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f(λ) = min ctx
 s.t  (A )x ≤ b

+λct
λx

+λct
λx

+λbλ

+λbλ

+λD

+λD

Note : The left-hand side modification  encapsulates the other modifications+λD

 concave and piecewise linear!f(λ)

 convex and piecewise linear!f(λ)

 piecewise rational function...f(λ)



Formalization
Parametric uncertainty

• We focus on this standard form: 
 
 
 
 
 

f(λ) = min ctx
s . t . (A + λD)x = b

x ≥ 0

• In literature : 

• Usually rely on heavy computations,

• approximations

• and/or hypothesis on the matrix 

D

D



Naive solution
Heavy computations
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Given a basis...

• Assume we solved the problem for  (without loss of generality)


• We obtain a basic optimal solution , an optimal objective 


• And a basis B, such that 


• For any  such that the basis remains optimal, we have:

λ = 0

x* f(0) = o*

x*B ≥ 0, x*N = 0

λ

f(λ) = ct
B(AB + λDB)−1b
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Given a basis...

• For any  such that the basis remains optimal, we have:λ

• Conditions for remaining optimal:

•  must be invertible/full-rankAB + λDB

• (AB + λDB)−1b ≥ 0

• Reduced costs ≥ 0

f(λ) = ct
B(AB + λDB)−1b

Everything depends on this matrix inversion!
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Today

• Another way of computing 


• Another way of computing the range of s where the basis remains optimal


• Less expensive...


• ... but only gives a subset of the real range.

f(λ)

λ
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• Still a non-trivial inversion/system solving to do for each λ

•  in practice... per 𝒪(n3) λ

• Idea: decompose  to form a simpler to compute systemEB

• First idea: eigendecomposition / diagonalization!

• EB = QΛQ−1 ⟹ f(λ) = ct
B(I + λQΛQ−1)−1x*B

• = ct
B(QQ−1 + λQΛQ−1)−1x*B

• = ct
BQ(I + λΛ)−1Q−1x*B

•  is diagonal: inversion trivial in I + λΛ 𝒪(n)

• Problem: most of the time,  is not diagonalizableEB
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The idea: simpler inverse operation

• Second idea: Schur's decomposition

• EB = QUQH ⟹ f(λ) = ct
BQ(I + λU)−1QHx*B

•  is upper-triangular: system solving trivial in I + λU 𝒪(n2)

• Potential problem: computing the decomposition

• Better numerical stability?
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Optimality range

• We need three properties for the basis to stay optimal:


•  must be invertible/full-rank/non-singular


• 


• Reduced costs 

AB + λDB

(AB + λDB)−1b ≥ 0

≥ 0



 must be invertible/full-rankAB + λDB

• We saw that  with  already invertible


• Just need to check the eigenvalues  of  and ensure that 


• That creates holes in the set of admissible s


• (That was the easy part)

(AB + λDB) = AB(I + λEB) AB

αi EB 1 + λαi ≠ 0

λ



xλ
B = (AB + λDB)−1b = (I + λEB)−1x*B ≥ 0

• Now we have to deal with the inversion


• Schur cannot help us here


• The idea: removing the inversion using Neumann series.


• 


• If we apply this on ,


•

∥X∥∞ < 1 ⟹ (I − X)−1 =
∞

∑
i=0

Xi

X = − λEB
∥λEB∥∞ < 1 ⟹ xλ

B =
∞

∑
i=0

(−λEB)ix*B
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B =
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∑
i=0

(−λEB)ix*B

i ≥ 3

j

0 ≤ (xλ
B)j = ej

∞

∑
i=0

(−λEB)ix*B

= ej(I − λEB +
∞

∑
i=2

(−λEB)i)x*B



Now we have an infinite sum...

• 


• Typically what you say here is "let's neglect the terms for "


• But that's an approximation, you lose all guarantees...


• Instead we use (sub-multiplicative) matrix norms!


• Let's say we focus on the two first terms of component :


•

∥λEB∥∞ < 1 ⟹ xλ
B =

∞

∑
i=0

(−λEB)ix*B

i ≥ 3

j

0 ≤ (xλ
B)j = ej

∞

∑
i=0

(−λEB)ix*B

= ej(I − λEB +
∞

∑
i=2

(−λEB)i)x*B

= ejx*B − λejEBx*B + λ2ejE2
B

∞

∑
i=0

(−λEB)ix*B



Now we have an infinite sum...

• 


• The trick: take the absolute norm of the last part


• 


• Now use sub-multiplicativity, triangular inequality, and geometric series closed-form on 
the last term:


•

0 ≤ (xλ
B)j = ejx*B − λejEBx*B + λ2ejE2

B

∞

∑
i=0

(−λEB)ix*B

(xλ
B)j ≥ ejx*B − λejEBx*B − ∥λ2ejE2

B

∞

∑
i=0

(−λEB)ix*B ∥

∥λ2ejE2
B

∞

∑
i=0

(−λEB)ix*B ∥ ≤ ∥λ2ejE2
B∥ ⋅

∞

∑
i=0

∥(−λEB)i∥ ⋅ ∥x*B ∥

≤ ∥λ2ejE2
B∥ ⋅

1
1 − ∥λEB∥

⋅ ∥x*B ∥



Success

• 


• We thus have  polynomials of degree two for which we need the roots!


• Here we focused on the first 2 terms, giving degree 2 polynoms


• if you keep the first  terms you get degree  polynoms.


• Far easier than  polynomials of degree  :-)


• But gives a subset of the true range of validity...


• The same tricks can be used to find ranges of optimality (using reduced costs)

ejx*B − λejEBx*B − λ2
∥ejE2

B∥ ⋅ ∥x*B∥
1 − |λ| ⋅ ∥EB∥

≥ 0 ⟹ (xλ
B)j ≥ 0

n

v v

n n

(if ∥λEB∥∞,∥λEB∥ < 1)



What now?



What now?

• We have two "easy" way of computing  given a known-optimal basis B


• Zuidwijk's eigenvalues-based method


• Schur decomposition


• We have now a scalable method to get the range of optimality of the basis B


• At least a subset of it


• We lack a way to recompute the new matrix  for a  a bit further 
than 0, to get a new range...


• For this, you can use one of the many  techniques

f(λ)

Eλ
B = (AB + λDB)−1DB λ

𝒪(nω)



Summary
Eigenvalues Schur+norms

Initial computation for each 
new basis

Compute eigenvalues Compute Schur's decomposition

O(n³) O(n³)

For a new λ 

Solve the polynomials Solve the triangular system

O(n) O(n²)

Validity/optimality range 
computation

Compute multiple eigenvalue problems Compute norms and solve n degree-v 
polynomials

O(n⁴) O(vn³+nv²)

(For the whole range) Same: O(n⁴)

An unknown number of time p, we need to 
recompute the basis matrix and the range

O(pvn³+pnv²)

• Worth if p small.


• Schur decomposition 
can be updated in O(n³)
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Initial computation for each 
new basis

Compute eigenvalues Compute Schur's decomposition

O(n³) O(n³)

For a new λ 

Solve the polynomials Solve the triangular system

O(n) O(n²)

Validity/optimality range 
computation

Compute multiple eigenvalue problems Compute norms and solve n degree-v 
polynomials

O(n⁴) O(vn³+nv²)

(For the whole range) Same: O(n⁴)

An unknown number of time p, we need to 
recompute the basis matrix and the range

O(pvn³+pnv²)

• Worth it if p small.

• Schur decomposition 
can be updated in O(n³)

• You can mix the 
methods

• Paper not yet available

• Other talk on this 
problem tomorrow!



Open questions

• How to characterize p?


• What is the physical meaning of ?


• What is the physical meaning of the closed-form of ?


• How well does all of this work in practice?

EB = A−1
B DB

f(λ)


