A linear algebra perspective on folding

Quentin Louveaux and Laurent Poirrier

July 3, 2024

1 Main result

Consider the optimization problem

$$(\mathcal{P}_{init})$$
: min $c^T x$
s.t. $Ax = b$
 $x \ge 0,$

with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$.

Assumption 1 There exist matrices $P_1, P_2 \in \mathbb{R}^{m \times m'}$, $Q \in \mathbb{R}^{n \times n'}$ and a matrix $A' \in \mathbb{R}^{m' \times n'}$ such that

- (i) $AQ = P_1A'$
- (ii) $P_2^T A = A' Q^T$
- (iii) $P_1 P_2^T b = b$
- (iv) $QQ^Tc = c$
- $(v) \ Q \ge 0.$

Using the notations introduced in Assumption 1, we can define another linear optimization problem

$$(\mathcal{P}_{small})$$
: min $c^T Q x'$
s.t. $A' x' = P_2^T b$
 $x' \ge 0.$

Lemma 1 If x' is feasible for (\mathcal{P}_{small}) then x = Qx' is feasible for (\mathcal{P}_{init}) .

Proof: The nonnegativity of x is implied by the fact that $Q \ge 0$ and $x' \ge 0$. We then check that the constraints of (\mathcal{P}_{init}) . To this end, we replace x by Qx' in the left-hand-sides of the constraints. We obtain successively

$$AQx' = P_1 A'x' = P_1 P_2^T b = b,$$

where the first equality is obtained by Assumption 1(i), the second equality by the feasibility of x' for (\mathcal{P}_{small}) and the last equality by Assumption 1(iii). \Box We now turn to the dual problems. Let us first write the problems. The dual of (\mathcal{P}_{init}) reads

$$(\mathcal{D}_{init})$$
: max $b^T u$
s.t. $A^T u \le c$
 u free.

The dual of (\mathcal{P}_{small}) reads

$$(\mathcal{D}_{small})$$
: max $b^T P_2 u'$
s.t. $A'^T u' \leq Q^T c$
 u' free.

Lemma 2 If u' is feasible for (\mathcal{D}_{small}) then $u = P_2 u'$ is dual feasible for (\mathcal{D}_{init}) .

Proof: We replace u by P_2u' in the constraints of (\mathcal{D}_{init}) and we obtain

$$A^T P_2 u' = Q A'^T u' \le Q Q^T c = c,$$

where the first equality is obtained by Assumption 1(ii), the inequality is obtained by the dual feasibility of u' and the fact that $Q \ge 0$ and the last equality by Assumption 1(iv).

Lemma 3 The objective value of a feasible solution x' of (\mathcal{P}_{small}) is equal to the corresponding objective value of x = Qx'.

The objective value of a dual-feasible solution u' of (\mathcal{D}_{small}) is equal to the corresponding objective value of $u = P_2 u'$.

Proof: This follows from the fact that $c^T x = c^T Q x'$ and $b^T u = b^T P_2 u'$.

We conclude with the following corollary.

Corollary 1 If (x', u') is an optimal primal-dual pair for $(\mathcal{P}_{small}) - (\mathcal{D}_{small})$ then (x, u) = (Qx', Pu') is an optimal primal-dual pair for $(\mathcal{P}_{init}) - (\mathcal{D}_{init})$.

2 One way to construct a matrix Q

One way to construct a valid (orthogonal) matrix Q that satisfies Assumption 1(iv) is explained in the following. Assume that we split the vector c in r blocks $c = (c^{(1)} \cdots c^{(r)})$. Furthermore, we assume that that the sign of every element in the same block $c^{(i)}$ is the same.

Lemma 4 The matrix

$$Q = \begin{pmatrix} \frac{|c^{(1)}|}{||c^{(1)}||} & |\\ \frac{|c^{(2)}||}{||c^{(2)}||} & \\ \hline & & \ddots \end{pmatrix}$$

satisfies part (iv) and (v) of Assumption 1. Furthermore $Q^T Q = I$.

Proof: The nonnegativity of Q is straightforward. We compute

Observe that the absolute value can be dropped because all components of $c^{(i)}$ have the same sign. Hence

$$QQ^{T}c = \begin{pmatrix} c^{(1)} \frac{(c^{(1)})^{T}c^{(1)}}{\|c^{(1)}\|^{2}} \\ c^{(2)} \frac{(c^{(2)})^{T}c^{(2)}}{\|c^{(2)}\|^{2}} \\ \vdots \end{pmatrix} = c$$

Similary, it can be readily verified that $Q^T Q = I$.

Fixing Q

3

Assumption 2 We assume that Q is fixed as in Lemma 4 and has the form

	$\left(\begin{array}{c} \frac{ c^{(1)} }{\ c^{(1)}\ } \end{array} \right)$			
Q =		$\frac{ c^{(2)} }{\ c^{(2)}\ }$		
			·)	

We explore the complexity of finding P_1, P_2 that allow us to satisfy conditions (i)-(iii) of Assumption 1.

Lemma 5 If Assumption 2 is satisfied, then the columns of Q are eigenvectors of QQ^T with eigenvalue 1 and all other eigenvalues are 0.

Proof: This follows from the fact that $QQ^TQ = Q$ and the fact that QQ^T is of rank n'.

If $Q^T Q = I$, and if we multiply condition (ii) of 1 by Q, we observe that A' must take the form $A' = P_2^T A Q$. However, assuming $A' = P_2^T A Q$ does not necessarily imply that condition (ii) of Assumption 1 is satisfied. The following lemmas show under which conditions this holds true.

Lemma 6 We consider (a) the linear space $L \subseteq \mathbb{R}^{m+n'}$ defined by $L := \ker \left(\begin{bmatrix} A^T \mid -Q \end{bmatrix} \right)$, (b) its projection $\operatorname{proj}_{\mathbb{R}^m} L \subseteq \mathbb{R}^m$ be on the first m components, (c) a basis $\{\beta_1, \ldots, \beta_k\} \subset \mathbb{R}^m$ of this projection, where $k = \dim (\operatorname{proj}_{\mathbb{R}^m} L \subseteq \mathbb{R}^m)$ and (d) the matrix $B := \begin{bmatrix} \beta_1 \mid \cdots \mid \beta_k \end{bmatrix} \in \mathbb{R}^{m \times k}$. Under Assumption 2, for all $U \in \mathbb{R}^{k \times m'}$, letting $P_2 = BU$ implies that Assumption 1(ii) is met.

Proof: We want to prove that assuming $P_2 = BU$ implies that $P_2^T A = P_2^T A Q Q^T$. By (c), (d) and the construction of $P_2 = BU$, every column p of P_2 satisfies $p \in \operatorname{proj}_{\mathbb{R}^m} L$. Using (b), we know that for every column $p \in \mathbb{R}^m$ of P_2 , there exists a vector $v \in \mathbb{R}^{n'}$ such that $\begin{pmatrix} p \\ v \end{pmatrix} \in L$. As a result, by (a), we have

 $\left(\begin{bmatrix} A^T \mid -Q \end{bmatrix}\right) \begin{pmatrix} p \\ v \end{pmatrix} = 0$. Writing this for every column p of P_2 , we get that

there exists a matrix $V \in \mathbb{R}^{n' \times m'}$ such that $\left(\begin{bmatrix} A^T \mid -Q \end{bmatrix}\right) \begin{pmatrix} P_2 \\ V \end{pmatrix} = 0$, i.e. $A^T P_2 = QV$. So, regardless of the values in V, the columns of $A^T P_2$ belong to

the column space of Q. By Lemma 5, they belong to the eigenspace of QQ^T for the eigenvalue 1, hence $QQ^TA^TP_2 = A^TP_2$ which is exactly the transpose of what we want to prove.

In the following, we want to find P_1 such that conditions (i) and (iii) of Assumption 1 are met. To present the next results, we need a few definitions.

Definition 1 For $A \in \mathbb{R}^{m \times n}$ and $Q \in \mathbb{R}^{n \times n'}$, $b \in \mathbb{R}^m$, we define:

- $B \in \mathbb{R}^{m \times k}$ to be the projection on the first *m* coordinates of a basis of $\ker([A^T Q]),$
- $M \in \mathbb{R}^{m \times (m-l)}$ be an orthogonal basis of the column space of $(AQ \mid b)$,
- $C \in \mathbb{R}^{m \times l}$ to be a basis of the orthogonal space of the column space of $(AQ \mid b)$.

Lemma 7 Under Assumption 2, assuming $P_2 = BU$, conditions (i) and (iii) of Assumption 1 are equivalent to finding matrices $P \in \mathbb{R}^{m \times k}$ and $V \in \mathbb{R}^{l \times m}$ such that

$$PB^T = MM^T + V^T C^T. (1)$$

Proof: Using Lemma 6 and Assumption 2, we know that $A' = P_2 A^T Q$. If we rewrite conditions (i) and (iii) using $A' = P_2^T A Q$, we obtain respectively $P_1 P_2^T A Q = A Q$ and $P_1 P_2^T b = b$ which can be reinterpreted as the fact that the columns of AQ and b must be eigenvectors of $P_1 P_2^T$ with respect to the eigenvalue 1. Since $P_2 = BU$, it means that $P_1 P_2^T$ can be written $P_1 U^T B^T$ which in turn must have the columns of AQ and b as eigenvectors with eigenvalue 1. This can be rewritten as

$$P_1 U^T B^T = M M^T + V^T C^T,$$

where $V \in \mathbb{R}^{l \times m}$.

г		٦
		1
L		┛

Observe that (1) is a linear system with m(k+l) unknowns and m^2 equations. Finding a solution with P with a lower rank allows us to find a folded problem with a lower size.