Hey ! Look some stuff of the Pandora's box of Alnsects

Insect detection and counting from entomological collections using deep learning methods

Grégoire Noël*1, Gautier Black¹, Didier VandenSpiegel², Patrick Semal³, Axel Legay⁴ & Frédéric Francis¹

¹Functional and Evolutionary Entomology–Gembloux Agro-Bio Tech (University of Liège), Gembloux, Belgique, Belgium ² Biological and Data Management Unit, Royal Museum for Central Africa, Tervuren, Belgium

³ Royal Belgian Institute of Natural Sciences, Brussels 1000, Belgium

⁴ INGI, ICTEAM, Universite Catholique de Louvain, Place Sainte Barbe 2, LG05.02,01, 1348 Louvain-La-Neuve, Belgium

Natural history collections are invaluable repositories of biodiversity records !

- The automated detection of an insect specimen from collection box can be a difficult task owing to the remarkable morphological diversity of insects
- Convolutional neural networks (CNNs) have greatly propelled the field of computer vision, especially in object detection and segmentation
- Our central scientific question: Can we use the insect collections as detection and classification tools ? Certainly, but this need to be tested ...

Workflow:

Measured variables: Counting, mean size and insect density

<u>Results</u>: Interesting but to be improved ! <u>**Perspectives**</u>: Looks promising !

Table 1: Precision descriptive statistics for all models

model	method	Ν	precision	median	sd	se	c
coleo.pt	YOLO	3272	-30.9966216	-0.8849558	433.3312	7.575535	14.853271
coleo_lepido.pt	YOLO	7006	-50.0284595	-6.5934066	311.9201	3.726562	7.305189
lepido.pt	YOLO	3743	-32.9366131	-8.3333333	134.0942	2.191796	4.297230
model_coleo_f2.pth	FasterRCNN	3263	-27.8434384	4.7368421	380.5738	6.662395	13.062902
model_lepi_1.pth	FasterRCNN	3743	-0.5961714	1.1363636	105.5306	1.724918	3.381870

Big data management

- Possibility to improve the insect segmentation by checking outliers and a better selection of the training datasets
- After the training, it is really fast (3h to process > 8k boxes) but need a lot of calcul resources
- Fast R-CNN seems to be better to detect insects
- Insect mean size and density per boxes still need to be tested
- At the beginning of the classification process

- YOLO V8m overestimates while Fast R-CNN underestimates the insect detection
- At least 20% of outlier to check
- False positive data are present due to the selection of the training datasets

*<u>Contact</u>: <u>gregoire.noel@uliege.be</u> <u>Poster presented at International congress of AI in Entomology 03/07/2024</u> <u>Open access workflow: https://github.com/gb9900/Entomo</u>

Epoch