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Formalization

Parametric uncertainty

* (Generic parametric linear optimization problem:
. t t
J(A) =min c¢'x +Acx
st (A+ID)x < b +1b,
 Modification in the objective coefficients +/1C£X f(4) concave and piecewise linear!

* Modification on the right-hand side +/1b/1 f(2) convex and piecewise linear!

» Modification on the left-hand side + A (4) piecewise rational function...

Note : The left-hand side modification + 1) encapsulates the other modifications



Formalization

Parametric uncertainty

* We focus on this standard form:
f(A) =min c'x
s.t. A+AD)x=0>
x>0

e |n literature :
 Usually rely on heavy computations,
e approximations
» and/or hypothesis on the matrix /)



Naive solution

Heavy computations
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Given a basis...

« Assume we solved the problem for 4 = O (without loss of generality)
» We obtain a basic optimal solution x*, an optimal objective f(0) = o0*

« And a basis B, such that x;; > 0, x;\’j = 0

« For any 4 such that the basis remains optimal, we have:

f(A) = ci(Ag + ADg)~'b
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Given a basis...

« For any 4 such that the basis remains optimal, we have:

fA) = cp(Ag + /IB)_lb

* Conditions for remaining optimal:

¢ AB —+ /IDB must be invertib|e/fu||_rank Evething depends on this matrix inversion!
« (Ag+ADp)'b >0

« Reduced costs > ()
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e But (given n constraints):
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* Two eigenvalue problems to compute on an n X n matrix (ok?)
 Two n-degree polynomials to compute (hnumerical stability?)
» To assess if the basis is still optimal: 4n eigenvalue problems to compute on an n X n matrix!

» (But gives the exact range of A where the basis is optimal in exchange)
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Today

 Another way of computing f(A)

» Another way of computing the range of As where the basis remains optimal
* | ess expensive...

» ... but only gives a subset of the real range.
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= ch(I +1A;'Dp) 'Az'b (xp)y ' =y ix!

= cp(I + AAg 'Dp)~'x Az 'bis the 2 = 0 solution

. Let us write Ez = A; ' Dy f2) = cgI + AEg) ™' x;;
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The idea: simpler inverse operation

fA) = cp(I + /IEB)_lij

e Still a non-trivial inversion/system solving to do for each A
. O(n?) in practice... per A
« |dea: decompose Lj to form a simpler to compute system

* First idea: eigendecomposition / diagonalization!

. Ep= QAQ™' = f()) = cl(I + AQAQ™)\x
= Q™" + QA0 x;
= O + M) ™' Q™'

« [+ AA is diagonal: inversion trivial in O(n)

 Problem: most of the time, £y is not diagonalizable
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The idea: simpler inverse operation

e Second idea: Schur's decomposition
. Eg=QUQ" = f(J) = 5O + AU)"'Qx3
o [+ AU is upper-triangular: system solving trivial in @(nz)

* Potential problem: computing the decomposition

» Better numerical stability?



Ranges of bound validity




Optimality range

 We need three properties for the basis to stay optimal:

» Ay + ADg must be invertible/full-rank/non-singular
e (Ag+ADp)"'b >0

« Reduced costs > ()



Ap + AD, must be invertible/full-rank

» We saw that (Agz + ADy) = Az(I + AER) with Ag already invertible
» Just need to check the eigenvalues a; of £ and ensure that 1 + Aa; # 0

e That creates holes in the set of admissible As

e (That was the easy part)



X = (Ag+ ADp)"'b = (I + /IEB)_lxg > ()

* Now we have to deal with the inversion
 Schur cannot help us here
* [he idea: removing the inversion using Neumann series.

Xl <1 = (I-X)7"= ) X
(=0

» If we apply this on X = — AEp,

|AEglle <1 = xp= ) (—AEp)x:
=0



Now we have an infinite sum...

1AEglle < 1 => x}= ) (—AEp)'x:
=0

 Typically what you say here is "let's neglect the terms for i > 3"
« But that's an approximation for which you lose all guarantees...

* |nstead we use (sub-multiplicative) matrix norms!

 Let's say we focus on the two first terms of component j:
0 < (x}); = ¢ ) (—AEp)'x:
=0

= eI — AEg+ ) (—AEg))xs
=2



Now we have an infinite sum...

1AEglle < 1 => x}= ) (—AEp)'x:
=0

 Typically what you say here is "let's neglect the terms for i > 3"
 But that's an approximation, you lose all guarantees...

* |nstead we use (sub-multiplicative) matrix norms!

 Let's say we focus on the two first terms of component j:

&)

0 < (x}); = ¢ ) (—AEp)'x:
1=0

= eI — AEg+ ) (—AEg))xs
=2
= exy — Ae;Epxy + /lzejEé 2 (—/lElg)")cl>3I<
i=0



Now we have an infinite sum...

0 < (x); = ek — Ae;Egxt + A2¢Eg ) (—AEp)'x
(=0

* The trick: take the absolute norm of the last part
(xl’;)j > exy — Ae;Epxy — ||/126J-E§ Z (—/IEB)ixg\\
=0

 Now use sub-multiplicativity, triangular inequality, and geometric series closed-form on
the last term:

|22¢E3 ) (—AEg)xk|| < |A%EZ] - ) I(=AEp)|| - |lx]
i=0 =0

< I1¥eEsll - —— B!
B



Success

le;El - llx |
17 >0) = (xg)jz()

ex® — le.Enx®t — A >
BT = A - (Bl

B
(If | 2Ep|| - I AER]l < 1)
* \We thus have n polynomials of degree two for which we need the roots!

* Here we focused on the first 2 terms, giving degree 2 polynoms
o if you keep the first v terms you get degree v polynoms.

e Far easier than n polynomials of degree n :-)
e But gives a subset of the true range of validity...

 The same tricks can be used to find ranges of optimality (using reduced costs)
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What now?

« We have two "easy" way of computing f(4) given a known-optimal basis B
e Zuidwijk's eigenvalues-based method
e Schur decomposition
* We have now a scalable method to get the range of optimality of the basis B

e At least a subset of It

. We lack a way to recompute the new matrix Ej; = (Ag + ADg) ™' Dy for a A a bit further
than O, to get a new range...

 For this, you can use one of the many O(n®) techniques



Summary

Eigenvalues

Schur+norms

Initial computation for each
new basis

Compute eigenvalues

Compute Schur's decomposition

O(n3)

O(n3)

For a new A

Solve the polynomials

Solve the triangular system

O(n)

O(n?)

Compute multiple eigenvalue problems

Compute norms and solve n degree-v

Validity/optimality range polynomials
computation
O(n% O(vn3+nv?)
An unknown number of time p, we need to
recompute the basis matrix and the range
(For the whole range) Same: O(n%

O(pvn3+pnv?3)

 Worth if p small.

* Schur decomposition
can be updated in O(n3)
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Summary

Eigenvalues Schur+norms

Compute Schur's decomposition

Initial computation for each
new basis

O(n3)

Solve the triangular system

For a new A

O(n?)

Compute multiple eigenvalue problems
Validity/optimality range P P €l P

computation

O(n%

(For the whole range) Same: O(n%

Worth it if p small.

Schur decomposition
can be updated in O(n3)

You can mix the
methods

Paper not yet available

Other talk on this
problem tomorrow!



Open questions

 How to characterize p?
» What is the physical meaning of £ = AngB?

» What is the physical meaning of the closed-form of f(4)?

« How well does all of this work in practice?



