, i.e.

ATP2 = QV . So, regardless of the values in V , the columns of ATP2 belong to
the column space of Q. By Lemma 5, they belong to the eigenspace of QQT

for the eigenvalue 1, hence QQTATP2 = ATP2 which is exactly the transpose
of what we want to prove. �

In the following, we want to find P1 such that conditions (i) and (iii) of As-
sumption 1 are met. To present the next results, we need a few definitions.

Definition 1 For A ∈ Rm×n and Q ∈ Rn×n′
, b ∈ Rm, we define:

• B ∈ Rm×k to be the projection on the first m coordinates of a basis of
ker([AT −Q]),

• M ∈ Rm×(m−l) be an orthogonal basis of the column space of (AQ | b),

• C ∈ Rm×l to be a basis of the orthogonal space of the column space of
(AQ | b).

Lemma 7 Under Assumption 2, assuming P2 = BU , conditions (i) and (iii)
of Assumption 1 are equivalent to finding matrices P ∈ Rm×k and V ∈ Rl×m

such that
PBT = MMT + V TCT . (1)

Proof: Using Lemma 6 and Assumption 2, we know that A′ = P2A
TQ. If

we rewrite conditions (i) and (iii) using A′ = PT
2 AQ, we obtain respectively

P1P
T
2 AQ = AQ and P1P

T
2 b = b which can be reinterpreted as the fact that

the columns of AQ and b must be eigenvectors of P1P
T
2 with respect to the

eigenvalue 1. Since P2 = BU , it means that P1P
T
2 can be written P1U

TBT

which in turn must have the columns of AQ and b as eigenvectors with eigenvalue
1. This can be rewritten as

P1U
TBT = MMT + V TCT ,

where V ∈ Rl×m. �
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Observe that (1) is a linear system with m(k + l) unknowns and m2 equations.
Finding a solution with P with a lower rank allows us to find a folded problem
with a lower size.
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