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Abstract

A multiagent system should be capable of fast and flexible decision-making
to successfully manage the uncertainty, variability, and dynamic change en-
countered when operating in the real world. Decision-making is fast if it
breaks indecision as quickly as indecision becomes costly. This requires fast
divergence away from indecision in addition to fast convergence to a deci-
sion.Decision-making is flexible if it adapts to signals important to successful
operation, even if they are weak or rare. This requires tunable sensitivity
to input for modulating regimes in which the system is ultrasensitive and
in which it is robust. Nonlinearity and feedback in the decision-making
process are necessary to meeting these requirements. This article reviews
theoretical principles, analytical results, related literature, and applications
of decentralized nonlinear opinion dynamics that enable fast and flexible
decision-making among multiple options for multiagent systems intercon-
nected by communication and belief system networks. The theory and tools
provide a principled and systematic means for designing and analyzing
decision-making in systems ranging from robot teams to social networks.
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1. INTRODUCTION

Advancing our understanding of the decision-making behavior of multiagent systems inspires
challenging questions and benefits many research areas and practical applications. A fundamen-
tal and unifying question is how a large group of interacting agents makes decentralized choices
that enhance performance in the presence of uncertainty and dynamically changing context even
when individuals are limited in sensing, computation, and actuation.Researchers and practitioners
across many areas of science, social science, mathematics, and engineering have contributed the-
ory, methodology, experiments, and analysis to the study of opinion formation, decision-making,
and the collective behavior of multiagent systems.

Examples of multiagent decision-making in engineering include safe, efficient navigation of
multivehicle networks (1–3), coordination of multirobot teams for environmental monitoring
(4–6), search and rescue (7–9), human–robot collaboration (10–12), decision-making and task al-
location in multirobot teams (13–16), and synchronization in power grids (17–19). In biological
science, examples include collective decision-making in animal groups (20–25); decision-making
and phenotypic differentiation in individual cells (26); collective decision-making in groups of
cells, including social microorganisms (27, 28); speciation (27, 29, 30); and the dynamics of cogni-
tive computations in decision-making (31–35). In social science, examples include the role of social
networks and social behavior in governance (36), in elections (37), in financial trading (38, 39), in
international diplomacy (40), in political polarization (41–45), and in shaping public opinion on
epidemics (46, 47) and climate change (48).

We define a multiagent system as a group of agents, each representing an individual or a popu-
lation that makes its own decisions but can interact with, communicate with, or observe others in
the group during its decision-making. A communication network, typically encoded by a graph,
represents which agents observe, communicate with, or interact with which other agents. There
can be other important underlying networks. For example, a belief system network, also encoded
by a graph, represents logical, psychological, or social constraints on the alignment between be-
liefs on different options (49). There may also be an attention network that captures which agents
account for which other agents’ opinions in evaluating the urgency of a decision.

A central concern of this review is that a multiagent system should be capable of decision-
making that is fast and flexible if it is to successfully manage the uncertainty, variability, and
dynamic change encountered when operating in the real world. We call the decision-making of
a multiagent system fast if it breaks indecision as quickly as indecision becomes costly. This re-
quires fast divergence away from indecision in addition to fast convergence to a decision.We call
the decision-making flexible if it adapts to signals important to successful operation, even if weak
or rare, distinguishing these signals from unimportant fluctuations.This requires tunable sensitiv-
ity to inputs, i.e., parameters or “dials” in the system for modulating regimes in which the system is
ultrasensitive (necessary for flexibility) and in which the system is insensitive (necessary for robust-
ness). Nonlinearity and feedback are necessary to meet these requirements. Analytical tractability
is necessary to provide rigorous and systematic prediction of the role of network structure and
other parameters.

Figure 1 shows evidence of fast and flexible decision-making by two multiagent systems: the
formation of a consensus by a honey bee swarm for the best nest site (Figure 1a) (50) and the
polarizing ideological positions of Republicans and Democrats in the US Congress from 1959 to
2019 (Figure 1b) (43). The honey bee swarm makes a fast decision starting just before 11:00 (as
seen in piping), with flexibility to changing conditions verified in Reference 50. House-hunting
honey bees demonstrate flexibility too in their ability to break deadlock when there is little or
no evidence distinguishing a pair of alternatives (51) (see Section 5.2). Sharp changes in the
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Bifurcation theory:
the study of qualitative
changes in properties
(e.g., number and
stability of equilibria)
of a smooth dynamical
system as a function of
parameters or input

Critical subspace:
the right eigenspace of
the Jacobian at the
bifurcation point
associated with
bifurcating (purely
imaginary) eigenvalues

Center manifold:
the low-dimensional
set in a dynamical
system state space in
which the qualitative
changes associated
with a bifurcation
happen; it is tangent to
the critical subspace at
bifurcation
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Figure 1

(a) A honey bee swarm choosing a nest site among five candidate sites. Scouts accumulate evidence, waggle dance to advertise, and pipe
to alert nonscouts that a decision has been made. (b) Changing ideological position measured by DW-NOMINATE (Dynamic
Weighted Nominal Three-Step Estimation) scores averaged across members of US Congress (dashed lines) and by model prediction
(solid lines). Panel a adapted from Reference 50 with permission from American Scientist, magazine of Sigma Xi, The Scientific Research
Honor Society; panel b adapted from Reference 43.

Republican ideological position can be explained by a model of fast and flexible decision-making
but not by linear dynamics (43) (see Section 7).

Motivated by compelling evidence from the literature, we model multiagent decision-making
as a dynamical, nonlinear process organized by bifurcations, controlled by feedback, and mod-
ulated by network structure. The dynamical process is the coupled evolution over time of each
agent’s real-valued decision states, defined as each agent’s opinions and each agent’s attention,
which we represent as a gain on the agent’s observations of its own and other agents’ opinions.
We focus on the evolution of opinions and attention in continuous time, but a parallel story can
be derived in discrete time.

Nonlinear dynamics are distinguished from linear dynamics in that they exhibit bifurcations
and can be studied through bifurcation theory (52–54). A (local) bifurcation is a change in the
number and/or stability of equilibrium solutions of a nonlinear dynamical process as a (bifur-
cation) parameter varies across a critical value. The critical value and the point in state space
where the change in equilibrium solutions happens define the bifurcation point. At a bifurcation
point, the linearization of the dynamics has at least one eigenvalue with zero real part—i.e., there
is a singularity in the dynamics. The associated right null eigenspace is the critical subspace that
determines the bifurcation center manifold, along which the bifurcation continues.The associated
left null eigenspace is the sensitivity subspace that determines the sensitivity of the bifurcation to
additive input.

Near bifurcation, the process is selectively ultrasensitive to input. This means the process is
both responsive to even very small signals, provided they excite the dynamics along the critical
subspace, and robust to even very large signals, provided they do not excite these dynamics. Away
from bifurcation, there can be multiple stable solutions that are robust to small uncertainty and
perturbation.Nonlinear behaviors organized by bifurcations can be very fast in the sense that tran-
sitions between solutions can be switch-like. How and when transitions occur can be controlled
and tuned by feedback, e.g., if a bifurcation parameter evolves as a function of the state.
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Sensitivity subspace:
the left eigenspace of
the Jacobian at the
bifurcation point
associated with
bifurcating (purely
imaginary) eigenvalues

Bifurcation diagram:
a graphical display of
qualitative changes in
equilibrium solutions
and properties of a
smooth dynamical
system as a function of
a bifurcation
parameter

In the dynamical evolution of opinions, the (average) attention is a bifurcation parameter.
When attention is lower than the bifurcation value, linear negative feedback dominates and the
opinions linearly track inputs or biases, thus remaining stably neutral or relatively weak when
such inputs or biases are nonexistent or relatively small. When attention is higher than the bi-
furcation value, nonlinear positive feedback dominates such that the neutral or relatively small
opinions are destabilized and strong and robustly stable opinions are formed, even for nonexis-
tent or small inputs.We call this an indecision-breaking bifurcation, because it can be understood
to correspond to a bifurcation, transition, or tipping point that allows multiagent systems to break
potentially costly indecision.When attention increases dynamically, the opinions change as deter-
mined by the indecision-breaking bifurcation diagram.When attention is driven by opinion-state
feedback, the bifurcation transforms such that the transition from weak to strong opinions at the
indecision-breaking bifurcation can be very fast as well as tunably sensitive to inputs. We show
how an analytically tractable model allows derivation of the bifurcation point, critical subspace,
sensitivity to input distribution, and opinion patterns, as a function of network structure.

We give an illustrative numerical example (Section 2), review theoretical principles (Section 3),
and discuss equations and their interpretation (Section 4), analytical results (Section 6), and appli-
cations and extensions (Section 7) of a general model of decentralized,multiagent andmultioption,
nonlinear opinion dynamics that enable fast and flexible decision-making.We also review related
work from the literature (Section 5): weighted averaging and consensus dynamics and variations,
investigations of the indecision-breaking ability of honey bees, and well-studied computational
neuroscience models for multialternative decision-making.

2. ILLUSTRATIVE EXAMPLE

Figure 2 provides an illustration through simulations of the model of coupled opinion and atten-
tion dynamics presented in detail in Section 4.The simulations show opinion formation about two
options for 13 agents exchanging opinions over a communication network, shown as a graph on
the left. The top (bottom) graph and plots correspond to positive (negative) unit-valued network
connections. Four agents receive an external input of the same strength b̄ > 0 during the time
period t� [0.7, 0.8], with two agents receiving input b̄ in favor of option 1 and two receiving input
−b̄ in disfavor of option 1. The plots in the middle (right) show the time evolution of opinion
zi1 ∈ R of each agent i about option 1 in the case b̄ = 0.1 (b̄ = 0.3). The more positive (negative)
is zi1, the more agent i favors (disfavors) option 1. The system remains close to neutral (zi1 ≈ 0,
for all i) for the small input (b̄ = 0.1) but responds rapidly, strongly (|zi1| ≈ 1), and persistently to
the larger input (b̄ = 0.3).

In the simulations shown in Figure 2, each agent increases its attention as the magnitude of its
own opinion grows.Opinion exchange and feedback control of attention determine the emergence
of an implicit distributed network threshold for the formation of strong opinions in response to
inputs. In the middle plots of Figure 2, input strength b̄ is not large enough to cross the threshold.
On the right, b̄ is large enough to cross the threshold, leading to an opinion cascade. The implicit
threshold on b̄, between 0.1 and 0.3, above which there is an opinion cascade, is tuned by several
factors, including (a) how inputs are distributed among the agents, (b) the communication network
topology, and (c) parameters of the feedback dynamics of attention. These factors determine how
well aligned the input is with the bifurcation sensitivity subspace: the better the alignment, the
lower the threshold.

In the top (bottom) right plot, corresponding to all positive (negative) network connections,
the opinions cascade into an agreement in favor of option 1 (disagreement where some agents
favor option 1 and the rest favor option 2). The cascade behavior and opinions formed are robust
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Figure 2

Simulated opinion and attention dynamics of Equations 3 and 4 for 13 agents and two options. The top (bottom) graphs show for every
agent i its opinion zi1 of option 1 over time t given the communication network graph on the left with all edges +1 (−1). Node size is
scaled to the corresponding component of the leading left eigenvector of the graph adjacency matrix; larger size implies greater
sensitivity to input. Input of strength b̄ is applied only during time t � [0.7, 0.8] and only to agents 3, 6, 10, and 11.

to the small random parameter perturbations and noise added to the dynamics. Because of nonlin-
earity, the opinions grow much larger in magnitude than the input. Because of the multistability,
the strong opinion response outlasts input presentation. Because of the networked opinion ex-
change, the agents receiving input do not necessarily form opinions consistent with the input they
received.

These observations are predicted by the theoretical principles (Section 3) and analytical results
(Sections 4 and 6). The bifurcation point, critical subspace, postbifurcation pattern of opinions,
and sensitivity of behavior to the distribution of input over the network are given in terms of
network structure. The results extend beyond the example of Figure 2 to an arbitrarily large
number of agents and options, mixed-sign networks, and oscillations.

3. THEORETICAL PRINCIPLES

3.1. Pitchfork Bifurcation as a Principle for Two-Option Indecision-Breaking

Figure 3 illustrates the intimate connection between fast and flexible decision-making and bifur-
cation theory (52–54). The organizing bifurcation of fast and flexible decision-making between
two options is the pitchfork bifurcation. Figure 3a shows the bifurcation diagrams of different
instances of the pitchfork. The bifurcation parameter that drives the bifurcation is the attention
u that the deciding agents, on average, pay to network interactions.
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Figure 3

(a) Pitchfork bifurcation diagrams with average open-loop attention u (top) or basal attention u0 (bottom) as the bifurcation parameter
and lumped network opinion state y as the state variable. At the bifurcation point, u = u∗ (top) or u0 = u∗

0 (bottom). Bifurcation branches
of stable (unstable) equilibria are depicted as solid (dashed) lines, as graphically illustrated by the small arrows. The shaded color
regions are associated with bifurcation diagrams in panels b and c that use the same colors. (b) Input–output bifurcation diagrams for the
open-loop attention case, where the distributed input b plays the role of the bifurcation parameter. (c) Input–output bifurcation
diagrams for the state-dependent attention case. Abbreviation: DS, decision state.

3.1.1. Breaking indecision in the absence of inputs: symmetric pitchfork. Consider the
settingwith no inputs or biases and open-loop attention—i.e., changes in the agents’ average atten-
tion u do not depend on the agents’ opinion state. As the average attention grows, the equilibrium
corresponding to a neutral (indecision) state loses stability in a symmetric pitchfork bifurcation
at a critical attention value u∗ (bifurcation point), and two new stable equilibria appear along the
pitchfork bifurcation branches (Figure 3a, top left).

The two new equilibria are two distinct opinionated decision states, DS1 and DS2. They can
describe agent agreement: All agents favor option 1 (option 2) in DS1 (DS2).Or they can describe
agent disagreement: Agents in cluster 1 favor option 1 (option 2), and agents in cluster 2 favor
option 2 (option 1) in DS1 (DS2). The decision states emerging at the pitchfork are determined
by the communication network structure, which shapes the bifurcation critical subspace and thus
its center manifold. At the pitchfork bifurcation, the agents break indecision by choosing one
decision state. Indecision-breaking occurs even without evidence (inputs or biases) distinguishing
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Unfolding theory:
the study of how a
bifurcation diagram
changes qualitatively
as a function of
parameters and inputs

Dominant
eigenstructure: for a
matrix, the collection
of eigenvalues with
largest real part and
associated eigenvectors

Lyapunov–Schmidt
reduction:
a dimensionality-
reduction technique to
derive the qualitative
properties of
center-manifold
dynamics close to a
bifurcation point; this
is similar to the
center-manifold
reduction but usually
more tractable

the option quality. The pitchfork bifurcation is the mechanism through which indecision can be
broken in uncertain situations.

The scalar lumped opinion state y is the projection of the vector of agent opinions onto the
bifurcation critical subspace. If the critical subspace corresponds to a vector with same (differently)
signed elements, then y is a weighted sum (difference) of agent opinions. The two decision states
are described by y > 0 (DS1) and y < 0 (DS2).

3.1.2. Breaking indecision in the presence of inputs: pitchfork unfolding and selective
ultrasensitivity. In the presence of inputs, the pitchfork unfolds, according to unfolding theory,
as in the top-right bifurcation diagram in Figure 3a, where the distributed input b provides
evidence in favor of DS1 (since b > 0). If the evidence were in favor of DS2 (i.e., b < 0), then this
diagram would be flipped across the y = 0 axis. The distributed input b ∈ R is the projection of
the vector of inputs over the network onto the sensitivity subspace of the bifurcation. A choice
for the decision state favored by the inputs is a stable equilibrium for all values of u and the only
equilibrium for u close to u∗. For larger u > u∗, a choice for the decision state disfavored by
the inputs appears in a saddle-node bifurcation: Strong social interactions make a switch to the
disfavored equilibrium possible.

The input-induced change in the pitchfork bifurcation diagram is a form of selective ultrasen-
sitivity.Themodel is ultrasensitive at the bifurcation because its linearization is singular, and along
the critical subspace the input–output gain blows up (called susceptibility in Reference 24). The
directions of ultrasensitivity are determined by the dominant eigenstructure of the communica-
tion network adjacency matrix. Ultrasensitivity is selective at the bifurcation because only inputs
with nonzero projection on the center manifold can excite dynamics that trigger an unfolding.
The qualitative nonlinear effect of inputs on the center-manifold dynamics are predicted using
Lyapunov–Schmidt reduction and unfolding theory techniques (53).

3.1.3. Flexible and robust decision-making through the pitchfork. For u< u∗, there exists a
unique exponentially stable equilibrium for all values of b, leading to the monotone input–output
characteristic in the left diagram of Figure 3b. For small input, this characteristic is well approx-
imated by a linear response. For u > u∗, there is bistability between the two stable decision states.
Bistability implies hysteresis: Only sufficiently large changes in the input can change the decision
state, as captured by themultivalued input–output characteristic in the right diagram of Figure 3b.
This characteristic is nonlinear, so decision states can be much larger in magnitude than the input.
Hysteresis provides robustness: The existence and stability of each decision state are unaffected
by small perturbations. Hysteresis provides memory: Convergence to an equilibrium depends on
and retains information about the past.

To summarize, indecision-breaking through the pitchfork is simultaneously selectively ultra-
sensitive (at bifurcation) and robust (away from bifurcation). The balance between sensitivity and
robustness is flexibly tuned by how close u is to u∗.

3.1.4. Indecision-breaking with open-loop attention is slow. The pitchfork bifurcation or-
ganizing indecision-breaking for open-loop attention is called supercritical. In the supercritical
pitchfork, for u < u∗ the only stable equilibrium is the neutral state, while for u > u∗ the neutral
state is unstable and the two decision states are stable. When indecision-breaking results from a
supercritical pitchfork, opinion strength |y| is a continuously increasing function of both u and |b|.
Since the speed of opinion formation is proportional to the speed of attention and input change,
opinion formation can be slow even as it is selectively ultrasensitive.

3.1.5. Closed-loop attention makes indecision-breaking fast and leads to flexible opinion
cascades. Closing the loop between opinion and attention by making attention dependent on
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Hopf bifurcation:
a bifurcation
characterized by a pair
of complex conjugate
eigenvalues crossing
the imaginary axis and
leading to a change in
stability of an
equilibrium solution
and the emergence of
oscillatory solutions

Equivariant
dynamical system:
a dynamical system
ẋ = f (x) that is
unchanged under
group G symmetry
transformations of the
state space, i.e.,
(g−1

+ f )(gx) = f (x) for
all g ∈ G

Equivariant
bifurcation theory:
the study of
bifurcation
phenomena in
equivariant dynamical
systems

opinion state introduces a source of positive feedback that sharpens the pitchfork and can make it
subcritical (Figure 3a, bottom left). For state-dependent attention, the bifurcation parameter is
basal attention u0, and the subcritical pitchfork happens at critical value u0 = u∗

0. In the subcriti-
cal pitchfork, with no inputs, branches of opinionated equilibria appear for u0 < u∗

0, and there is
multistability of the neutral state and decision states. For u0 = u∗

0, the neutral state loses stability,
and the network opinion state switches to a strongly opinionated equilibrium. In the presence of
input, the switch is toward the favored decision state (Figure 3a, bottom right). Thus, opinion
formation with state-dependent attention is fast. For slowly varying input, the network opinion
and attention state diverges exponentially away from a weakly opinionated, weakly attentive state
and toward a strongly opinionated, strongly attentive state.

Multistability of opinion formation with state-dependent attention leads to input–output hys-
teresis similarly to the open-loop case but of a new kind, as depicted in Figure 3c. There are two
distinct regions of hysteresis, one between each opinionated equilibrium and the neutral equilib-
rium. This kind of hysteresis underlies opinion cascades, in which inputs switch the network from
a neutral to an opinionated state, as inFigure 2.The distributed network threshold for the opinion
cascade corresponds to saddle-node bifurcations delimiting the two neutral-opinionated hystere-
sis regions. Changing the value of basal attention u0 changes the neutral-opinionated hysteresis
ranges. As in Figure 3c, increasing u0 shrinks the range in which a stable neutral equilibrium exists.
For u0 > u∗

0, no stable neutral equilibrium exists, leading to the standard hysteretic characteristic
in the right diagram of Figure 3b. Thus, basal attention modulation flexibly tunes the cascade
threshold.

Opinion cascades are highly nonlinear, high-dimensional, networked dynamical behavior.
Their study is tractable using a mixture of linear and nonlinear techniques. The linear analysis de-
termines the singular directions of ultrasensitivity along which the cascade-triggering saddle-node
bifurcation happens. The nonlinear analysis determines the nonlinear sensitivity of the bifurca-
tion to parameters and inputs. These techniques are scalable to large networks of agents deciding
over an arbitrary number of options.

3.1.6. Oscillatory indecision-breaking. When the critical subspace of the indecision-breaking
bifurcation is associated with a pair of complex conjugate eigenvalues, the bifurcation is a Hopf
bifurcation, and the resulting opinion-forming behavior is oscillatory.

3.2. Generalization to Multiple Options

The bifurcation theory for fast and flexible decision-making between two options generalizes to
more than two options.

3.2.1. Multiple indistinguishable options. When each of a pair of options is equally likely
to be chosen based on inputs or network structure, the options are indistinguishable. Deciding
among indistinguishable options needs an indecision-breaking mechanism. For two options, it is
the pitchfork bifurcation, which is the generic bifurcation in an equivariant dynamical system that
is symmetric with respect to swapping two sets of variables. The two sets of variables that can
be swapped without affecting decision-making dynamics are the agents’ opinions about the two
indistinguishable options. For No options, the indecision-breaking bifurcations are predicted by
equivariant bifurcation theory (55, 56) for dynamical systems that are equivariant with respect to
permutingNo sets of variables: the agents’ opinions about theNo indistinguishable options. These
bifurcations are multibranch generalizations of the pitchfork when No > 2 (57).

3.2.2. Multiple options interrelated through a belief system. For multiple interrelated
options, the generic indecision-breaking bifurcation is a pitchfork bifurcation. The bifurcation
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Kronecker product:
the pm × qn block
matrix A � B =
a11B · · · a1nB
...

...
...

am1B · · · amnB

,

where A is an m × n
matrix and B is a p × q
matrix

Network-admissible
dynamical system:
a dynamical system
where the dynamical
relationships between
the variables respect
the structure of a given
network

critical subspace and thus the emerging opinionated decision states are jointly determined by the
communication network and the belief system network. More precisely, the critical subspace of
the pitchfork is a dominant eigenspace of the Kronecker product of the communication network
adjacency matrix and the belief system network adjacency matrix.

3.2.3. Input and state-dependent attention with the multiple options. Adding inputs in ei-
ther multioption case unfolds the indecision-breaking bifurcations reflective of the inputs.Making
attention state-dependent makes multioption decision-making fast and with a tunable threshold
for triggering opinion cascades.

3.3. Model and Model-Independent Approaches to Indecision-Breaking

In Section 4, we ground our theory in a computational model and then analyze it. However, a
model-independent approach is also possible (58). Such an approach relies solely on a set of empir-
ically verifiable assumptions to make testable predictions for any model or real-world system that
verifies those assumptions (or only weakly violates them). Symmetry and equivariant bifurcation
theory provide powerful tools for making model-independent predictions about opinion-forming
behavior given the following two basic assumptions:

1. Opinions evolve continuously in time according to a smooth dynamical system. Any (ap-
parent) discontinuity in opinion-forming behavior is necessarily caused by bifurcation
phenomena. A model does not need hard thresholds or other kinds of hybrid dynamics. In-
stead, switch-like behaviors associated with indecision-breaking are emergent phenomena
of nonlinear dynamical systems governed by feedback and bifurcations.

2. Opinion formation is a network phenomenon. Agent valuations about options are shared,
transmitted, and received through communication and belief system networks. The class
of dynamical systems that can describe opinion formation is determined by the theory of
network-admissible dynamical systems (59).

The predictions of themodel-independent approach provide ground truths formodel building.
One of the ground truths is that, for indistinguishable agents and options, any model of opinion
formation should be able to transition from consensus (all agents agreeing perfectly) to dissensus
(agents disagreeing in such a way that on average the group is neutral) throughmodulation only of
the extent of cooperativity among the agents. The computational model of Section 4 was designed
to capture this and other model-independent ground truths. Thus, model-dependent approaches
can be used to explore a broader set of contexts not captured by the model-independent approach,
e.g., the presence of inputs and heterogeneous communication and belief system networks, which
make agents and options distinguishable and shape opinion-forming behaviors.

4. FAST AND FLEXIBLEMULTIAGENTDECISION-MAKINGDYNAMICS

4.1. Definition of Opinions, Attention, Networks, Inputs, and Biases

Consider a system of an arbitrarily large (but finite) number of agents Na making decisions about
an arbitrarily large (but finite) number of options No. Let Va = {1, . . . ,Na} and Vo = {1, . . . ,No}
be the sets of agents and options, respectively. For every i ∈ Va and j ∈ Vo, define zi j ∈ R to be
the opinion of agent i about option j. The more positive (negative) is zij, the more agent i favors
(disfavors) option j.When zij = 0, agent i is neutral or undecided about option j. The opinion state
of agent i is the vector zi = (zi1, . . . , ziNo ) ∈ RNo , and the system opinion state is z = (z1, . . . , zNa ) ∈
RNaNo . The neutral (undecided) state of the system is z = 0, where 0 is the vector of NaNo zeros.
For every i ∈ Va, define the variable ui ≥ 0 to be the attention of agent i. Attention ui is a gain on
opinions that agent i can observe, so larger ui implies greater attention. Let u = (u1, . . . , uNa ).
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Let a jlik ∈ R, for i, k ∈ Va and j, l ∈ Vo, be a network weight defined as the influence factor that
the opinion of agent k about option l has on the opinion of agent i about option j. A positive
(negative, zero) a jlik means positive (negative, zero) influence.We denote the self-reinforcingweight
a j jii by α

j
i . This is the weight of the opinion of agent i about option j on itself. We assume α

j
i ≥ 0.

We will introduce a separate term that represents damping of the opinion of agent i about option
j. Let bi j ∈ R, for i ∈ Va and j ∈ Vo, be the input to agent i about option j, where bij > 0 (bij < 0)
is input in favor (disfavor) of option j, and bij = 0 means no evidence is available to agent i about
option j. Inputs include external stimuli and internal biases. Inputs and influence factors can be
state or time dependent.

When all agents share the same belief system, we can introduce two graphs to simplify
the representation of influences by reducing the number of network weights a jlik . The first is
the communication network graph Ga = (Va, Ea,Aa ), which encodes communication (or sens-
ing) among agents. Ea is the set of edges between nodes in Va, where edges are communication
links and nodes are agents. An edge eik ∈ Ea means that agent i observes the opinion of agent k.
Aa = [aaik] ∈ RNa×Na is the communication adjacency matrix, where aaik is the influence weight of
the opinion of agent k on the opinion of agent i.

The second graph is the belief system graph Go = (Vo, Eo,Ao ), which encodes the interde-
pendence of options, e.g., the logical, psychological, or social constraints on the alignment or
antialignment between beliefs on different options (49). Eo is the set of edges between nodes in
Vo, where edges are influence links and nodes are options. An edge e jl ∈ Eo signifies that formation
of opinions about option j is affected by the opinions about option l. Ao = [aojl ] ∈ RNo×No is the
belief system adjacency matrix, where aojl is the influence weight of the opinions about option l on
the opinions about option j. As an example, consider a set of options corresponding to targets in a
spatial decision-making problem.A negative (positive) edge between a pair of options corresponds
to targets that are (in)distinguishable.

For every i, k ∈ Va, let auik ≥ 0 be the influence factor that the strength of the opinion of agent
k about any option j has on the attention of agent i. Then Au = [auik] ∈ RNa×Na is the adjacency
matrix of an attention network graph Gu = (Va, Eu,Au ).

4.2. Nonlinear Multiagent Multioption Opinion and Attention Dynamics

The model describes the continuous-time updates of all opinions zij and attention variables ui as
a function of time t ∈ R≥0 using ordinary differential equations that define the rate of change of
each variable. In simulations, small noise terms and parameter perturbations are usually included
to illustrate robustness of the system behavior. We use ẏ to denote the rate of change dy/dt of a
variable y with respect to time t. A general form of the coupled nonlinear opinion dynamics and
attention dynamics is the following for every i ∈ Va, j ∈ Vo:

żi j =−di jzi j + S

ui(α j
i zi j +

Na∑
k=1
k̸=i

aaikzk j +
No∑
l ̸= j
l=1

aojlzil +
Na∑
k=1
k̸=i

No∑
l ̸= j
l=1

aaika
o
jlzkl )

 + bi j , 1.

τuu̇i =−ui + u0 + Ku
No∑
j=1

Na∑
k=1

auik(zk j )
2, 2.

where dij > 0 is a damping coefficient, τ u ≥ 0 is a time constant, u0 is a basal level of attention,
Ku ≥ 0 is an attention gain, and S : R → R is any bounded saturation function satisfying
S(0) = 0, S′(0) = 1, and S′′′(0) ̸= 0. When S is applied to an argument that is small or moder-
ate in magnitude, it is treated approximately as it is. But when S is applied to an argument with
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large magnitude, S bounds it, so the agents’ sensitivity decreases as opinions become large. This
has rich consequences for the robust opinion-forming behaviors captured by this model, with ana-
lytical tractability, unlike for linear consensus dynamics models and many extensions, as discussed
further in Section 5.

The dynamics in Equation 1 can be interpreted as a continuous-time recurrent neural net-
work, including finite-dimensional Wilson–Cowan dynamics (60, 61) and continuous Hopfield
networks (62, 63). Equation 2 is akin to gating dynamics in neuron conductance–based mod-
els (64). Importantly, the dynamic model of Equation 1 satisfies the assumptions of Section 3 and
thus captures the ground truth, i.e., the model-independent predictions. Equation 2 extends and
modulates the resulting dynamical repertoire.

When Ku > 0, Equation 2 provides a general model of agent i increasing its attention with
growing strength of the opinions that it can observe, independent of agents’ preferences. As an
example, consider a group of agents of which some have become aware that they need to evacuate
a building. These agents form opinions about which of multiple exits to use. If an agent, otherwise
unaware of the need to evacuate, observes the growing activity (opinions) of these agents, then
its attention grows. This activates its opinion dynamics, where it will sort out which exit to use.
When Ku = 0 or agent i observes no other agent forming an opinion, ui remains at its basal
value u0.

The first term on the right side of Equation 1 is a linear negative feedback term (damping),
which drives zij to 0, the neutral opinion, in the absence of the two other terms. The second term
is the saturation of the attention-modulated weighted sum of opinions that agent i observes. This
is a nonlinear positive feedback term—i.e., it drives zij away from 0. When there is no input, i.e.,
bij = 0, for all i, j, then group indecision (the neutral state z = 0) is always an equilibrium. It is
the balance of the negative and positive feedback terms for high enough attention that leads to an
indecision-breaking bifurcation and the formation of strong opinions, even for very weak initial
opinions and very weak or nonexistent input. The bifurcation is symmetric (perturbed) in the
absence (presence) of input.

Inside the parentheses of Equation 1 there are four terms, modulated by the attention ui of
agent i, that influence the opinion zij of agent i about option j. The first is the self-reinforcing
term. The second is the weighted sum of the opinions of agents k ̸= i about option j, where the
weights are given by the communication graph; this term models interagent opinion exchanges
about option j. The third is the weighted sum of the opinions of agent i about options l ̸= j, where
the weights are given by the belief system graph; this term models the intra-agent interactions
between different option valuations according to the logic of the belief system. The fourth is the
weighted sum of opinions of agent k ̸= i about options l ̸= j, where the weights are products of
elements in both graphs; this term models interagent interaction between different option valua-
tions according to the logic of the belief system. By networks-of-belief theory (65), the last three
are social, personal, and external dissonance, respectively.

Equation 1 can be more general as żi j = −di jzi j + S(ui
∑No

l=1
∑Na

k=1 a
jl
ikzkl ) + bi j . We can also

move ui outside of the saturation function S and/or apply different saturation functions to the
sum over agents and the sum over options. These modify the interpretation but do not affect the
fundamental results.

4.3. Dynamics for Two Options

We first take a close look at the case of two options, No = 2. If the two options are mutually
exclusive (i.e., ao12, a

o
21 < 0 and an opinion in favor of option 1 can be interpreted as an opinion

in disfavor of option 2), then we can focus on zi1 and let zi2 = −zi1, for all i ∈ Va, Then, the
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equations for zi1 and zi2 decouple for every i ∈ Va, and Equation 1 becomes

ẋi = −dixi + S

ui(αixi + N∑
k=1
k̸=i

aikxk )

 + bi, 3.

where we have defined xi = zi1, Na = N, aik = aaik − aaika
o
12, di = di1, αi = α1

i − ao12, and bi = bi1.
We let A = [aik]. In the new notation, the more positive (negative) is xi, the more in favor of
option 1 and in disfavor of option 2 (in disfavor of option 1 and in favor of option 2) is agent i.
Agent i is neutral (undecided) if xi = 0. The neutral (undecided) system state, x = 0, is always
an equilibrium of Equation 3 when b = 0, where x = (x1, . . . , xN) and b = (b1, . . . , bN). Since
|aik| = |aaik − aaika

o
12| > |aaik| and αi = α1

i − ao12 > α1
i , mutual exclusivity between options brings a

source of positive feedback akin to the toggle-switch motif of systems biology (66). Equation 2
reduces to

τuu̇i = −ui + u0 + Ku
N∑
k=1

auikx
2
k . 4.

Attention adjacency matrix Au is equal to A if agents update their attention using observations
from the communication network. In Figure 2, Au is equal to I, the identity matrix—i.e., an
agent’s attention grows with its own opinion. As long as u0 > 0, an agent’s opinion can grow
through observations and input (Equation 3). Whether this leads to a cascade of strong opinions
across the network depends on the distributed network threshold described in Sections 1 and 3,
which in turn depends on the distribution of inputs b, network adjacency matrix A, basal attention
u0, and attention feedback gain Ku.

4.3.1. One agent, two options. To develop intuition on the fundamental ideas of fast and flex-
ible decision-making, we reduce Equations 3 and 4 to two scalar equations by considering one
agent (individual or population) with opinion x about option 1 and attention u:

ẋ = −dx+ tanh(ux) + b, 5.

τuu̇ = −u+ u0 + Kux2, 6.

where d = di1, u = uiαi, and b = bi1. We let S(·) = tanh(·) without loss of generality.
We examine first the open-loop attention case, i.e., τ u → 0 and Ku = 0 so that u = u0. Suppose

that b= 0 (no evidence about the options).Then, an equilibrium of Equation 5 satisfies tanh (ux)=
dx, which we solve graphically in Figure 4a. When (d/u) ≥ 1, there is one intersection at x = 0
(indecision). When (d/u) < 1, there are three intersections at x = −x∗ (favor option 2), x = 0
(indecision), and x = x∗ (favor option 1).

The linearization of Equation 5 at equilibrium x= xe is ẇ = Jw, wherew = x− xe and Jacobian
J = (−d + u sech2(ux))|x=xe . At xe = 0, J is equal to −d+ u. Thus, x= 0 is exponentially stable for
u< d and unstable for u> d. For u ≤ d, let V(x) = x2 be a candidate Lyapunov function. Then, for
x ̸= 0, dV/dt = 2x · ẋ = −2dx2(1 − tanh(ux)/(dx)) < 0 since tanh(ux)/(dx)) < 1 for u ≤ d. Thus,
x = 0 is globally asymptotically stable for u = d and globally exponentially stable for u < d. At x =
± x∗, J is equal to −u(d/u − sech2 (ux∗)). The first term in the parentheses is the slope of the pink
line in Figure 4a, and the second term is the slope of the red curve. Near x = ± x∗, the pink slope
is greater than the red slope, so J < 0 and the equilibria x = ± x∗ are exponentially stable.

This analysis reveals the indecision-breaking bifurcation, shown in the top left bifurcation di-
agram of Figure 3a, that occurs in Equation 5, when b = 0, as u increases through the bifurcation
point ( y, u) = (0, u∗), where y = x and u∗ = d. The globally exponentially stable equilibrium at
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(a) Equilibria of the dynamics of Equation 5 for b = 0 and different d/u ratios. When u < d, there exists only one equilibrium at the
origin. When u > d, two new equilibria appear at ±x∗ in a supercritical pitchfork bifurcation. (b,c) Phase planes of the dynamics of
Equation 7 for u > u∗ = d

α+1 . Panel b is for A = (
0 1
1 0

)
, and panel c is for A=−

(
0 1
1 0

)
.

indecision (x = 0) for u < u∗ is destabilized for u > u∗, and the exponentially stable symmetric
pair of equilibria, DS1 and DS2, which are a choice for option 1 (x= x∗) and a choice for option 2
(x = −x∗), respectively, grow in strength for increasing values of u. This is the supercritical pitch-
fork bifurcation. Its existence is predicted by observing that an equilibrium of Equation 5 satisfies
−d x + tanh(ux) + b = 0 and that, for small |x|, the term −d x + tanh(ux) is isomorphic to
(u − d)x − ux3. Thus, for b = 0, the equilibria of Equation 5 satisfy the normal form of the sym-
metric supercritical pitchfork (u − u∗)x − ux3 = 0 (54), where the bifurcation happens for (x, u) =
(0, u∗). For b ̸= 0, the bifurcation behavior is predicted by unfolding theory (53).

Near the bifurcation point, the dynamics are ultrasensitive to b ̸= 0. Even for very small |b|, if
b > 0, then the top left bifurcation diagram of Figure 3a unfolds into the top right bifurcation
diagram, where the exponentially stable equilibrium corresponding to a choice of option 1 domi-
nates. If b< 0, the diagram is flipped about the y= 0 line. These results are predicted by unfolding
theory (53). The resulting input–output behavior for fixed u < u∗ (u > u∗) is linear (hysteretic) as
in the left (right) diagram of Figure 3b.

We next examine the state-dependent attention case: Ku > 0. The coupled opinion and at-
tention dynamics given by Equations 5 and 6 are two-dimensional, so we can analyze them by
studying their phase plane (plot of x versus u). The nullcline of Equation 5 corresponds to ẋ =
−dx+ tanh(ux) + b = 0, and the nullcline of Equation 6 corresponds to u̇ = −u+ u0 + Kux2 = 0.
Each intersection of the nullclines corresponds to an equilibrium of the system.We illustrate the
nullclines in Figure 5a for d = 1 and Ku = 1 with b = 0.035, u0 = 0.75 (left); b = 0.095, u0 = 0.75
(middle); and b = 0.035, u0 = 0.95 (right). Representative trajectories are also shown, together
with their time courses (Figure 5b). The nullcline ẋ = 0 (in black) has the same qualitative shape
in the three plots and takes the form of the top right unfolded bifurcation diagram of Figure 3a.
But the larger value of b in the middle plots pushes the two nullcline branches farther apart as
compared with those in the left and right plots. In Figure 5a, the different values of basal atten-
tion u0 distinguish the right plot from the two other plots: The nullcline u̇ = 0 (in gray) is the
same in the right plot as in the two other plots except for a shift to the right by 0.2 (equal to
0.95 − 0.75). This shift changes the number and location of the equilibria and, with it, the thresh-
old above which the input is large enough to trigger the fast formation of a strong opinion. In this
way, u0 tunes the sensitivity of the opinion formation to the input: In the example of Figure 5,
input b = 0.035 triggers a strong opinion for the high value of u0 but not for the low value of u0.
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Ghost of the
saddle-node
bifurcation:
the region in the state
space close to where a
saddle-node
bifurcation has
happened; it is
associated with a slow
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behavior followed by a
fast diverging behavior
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(a) Nullclines, vector field, and sample trajectories of the dynamics of Equations 5 and 6 for different input b and basal attention u0
values. The colored curves are the sample trajectories, with filled circles representing the initial conditions; the black curve is the
nullcline ẋ = 0; and the gray curve is the nullcline u̇ = 0. (b) Time courses of the sample trajectories in panel a.

To see this, observe in the left diagram of Figure 5a that for u0 = 0.75 and b = 0.035, there
are three equilibria (two stable and one unstable). The equilibrium near the neutral opinion is
stable. Thus, solutions converge to the near-neutral equilibrium, and no strong opinion forms for
either of the two initial conditions, one in favor and the other in disfavor of option 1, as can also
be seen in the corresponding time plots in the left plot of Figure 5b. When the input strength is
increased in favor of option 1 from 0.035 to 0.095 (middle plots of Figure 5), the only nullcline
intersection that persists is associated with a stable equilibrium corresponding to strong opinion
and strong attention.The near-neutral equilibrium for b= 0.035 has disappeared in a saddle-node
bifurcation for b = b∗ between 0.035 and 0.095. For the same initial conditions as the left plots
of Figure 5a, the trajectory is first attracted toward the ghost of the saddle-node bifurcation and
then diverges exponentially away from indecision, as can also be seen in the corresponding time
plots. The input strength b∗ for which the near-neutral equilibrium disappears is the threshold for
opinion cascades. As shown in the right plots of Figure 5, increasing the basal attention reduces
the threshold for opinion cascade. Indeed, the phase plane and temporal behavior for b = 0.035
and u0 = 0.95 are the same as those for b = 0.095 and u0 = 0.75. The importance of a tunable
threshold is that it allows the decision-making process to tune its sensitivity and reactivity to input
and a changing environment.
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Monotone dynamics:
dynamics whose
trajectories satisfy a
monotonicity
condition with respect
to some order in the
state space

We can explain the fast formation of strong opinions through divergence from indecision and
convergence to decision for b > b∗ in terms of the subcritical pitchfork bifurcation of the bottom
bifurcation diagrams in Figure 3a. Observe that an equilibrium of Equations 5 and 6 satisfies
−d x + tanh((u0 + Kux2)x) + b = 0 and that, for small |x|, the term −d x + tanh((u0 + Kux2)x) is
isomorphic to (u0 − d)x− (Ku − u0/3)x3 + (Ku/3)x5. Thus, for b= 0, the equilibria of Equations 5
and 6 satisfy the normal form of the quintic pitchfork (u0 − u∗

0 )x− (Ku − u0/3)x3 + (Ku/3)x5 = 0,
u∗
0 = d (54), which has a subcritical pitchfork bifurcation at (x, u0 ) = (0, u∗

0 ) and a symmetric pair
of saddle-node bifurcations, as shown in the bottom left bifurcation diagram of Figure 3a. The
stability of the various equilibria can be inferred by phase plane analysis, as in Figure 5, or by
studying the linearized dynamics. Because the coupled opinion–attention dynamics are monotone
dynamics on quadrants x > 0 and x < 0, there are no dynamical behaviors other than conver-
gence to an equilibrium (67). For b ̸= 0, the bifurcation behavior is predicted by unfolding theory
(53). The input–output behavior is as in Figure 3c, characterized by hysteresis between neutrality
and decision and the existence of opinion cascades for fast, strong opinion formation. Tuning the
basal attention u0 shapes the input–output behavior, and we see how increasing the basal attention
reduces the threshold for opinion cascades.

The single-agent analysis in this section generalizes to larger numbers of agents through the
Lyapunov–Schmidt reduction. In particular, the same low-dimensional dynamics described here
are found in the indecision-breaking bifurcation center manifold in higher-dimensional systems.
We next work these ideas out explicitly in the case of two agents.

4.3.2. Two agents, two options. Consider two agents. Let d1 = d2 = d > 0, u1 = u2 = u ≥
0, and α1 = α2 = α ≥ 0, and assume a communication link with graph edge weights a12 ̸= 0 and
a21 ̸= 0. Equation 3 becomes

ẋ1 = −d x1 + tanh(u(αx1 + a12x2 )) + b1,

ẋ2 = −d x2 + tanh(u(αx2 + a21x1 )) + b2.
7.

Let b = 0. The neutral state x = 0 is an equilibrium of Equation 7 for all u ≥ 0, and the
Jacobian evaluated at x = 0 is J = (−d + uα)I + uA, where A is the adjacency matrix for the two-
node network. Let λmax be a simple eigenvalue of A with largest real part and vmax and wmax be the
corresponding right and left unit eigenvectors, respectively. J has largest eigenvalue

λ′
1 = (−d + uα + uλmax ) = (α + λmax )(u− u∗ ), u∗ = d

α + λmax
, 8.

with right and left eigenvectors v′
1 = vmax and w′

1 = wmax, respectively. By Equation 8, λ′
1 is equal

to 0 if u = u∗ = d
α+λmax

, and x = 0 is exponentially stable if u < u∗ and unstable if u > u∗. We
expect a supercritical pitchfork bifurcation at the critical point x = 0 and u = u∗, with two new
stable equilibria appearing for u > u∗ along the center manifold, which at x = 0 is tangent to
critical subspace Ker(J) = v′

1 = vmax. Let y = ⟨x, vmax⟩ and b = ⟨wmax, b⟩.
As an example, let a12 = a21 = 1. Adjacency matrix A, its eigenvalues, and its corresponding

eigenvectors areA = ( 0 1
1 0

)
,λ1 = 1, v1 = 1√

2

( 1
1

)
,λ2 = −1, and v2 = 1√

2

( 1
−1

)
. Then, (λmax, vmax,wmax)

is equal to (λ1, v1, v1) and u∗ is equal to d
α+1 . To show the bifurcation, we compute the Lyapunov–

Schmidt reduction by first rewriting Equation 7 with respect to coordinates ( y1, y2) = T−1(x1, x2),
T = [v1, v2]. The rows of T−1 are the left eigenvectors w1, w2 of A, so y1 = ⟨x,w1⟩ = ⟨x,wmax⟩ =
(x1 + x2 )/

√
2 and y2 = ⟨x,w2⟩ = (x1 − x2 )/

√
2. Denote ps = α + 1, pd = α − 1, and ũ = u/

√
2.
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Equation 7 in the new coordinates becomes

ẏ1 =−d y1 + (1/
√
2)(tanh(ũ(psy1 + pdy2 )) + tanh(ũ(psy1 − pdy2 )) + b1 + b2 ), 9.

ẏ2 =−d y2 + (1/
√
2)(tanh(ũ(psy1 + pdy2 )) − tanh(ũ(psy1 − pdy2 )) + b1 − b2 ). 10.

Noting that x = Ty = y1v1 + y2v2, we can restrict the dynamics of y1 of Equation 9 to critical
subspace Ker( J) = v1 = vmax by setting y2 = 0. Since y is equal to ⟨x, v1⟩, on the restriction, y is
equal to y1. Using tanh(cx) ≈ c tanh(x) for small |x| leads to the restricted dynamics

ẏ≈−dy+ tanh(u(α + 1)y) + ⟨w1,b⟩. 11.

For small |x|, the right-hand side of Equation 11 is isomorphic to (u(α + 1) − d)y− u(α + 1)y3 + b,
b = ⟨w1, b⟩. Thus, equilibria of Equation 11 satisfy (u(α + 1) − d)y − u(α + 1)y3 + b = 0, which
is the Lyapunov–Schmidt reduction and which describes, similarly to the single-agent case, a
supercritical pitchfork bifurcation at ( y1, u) = (0, u∗) along v1 when b = ⟨w1,b⟩ = ⟨wmax,b⟩ =
(b1 + b2 )/

√
2 = 0. Figure 4b shows the resulting phase portrait for a choice of u > u∗. The top

left diagram of Figure 3a shows the bifurcation diagram where y = ⟨x, vmax⟩ = (x1 + x2 )/
√
2. The

upper (lower) branch of the pitchfork corresponds to an agreement—consensus, in this case—of
the agents for option 1 (option 2). The top right bifurcation diagram of Figure 3a corresponds to
b = ⟨wmax,b⟩ = (b1 + b2 )/

√
2 > 0, i.e., when the distributed input (here the input average) favors

option 1 (DS1).
Now suppose the weights on the communication link are a12 = a21 = −1.The adjacency matrix

is −A for which (λmax, vmax, wmax) = (λ1, v2, v2). Thus, we expect a supercritical pitchfork bifur-
cation at x = 0 and u = u∗ = d

α+1 , with two new stable equilibria appearing for u > u∗ along the
center manifold, which at x = 0 is tangent to critical subspace Ker(J) = v′

1 = vmax = v2. Restrict-
ing the dynamics of y2 = ⟨x, wmax⟩ = ⟨x, w2⟩ of Equation 10 to Ker( J) by setting y1 = 0, letting
y = ⟨x, v2⟩ = y2, and using tanh(cx) ≈ c tanh(x) for small |x| gives

ẏ≈−dy+ tanh(u(α + 1)y) + ⟨w2,b⟩, 12.

which describes a supercritical pitchfork bifurcation at ( y2,u)= (0,u∗) along v2 when b = ⟨w2,b⟩ =
⟨wmax,b⟩ = (b1 − b2 )/

√
2 = 0. Figure 4c shows the resulting phase portrait for a choice of u >

u∗. The top left diagram of Figure 3a shows the bifurcation diagram where y = ⟨x, vmax⟩ =
(x1 − x2 )/

√
2. The upper (lower) branch of the pitchfork corresponds to agent 1 for option 1

(option 2) and agent 2 for option 2 (option 1). The top right bifurcation diagram of Figure 3a
corresponds to b = ⟨wmax,b⟩ = (b1 − b2 )/

√
2 > 0, i.e., when the distributed input (here the input

difference b1 − b2) favors option 1 (DS1).
Now consider the state-dependent attention given by Equation 4, where auik = 1, for all i, k =

1, 2. Let umax = 1√
2

( 1
1

)
and u= ⟨umax,u⟩. For illustration, suppose that τ u → 0 such that u1 = u2 =

u = u0 + Ku(x21 + x22 ). Substituting for u in Equation 11 or 12 gives an equation locally isomorphic
to the normal form for the quintic pitchfork and its unfolding of the bottom two diagrams in
Figure 3a. For τ u > 0, the phase planes of the top part of Figure 5 characterize the reduced
dynamics of ( y1, u) in the first example and of ( y2, u) in the second example. Thus, the distributed
network threshold for an opinion cascade is governed by u0, Ku, and ⟨w1, b⟩ in the first example
and ⟨w2, b⟩ in the second example. In particular, a cascade will be triggered for a combination of
sufficiently large input strength ∥b∥ and sufficient alignment of the input b with wmax.
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4.3.3. N agents, two options. The results of Section 4.3.2 generalize to the case of N agents
(Equation 3) with di = d, αi = α, and ui = u, for i = 1, . . .N, and adjacency matrix A. Suppose A
has simple positive leading eigenvalue λmax with right and left leading eigenvectors vmax and wmax,
respectively. Then, vmax defines the critical subspace and wmax the sensitivity subspace. Following
the two-agent case analysis, for b = 0 there will be a supercritical pitchfork bifurcation at x = 0
and u = u∗ where u∗ is defined as in Equation 8. The Lyapunov–Schmidt reduction defines dy-
namics of y = ⟨x, vmax⟩, locally isomorphic to the normal form for the supercritical pitchfork, with
b = ⟨wmax, b⟩ the unfolding parameter.

A sufficient condition for the existence of a simple positive leading eigenvalue is that A is an
irreducible matrix or, equivalently, that it is the adjacency matrix of a strongly connected graph,
and that aik ≥ 0 for all i, k= 1, . . . ,N. Then the Perron–Frobenius theorem (68) implies that A has
the strong Perron–Frobenius property—i.e., there exists a simple positive leading eigenvalue with
a positive eigenvector. Applications of Perron–Frobenius theory to more general signed networks
are discussed in Section 6.

When A has a simple leading eigenvalue–eigenvector triplet (λmax, vmax, wmax), the network
will form opinions according to the top diagrams of Figure 3a in the open-loop attention case
and according to the bottom diagrams of Figure 3a in the state-dependent attention case, where
y = ⟨x, vmax⟩ = ∑N

i=1 xivi and b = ⟨wmax,b⟩ = ∑N
i=1 wibi. The ordering of elements vi in vmax, the

leading right eigenvector of A, predicts the ordering of agent opinions at steady state, i.e., steady-
state opinion patterns that may involve different option preferences, different opinion strengths,
and clustering of opinions. And each element wi of wmax, the leading left eigenvector of A, serves
as a nodal centrality index for agent i: It predicts the relative influence of the input to agent i
on the network opinion formation. The higher the centrality of agent i is, the greater the con-
tribution of bi is to the distributed input b. Thus, inputs to nodes with high centrality are more
effective in bringing the network above its distributed threshold and triggering an opinion cas-
cade. In the example of Figure 2, the centrality index |wi| for node i is represented by the size
of the dot used to represent node i. Centrality indexes change with the change in network prop-
erties; for example, agent 6 has a higher influence in the top network (with edge weights equal
to 1) as compared with that in the bottom network (with edge weights equal to −1). In the top
network, the higher centrality of nodes 6 and 10, receiving input in favor of option 1, as com-
pared with the centrality of nodes 3 and 11, receiving input in disfavor of option 1, explains why
b = ⟨wmax, b⟩ > 0 and the group forms a consensus in favor of option 1 (for the sufficiently large
input).

4.4. Generalization to Multiple Options

The analytical results in the case of two options generalize to more than two options when the
options are interrelated but not when they are indistinguishable.

4.4.1. Indistinguishable options. The analysis developed above for two options does not gen-
eralize to the case of multiple indistinguishable options. The reason for this is that the symmetry
of the indistinguishable options case leads to bifurcations with higher-dimensional center mani-
folds and Lyapunov–Schmidt reductions. Tools from equivariant bifurcation theory must thus be
employed to characterize the indecision-breaking bifurcation (see 58).

4.4.2. Multiple interrelated options. The analysis developed above for two options can gen-
eralize to the case of multiple interrelated options. This is possible when the Kronecker product
Aa � Ao has a simple leading eigenvalue with associated right and left eigenvectors vmax and wmax,
respectively. Then, the same results as for the two-option case (Lyapunov–Schmidt reduction,
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pitchfork unfolding, and network threshold for closed-loop attention) hold for the multioption
case with respect to these eigenvectors. We return to these ideas in Section 6.

5. CONNECTIONS TO EXISTING DECISION-MAKING DYNAMICS

5.1. Weighted Averaging, Consensus Dynamics, Variations, and Extensions

In his 1974 paper, Morris DeGroot (69) introduced the weighted averaging process as a model
of N agents coming to a consensus about the value of an unknown parameter θ . In the DeGroot
model, xi(T ) is the opinion of agent i about the unknown value at time T, and xi(0) is its initial es-
timate. The weighted averaging process is xi(T + 1) = ∑N

k=1 ãikxk(T ), where ãik ≥ 0 is the weight
agent i places on the opinion of agent k, and

∑N
k=1 ãik = 1. Subtracting xi(T ) from both sides gives

xi(T + 1) − xi(T ) = −xi(T ) + ∑N
k=1 ãikxk(T ), the unit time-step Euler discretization of linear

consensus dynamics in continuous time t:

ẋi(t ) = −d̃ixi(t ) +
N∑
k=1

ãikxk(t ), 13.

where d̃i = ∑N
k=1 ãik does not have to be 1, since we can always scale time. These dynamics were

introduced and analyzed by Robert Abelson (70) a decade before DeGroot. Networks that yield
consensus to the average of the initial condition for Equation 13 also do so for the discrete-time
DeGroot model. In this sense, reaching consensus in discrete time means reaching consensus in
continuous time. Linear consensus dynamics have been very well studied and applied in a range
of settings (see 71–74 and references therein).

Let Ã = [ãik], ãik ≥ 0 and D̃ = diag(d̃). The matrix L = D̃− Ã is called the Laplacian matrix
associated with the network described by adjacency matrix Ã. Equation 13 is also ẋ = −Lx. If
the matrix Ã is irreducible, then, as discussed in Section 4.3.2, by the Perron–Frobenius theorem
L always has a simple leading eigenvalue–eigenvector triplet (λmax, vmax, wmax), where λmax = 0,
vmax = 1 = (1, . . . , 1) ∈ RN , and wmax is a positive vector. Because all other eigenvalues are nega-
tive, all solutions of Equation 13 converge exponentially to the subspace generated by vmax = 1,
and consensus is always reached.

Linear consensus dynamics are analytically tractable, but they are limited in capturing the
breadth of real-world opinion dynamics (70, 75). First, consensus is the only solution, ruling out
all other kinds of opinion formation. Second, a greater difference in opinions between an agent
pair yields a stronger attraction, a paradox that does not fit our real-world experience. Third, the
consensus value depends linearly on initial opinions. So small (large) initial opinions necessarily
lead to small (large) final opinions. Fourth, the consensus value is independent of the graph struc-
ture, so the dynamics do not capture the greater influence that more central agents may have on
the group’s decision-making. Fifth, linear consensus is fragile because the zero eigenvalue implies
an infinite gain (solutions diverge to infinity) with respect to constant perturbations. And sixth,
linear consensus is neither fast nor flexible.

These observations have motivated variations and extensions of linear consensus dynamics.
The Friedkin–Johnsen model (76, 77) introduced “stubborn” attachment of agents to their initial
opinions, which admits clustering and disagreement; the model has been generalized and tested
with human subjects (77–79). Jia et al. (80) combined the DeGroot model with Friedkin’s model
(81) of self-appraisals for opinion formation over a sequence of issues. Altafini (82) and others (83,
84) studied the linear Laplacian dynamics on signed networks. The resulting signed Laplacian
dynamics can exhibit disagreement (polarized consensus) but are fragile, because if the network is
not exactly structurally balanced, then all solutions converge to zero. Bounded confidence models
are discontinuous models where a network weight is nonzero only when the difference in opin-
ion between the corresponding agents is below a fixed threshold (85, 86). These models exhibit
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the dancing to stop

clustering; however, analysis is usually intractable. Dandekar et al. (87) generalized DeGroot’s
model to account for biased assimilation, a weighted averaging process with state-dependent
weights that makes the dynamics nonlinear and thus yields interesting behaviors, such as the for-
mation of large disagreement opinions from small initial opinions (88). Mei et al. (75) proposed
a weighted-median update instead of weighted averaging and showed numerically the formation
of strong consensus and dissensus opinions from small initial conditions. However, the analytical
tractability of both biased assimilation and weighted median models is limited.

The nonlinear opinion dynamics of Equation 3 can be viewed as a generalization of the
linear consensus dynamics of Equation 13 that addresses the weaknesses of the linear model
without compromising analytical tractability. The linearizations of Equation 13 at the origin for
ui = u∗ = 1, αi = 0, bi = 0, and di = ∑

k aik for all i are exactly the linear consensus dynamics
represented by Equation 13. The saturating term in the nonlinear opinion dynamics solves the
stronger-attraction-for-divergent-opinions paradox. Also, it turns the fragility of the linear con-
sensus dynamics into the indecision-breaking pitchfork bifurcation shown in the top left diagram
of Figure 3a.

To see this, consider the case aik ≥ 0 and A irreducible. Then the Jacobian J of Equation 3 at
the neutral equilibrium and for ui = u∗ = 1 is exactly L, which has a simple leading eigenvalue
λmax = 0 with right leading eigenvector vmax = 1. Hence, the theory summarized in Section 4.3.2
predicts a pitchfork in which the two emerging decision states are consensus states for options
1 and 2, respectively. However, consensus is not the only robust outcome of Equation 3. If the
network is signed and vmax has mixed-sign components, then the decision states are disagreement
states. This is the case even when the network is far from being structurally balanced. Further, if
we introduce additive inputs bi ̸= 0, then the pitchfork unfolds according to the distributed input
b = ⟨wmax, b⟩.

5.2. Honey Bee Decision-Making Dynamics

Seeley et al. (51) used experiments and a computational model to investigate how a swarm of
house-hunting honey bees breaks deadlock (indecision) when confronted with two candidate nest
sites of (near) equal value. Their experiments showed that house-hunting honey bees use the stop
signal as a cross-inhibition between populations of scouts accumulating evidence for alternative
candidate nest sites.

To study indecision-breaking, they derived a mean-field model of honey bee decision-making
between two sites, accounting for the stop signal and activities in Figure 1a. For equally valuable
nest sites, the mean-field model exhibited a pitchfork bifurcation at indecision for σ , the rate of
stop signaling serving as a bifurcation parameter, reaching a critical rate σ ∗ (51, 89). Pais et al. (89)
showed that the model behaves as predicted by bifurcation theory. They also showed that σ ∗ is
inversely proportional to the average nest site so that indecision is broken only if the options are
of sufficiently high value. Analogous results have been worked out for a population model with N
options by Reina et al. (90).

The multiagent nonlinear opinion dynamics model described by Gray et al. (91) was derived
to recover the tunably sensitive decision-making behavior of honey bees for a group of decision-
makers communicating over a network. Their model is Equation 3 for an unsigned network and
di = d̃i, which yields consensus indecision-breaking (Section 5.1) when the average attention u,
replacing the stop signaling rate, crosses above its critical value u∗.

5.3. Connections to Cognitive Science and Neuroscience

The opinion dynamics model of Equation 1 is directly analogous to recurrent neural networks,
Hopfield neural networks (62, 63), and Wilson–Cowan networks of excitatory and inhibitory
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Hadamard product:
the p × q element-wise
product B � C = [bijcij]
of two p × q matrices
B = [bij] and C = [cij]

neurons (60, 61), which are popular surrogate models for the dynamics of cognition, learning, and
decision-making. Another compelling connection is with the cognitive science leaky competing
accumulator (LCA) models (92–94), which encode a biologically plausible neural circuit mecha-
nism for decision-making. Equation 1 with aojl ≤ 0 is a deterministic limit of an LCA model and
provides the means to rigorously generalize and extend the LCA setting to more complex belief
systems and multiagent scenarios.

6. ANALYTICAL RESULTS ON NONLINEAR OPINION DYNAMICS

We describe the generic bifurcations supported by the opinion dynamics model. Let u =
1
Na

∑Na
i=1 ui be the average network attention. Then the attention of agent i is ui = u(ui/u)

with ui/u ≥ 0. Define weight parameters as α̂
j
i = α

j
i ui/u, γ̂ik = ui|aaik|/u, β̂

jl
i = ui|aojl |/u, and

δ̂
jl
ik = ui|aaik||aojl |/u and interaction parameters as âaik = sign(aaik ) and âojl = sign(aojl ). Parameters

α̂l
i , β̂

jl
i , δ̂

jl
ik , γ̂ik ≥ 0 capture the strength of interactions on communication and belief system graphs,

and âaik, â
o
jl ∈ {1, 0,−1} capture connectivity and interaction signs. Equation 1 is

żi j = −di jzi j + S

u
α̂

j
i zi j +

Na∑
k=1
k̸=i

γ̂ikâaikzk j +
No∑
l≠ j
l=1

β̂
jl
i â

o
jlzil +

Na∑
k=1
k̸=i

No∑
l≠ j
l=1

δ̂
jl
ik â

a
ikâ

o
jlzkl


 + bi j . 14.

When bij = 0, the neutral state z = 0 is an equilibrium for all values of u. The Jacobian matrix of
the linearization of the dynamics about z = 0 is

J(0, u) = −D + u
(
A + (0̂ ⊙ Âa ) ⊗ INo + diagi{B̂i ⊙ Âo} + 1̂ ⊙ (Âa ⊗ Âo )

)
, 15.

whereD = diag{d} ∈ RNaNo×NaNo ;A = diag{α̂} ∈ RNaNo×NaNo ;Bi ∈ RNo×No is thematrix of weights
β̂
jl
i for a given agent i; 1̂ ∈ RNaNo×NaNo is the matrix of weights δ̂

jl
ik for a given agent i and option

j; Âa and Âo are the signed and unweighted adjacency matrices for the communication and belief
system graphs, respectively; and � is the Hadamard product.

Suppose dij > 0 for all i, j and thematrixA + (0̂ ⊙ Âa ) ⊗ INo + diagi{B̂i ⊙ Âo} + 1̂ ⊙ (Âa ⊗ Âo )
has at least one eigenvalue with positive real part. Then J(0, 0) has all eigenvalues with negative
real part (indecision is stable), while J(0, u→ ∞) has at least one eigenvalue with positive real part
(indecision is unstable). Thus, an indecision-breaking bifurcation must occur at a critical attention
value u = u∗ > 0.

Let m be the number of eigenvalues of J(0, u∗) on the imaginary axis. Generically, m = 1 or
m = 2 with a pair of complex conjugate eigenvalues.

If m = 1 and S(·) is odd, then generically the indecision-breaking bifurcation is a pitchfork
bifurcation (top left diagram of Figure 3a), and the critical subspace of J(0, u∗) is the span of its
right null eigenvector v, so y= ⟨v, z⟩. The span of the left null eigenvectorw is the sensitivity sub-
space that determines the network response to small distributed inputs bij. If the opinion dynamics
are monotone (67, 95), then m = 1. Monotonicity can be guaranteed in the case of structurally
balanced network interactions (96–98).

For a network with no input, the bifurcation gives rise to two nonzero equilibria z∗
1(u) and

z∗
2(u) = −z∗

1(u) in a neighborhood of u = u∗, where ⟨v, z∗
1(u)⟩ > 0 and ⟨v, z∗

2(u)⟩ < 0. Whenever
b ̸= 0 and ⟨w, b⟩ ̸= 0, the pitchfork bifurcation diagram unfolds, as in the top right diagram of
Figure 3a. In a neighborhood of (z,u)= (0,u∗), the opinion dynamics have a unique, exponentially
stable equilibrium z∗(u) that satisfies ⟨v, z∗(u)⟩ > 0 (<0) whenever b = ⟨w, b⟩ > 0 (<0). When S
is a perturbation of an odd sigmoid, the indecision-breaking bifurcation is an unfolding of the
pitchfork exhibiting a transcritical bifurcation.
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Including state-dependent attention as in Equation 2 with τ u → 0, so that u = u0 +
Ku

∑No
j=1

∑Na
k=1 a

u
ik(zk j )

2, leaves unchanged the first- and second-order terms in the Lyapunov–
Schmidt reduction and therefore also the critical and sensitivity subspaces that generically lead
to an unfolded pitchfork. State-dependent attention, however, affects the nature of the pitchfork
by inducing a change from supercritical to subcritical, as in the bottom diagrams of Figure 3a.
The subcritical pitchfork is associated with the emergence of network thresholds for opinion cas-
cades with respect to the distributed input b = ⟨w, b⟩. Analysis and control of opinion cascades
for complex attention networks, for different functional forms of the attention feedback term, and
without the fast τ u → 0 can be found in References 99 and 100.

Ifm= 2 and the leading eigenvalues of J (0, u) are a complex conjugate pair, a Hopf bifurcation
occurs when indecision is broken. The critical eigenspace is then two-dimensional, and the bifur-
cation results in an oscillation. Unlike in the case of the pitchfork bifurcation, when distributed
input aligned with the sensitivity subspace causes qualitative changes to the bifurcation diagram
near the critical point, oscillations persist under perturbation and are qualitatively unchanged by
small inputs to agents.

Characterizations of both the pitchfork and Hopf bifurcations have appeared in various works
(36, 58, 91, 98, 99, 101–109) with varying assumptions about the structure of the communication
and belief system networks and damping coefficients. In the cases studied, the critical and sensi-
tivity subspaces of the bifurcation coincide with eigenspaces of standard graph matrices—e.g., the
graph Laplacian L (36, 91, 101–105) or communication adjacency matrix Aa (98, 99, 106–108)—
for two options and with the product of adjacency matrices of communication and belief system
graphsAa �Ao in the general case (58, 107–109).Understanding the resulting indecision-breaking
bifurcation reduces to determining graph-theoretic conditions that ensure the critical subspace of
the appropriate matrix has dimension one (pitchfork) or dimension two with a complex-conjugate
pair of leading eigenvalues (Hopf ). This is a dominance problem that can be addressed using
Perron–Frobenius techniques for signed networks (68) (for a detailed analysis, see 109).

7. APPLICATIONS AND EXTENSIONS

7.1. Applications

The theory and models of fast and flexible multiagent decision-making reviewed in this article
can be applied to investigate and design the dynamics of a wide range of groups in nature and
technology that operate in the real world (see Section 1). For example, Leonard et al. (43) used the
dynamics of Equation 3 to examine the historical asymmetry in polarization in the US Congress,
where Republicans lean more strongly to the right than Democrats do to the left (dashed lines
in Figure 1b). Trends in ideological position were recovered (solid lines in Figure 1b) using
policy mood, a scalar measure of the mood of voters, to drive attention to self-reinforcing positive
feedback. The dynamics were used by Park et al. (110) to explore the emergence of cooperation in
repeatedmultiagentmatrix games and byMusslick et al. (111) to investigate the stability–flexibility
dilemma in cognitive control. The multioption dynamics are being used to generalize the study
of spatial decision-making in animal groups (21, 24, 112).

Cathcart et al. (113) used these same dynamics to design and test, in experiments with human
participants, social navigation strategies for a robot to move around oncoming human movers,
where attention is driven by a distance to a collision. Hu et al. (114) used them in a closed loop
with game-theoretic tools to resolve ambiguity in dynamic multiagent interactions, exemplified in
a toll-booth coordination problem. An automatic procedure was provided for tuning the opinion
dynamics as a function of game value functions, and an efficient trajectory planner was provided
that computes agents’ policies, guided by their evolving opinions such that coordination on tasks
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Mixed-feedback
loop: a feedback loop
in which negative and
positive feedback
coexist but are
separated in range,
timescale, or spatial
scale

Excitability:
the characteristic
behavior of
mixed-feedback
systems in which
negative and positive
feedback are separated
in timescale

Action potential (or
spike): an excitable
phenomenon
responsible for pulsing
electrical
communication
between neurons; it
comprises a fast
diverging phase ruled
by fast positive
feedback and a slow
return to rest ruled by
slow negative feedback

emerges. Related approaches that leverage opinion dynamics for planning and control and auto-
matically tune opinion dynamics based on physical system state are underway for car racing, task
allocation, and other applications.

7.2. Extensions

Here we describe promising extensions of the theory and models described in this review.

7.2.1. Continuous option spaces. We have reviewed decision-making for a finite number of
options, but certain contexts call for a continuum of options, such as in spatial navigation, where
each option is a different heading direction. An extension can seamlessly be made to continuous
option spaces using bifurcation theory for spatially extended systems.

7.2.2. From fast and flexible to excitable decision-making. Underlying fast and flexible
decision-making is a mixed-feedback loop (115) arising from intertwined negative and positive
feedback loops. Fast and flexible decision-making can be turned into excitability by adding an
extra slower negative feedback loop, much in the same way as slow negative feedback currents
terminate action potentials (or spikes) in neurons. As neurons have thresholds for action potential
generation, excitable decision-makers have thresholds for decision generation. As neurons return
to the excitable resting state after each action potential, excitable decision-makers return to the
excitable neutral state after each decision. Enhanced flexibility in excitable decision-making comes
from forgetting decisions and thus never getting stuck in a decision. The extension uses the in-
terpretation of action potentials as one-option decisions to generalize to excitable multioption
decision-making for a group of agents. The interpretation and generalization might also be im-
portant to recent neural code theories (116, 117), building on the role of single action potentials in
the encoding of sensory, internal, decision, and motor information in patterns of neuronal activity.
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