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Abstract. How does a group of agents break indecision when deciding about options with qualities that are
hard to distinguish? Biological and artificial multiagent systems, from honeybees and bird flocks to
bacteria, robots, and humans, often need to overcome indecision when choosing among options in
situations in which the performance or even the survival of the group is at stake. Breaking indecision
is also important because in a fully indecisive state, where agents are not biased toward any specific
option, the agent group is maximally sensitive and prone to adapt to inputs and changes in its en-
vironment. Here, we develop a mathematical theory to study how decisions arise from the breaking
of indecision. Our approach is grounded in both equivariant and network bifurcation theory. We
model decision from indecision as synchrony-breaking in influence networks in which each node is
the value assigned by an agent to an option. First, we show that three universal decision behaviors,
namely, deadlock, consensus, and dissensus, are the generic outcomes of synchrony-breaking bifur-
cations from a fully synchronous state of indecision in influence networks. Second, we show that
all deadlock and consensus value patterns and some dissensus value patterns are predicted by the
symmetry of the influence networks. Third, we show that there are also many ``exotic"" dissensus
value patterns. These patterns are predicted by network architecture but not by network symmetries
through a new synchrony-breaking branching lemma. This is the first example of exotic solutions in
an application. Numerical simulations of a novel influence network model illustrate our theoretical
results.
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1. Motivation. Many multiagent biological and artificial systems routinely make collec-
tive decisions. That is, they make decisions about a set of possible options through group
interactions and without a central ruler or a predetermined hierarchy between the agents.
Often they do so without clear evidence about which options are better. In other words, they
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BREAKING INDECISION IN OPINION DYNAMICS 1781

make decisions from indecision. Failure to do so can have detrimental consequences for the
group performance, fitness, or even survival.

Honeybee swarms recurrently look for a new home and make a selection when a quorum
is reached [42], [52]. Scouting bees evaluate the quality of the candidate nest site and recruit
other bees at the swarm through the ``waggle dance"" [41]. It was shown in [43] that honeybees
use a cross-inhibitory signal, and this allows them to break indecision when a pair of nest sites
have near-equal quality (see also [29], [39]).

Animal groups on the move, like fish schools [9] or bird flocks [3], face similar conundrums
when making navigational decisions, for instance, when there are navigational options with
similar qualities or when the group is divided in their information about the options. However,
when the navigational options appear sufficiently well separated in space, the group breaks
indecision through social influence and makes a consensus navigational decision [10], [35],
[45], [38].

In the two biological examples above, the multiagent system needs to make a consensus
decision to adapt to the environment. But there are situations in which different members of
the same biological swarm choose different options to increase the group fitness; that is, the
group makes a dissensus decision.

This is the case of phenotypic differentiation in communities of isogenic social unicellular
organisms, like bacteria [37], [54]. In response to environmental cues, like starvation, tempera-
ture changes, or the presence of molecules in the environment, bacterial communities are able
to differentiate into multiple cell types through molecular quorum-sensing mechanisms medi-
ated by autoinducers, as in Bacillus subtilis [44] and Myxococcus xanthus [16] communities.
In all those cases, the indecision about which cells should differentiate into which functional
phenotype is broken through molecular social influence. In some models of sympatric speci-
ation, which can be considered as special cases of the networks studied here, coarse-grained
sets of organisms differentiate phenotypically by evolving different strategies [8], [47]. See
section 7.4.

Artificial multiagent systems, such as robot swarms, must make the same type of consensus
and dissensus decisions as those faced by their biological counterparts. Two fundamental
collective behaviors of a robot swarm are indeed collective decision making in the form of either
consensus achievement or task allocation and coordinated navigation [5]. Task allocation in
a robot swarm is a form of dissensus decision making [19] akin to phenotypic differentiation
in bacterial communities. The idea of taking inspiration from biology to design robot swarm
behaviors has a long history [33], [34].

Human groups are also often faced with decision making among near equal-quality alter-
natives and need to avoid indecision, from deciding what to eat to deciding on policies that
affect climate change [50].

The mathematical modeling of opinion formation through social influence in nonhier-
archical groups dates back to the DeGroot linear averaging model [13] and has since then
evolved in myriad different models to reproduce different types of opinion formation behaviors
(see, for example, [22], [12], [32]), including polarization (see, for example, [7], [11]), and for-
mation of beliefs on logically interdependent topics [21], [40], [53]. Inspired by the model-
independent theory in [20], we recently introduced a general model of nonlinear opinion dy-
namics to understand the emergence of and the flexible transitions between different types of
agreement and disagreement opinion formation behaviors [4].
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1782 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

In this paper, we ask, Is there a general mathematical framework, underlying many specific
models, for analyzing decision from indecision? We propose one answer based on differential
equations with network structure and apply methods from symmetric dynamics, network dy-
namics, and bifurcation theory to deduce some general principles and facilitate the derivation
and the analysis of specific models.

The state space for such models is a rectangular array of agent-assigned option values,
a ``decision state,"" introduced in section 2. Three important types of decision states are
introduced: consensus, deadlock, and dissensus. Section 3 describes the bifurcations that can
lead to the three types of decision states through indecision (synchrony) breaking from fully
synchronous equilibria. The decision-theoretic notion of an influence network and of value
dynamics over an influence network, together with the associated admissible maps defining
differential equations that respect the network structure, is described in section 4, as are
their symmetry groups and irreducible representations of those groups. Section 5 briefly
describes the interpretation of a distinguished parameter in the value dynamics equations
from a decision-theoretic perspective. The trivial fully synchronous solution and the linearized
admissible maps are discussed in section 6. It is noteworthy that the four distinct eigenvalues
of the linearization are determined by symmetry. This leads to the three different kinds of
synchrony-breaking steady-state bifurcation in the influence network. Consensus and deadlock
synchrony-breaking bifurcation are studied in section 7. Both of these bifurcations are \bfS N

bifurcations that have been well studied in the symmetry-breaking context and are identical to
the corresponding synchrony-breaking bifurcations. Section 8 proves the synchrony-breaking
branching lemma (Theorem 8.2) showing the generic existence of solution branches for all
``axial"" balanced colorings, a key concept in homogeneous networks that is defined later. This
theorem is used in section 9 to study dissensus synchrony-breaking bifurcations and prove the
generic existence of ``exotic"" solutions that can be found using synchrony-breaking techniques
but not using symmetry-breaking techniques. Section 9.5 provides further discussion of exotic
states. Simulations based on the ODE model introduced in section 10 and showing that axial
solutions can be stable (though not necessarily near bifurcation) are presented in sections 11.1
and 11.2. Additional discussion of stability and instability of states is given in sections 11.3
and 11.4.

2. Decision making through influence networks and value pattern formation. We con-
sider a set of m\geq 2 identical agents who form valued preferences about a set of n\geq 2 identical
options. By ``identical,"" we mean that all agents process in the same way the valuations
made by other agents, and all options are treated in the same manner by all agents. These
conditions are formalized in section 4 in terms of the network structure and symmetries of
model equations.

When the option values are a priori unclear, ambiguous, or simply unknown, agents must
compare and evaluate the various alternatives, both on their own and jointly with the other
agents. They do so through an influence network , whose connections describe mutual influ-
ences between valuations made by all agents. We assume that the value assigned by a given
agent to a given option evolves over time, depending on how all agents value all options.
This dynamic is modeled as a system of ODEs whose formulas reflect the network structure.
Technically, this ODE is ``admissible"" [49] for the network. See (4.1) and (4.2).
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BREAKING INDECISION IN OPINION DYNAMICS 1783

In this paper, we analyze the structure (and stability when possible) of model ODE steady
states. Although agents and options are identical, options need not be valued equally by all
agents at steady state. The uniform synchronous state, where all options are equally valued,
can lose stability. This leads to spontaneous synchrony-breaking and the creation of patterns
of values. Our aim is to exhibit a class of patterns, which we call ``axial,"" that can be proved
to occur via bifurcation from a fully synchronous state for typical models.

2.1. Synchrony-breaking versus symmetry-breaking. Synchrony-breaking is an approach
to classify the bifurcating steady-state solutions of dynamical systems on homogeneous net-
works. It is analogous to the successful approach of spontaneous symmetry-breaking [24], [27].
In its simplest form, symmetry-breaking addresses the following question. Given a symmetry
group \Gamma acting on \BbbR n, a stable \Gamma -symmetric equilibrium x0, and a parameter \lambda , what are
the possible symmetries of steady states that bifurcate from x0 when x0(\lambda ) loses stability
at \lambda = \lambda 0? A technique that partially answers this question is the equivariant branching
lemma (see [27, Chapter XIII, Theorem 3.3]). This result was first observed by [51] and [6].
The equivariant branching lemma proves the existence of a branch of equilibria for each axial
subgroup \Sigma \subseteq \Gamma . It applies whenever an axial subgroup exists.

Here, we prove an analogous theorem for synchrony-breaking in the network context.
Given a homogeneous network \scrN with a fully synchronous stable equilibrium x0 and a param-
eter \lambda , we ask what kinds of patterns of synchrony bifurcate from x0(\lambda ) when the equilibrium
loses stability at \lambda 0. A technique that partially answers this question is the synchrony-breaking
branching lemma [26] (reproved here in section 8). This theorem proves the existence of a
branch of equilibria for each ``axial"" subspace \Delta  \triangleleft  \triangleright . It applies whenever an axial subspace
exists.

The decision theory models considered in this paper are both homogeneous (all nodes
are of the same kind) and symmetric (nodes are interchangeable). Moreover, the maximally
symmetric states (states fixed by all symmetries) are the same as the fully synchronous states,
and it can be shown that for influence networks, the same critical eigenspaces (where bifur-
cations occur) are generic in either context, namely, the absolutely irreducible representa-
tions. However, the generic branching behavior on the critical eigenspaces can be different
for network-admissible ODEs compared to equivariant ODEs. This occurs because network
structure imposes extra constraints compared to symmetry alone, and therefore network-
admissible ODEs are in general a subset of equivariant ODEs. Here, it turns out that this
difference occurs for dissensus bifurcations but not for deadlock or consensus bifurcations.
Every axial subgroup \Sigma leads to an axial subspace \Delta  \triangleleft  \triangleright , but the converse need not be true.
We call axial states that can be obtained by symmetry-breaking orbital states and axial states
that can be obtained by the synchrony-breaking branching lemma but not by the equivariant
branching lemma exotic states. We show that dissensus axial exotic states often exist when
m,n \geq 4. These states are the first examples of this phenomenon that are known to appear
in an application.

2.2. Terminology. The value that agent i assigns to option j is represented by a real
number zij , which may be positive, negative, or zero. A state of the influence network is a
rectangular array of values Z = (zij), where 1 \leq i \leq m and 1 \leq j \leq n. The assumptions that
agents/options are identical, as explained at the start of this section, implies that any pair

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1784 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

of entries zij and zkl can be compared and that this comparison is meaningful. In practice,
zij \geq zkl simply means that agent i values option j more than or equal to how agent k values
option l.

\bfD \bfe \bfc \bfi \bfs \bfi \bfo \bfn \bfs \bft \bfa \bft \bfe \bfs : A state where each row consists of equal values is a deadlock state
(Figure 1, right). Agent i is deadlocked if row i consists of equal values. A state where each
column consists of equal values is a consensus state (Figure 1, left). There is consensus about
option j if column j consists of equal values. A state that is neither deadlock nor consensus
is dissensus (Figure 2). A state that is both deadlock and consensus is a state of indecision.
An indecision state is fully synchronous; that is, in such a state, all values are equal.

\bfV \bfa \bfl \bfu \bfe \bfp \bfa \bft \bft \bfe \bfr \bfn \bfs : We discuss value patterns that are likely to form by synchrony-breaking
bifurcation from a fully synchronous steady state. Each bifurcating state forms a pattern of
value assignments. It is convenient to visualize this pattern by assigning a color to each
numerical value that occurs. Nodes zij and zkl of the array Z have the same color if and only
if zij = zkl. Nodes with the same value, hence the same color, are synchronous. Examples of
value patterns are shown in Figures 1--5. Agent and option numbering are omitted when not
expressly needed.

options

ag
en

ts

1

2

m

1 2 n

Figure 1. (Left) Consensus value pattern. (Right) Deadlock value pattern.

Figure 2. Dissensus value patterns corresponding to section 3.3.1 (top) and section 3.3.2 (bottom).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BREAKING INDECISION IN OPINION DYNAMICS 1785

2.3. Sample bifurcation results. Because agents and options are independently inter-
changeable, the influence network has symmetry group \Gamma = \bfS m \times \bfS n, and admissible systems
of ODEs are \Gamma -equivariant. Equivariant bifurcation theory shows that admissible systems
can exhibit three kinds of symmetry-breaking or synchrony-breaking bifurcation from a fully
synchronous equilibrium; see section 6.1. Moreover, axial patterns associated with these bi-
furcation types lead, respectively, to consensus (section 3.1, Theorem 7.1), deadlock (section
3.2, Theorem 7.3), or dissensus (section 3.3, Theorem 9.2) states. Representative examples
(up to renumbering agents and options) are shown in Figures 1 and 2.

The different types of pattern are characterized by the following properties: zero row-sums,
zero column-sums, equality of rows, and equality of columns.

A bifurcation branch has zero row-sum (ZRS) if along the branch, each row sum is constant
to linear order in the bifurcation parameter. A bifurcation branch has zero column-sum (ZCS)
if along the branch, each column sum is constant to linear order in the bifurcation parameter.

Thus, along a ZRS branch, an agent places higher values on some options and lower values
on other options but in such a way that the average value remains constant. In particular,
along a ZRS branch, an agent forms preferences for the various options, e.g., favoring some
and disfavoring others. Similarly, along a ZCS branch, an option is valued higher by some
agents and lower by some others but in such a way that the average value remains approxi-
mately constant. In particular, along a ZCS branch, an option is favored by some agents and
disfavored by others.

Consensus bifurcation branches are ZRS with all rows equal, so all agents favor/disfavor
the same options. Deadlock bifurcation branches are ZCS with all columns equal, so each agent
equally favors or disfavors every option. Dissensus bifurcation branches are ZRS and ZCS with
some unequal rows and some unequal columns, so there is no consensus on favored/disfavored
options.

ZRS and ZCS conditions are discussed in more detail in section 4.6 using the irreducible
representations of \Gamma .

2.4. Value-assignment clusters. To describe these patterns informally in decision theo-
retic language, we first define the following.

Definition 2.1. Two agents are in the same agent-cluster if their rows are equal. Two
options are in the same option-cluster if their columns are equal.

In other words, two agents in the same agent-cluster agree on each option value and two
options are in the same option-cluster if they are equally valued by each agent. An example
is given in Figure 3.

2.5. Color-isomorphism and color-complementarity. The following definitions help char-
acterize value patterns. Definition 2.2 (color-isomorphism) relates two agents by an option
permutation and two options by an agent permutation, thus preserving the number of nodes of
a given color in the associated rows/columns. Definition 2.3 (color-complementarity) relates
two agents/options by a color permutation, therefore not necessarily preserving the number
of nodes of a given color in the associated rows/columns.

Definition 2.2. Two agents (options) are color-isomorphic if the row (column) pattern
of one can be transformed into the row (column) pattern of the other by option (agent)
permutation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

2/
24

 to
 1

39
.1

65
.3

1.
13

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1786 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

1

2

3

4 531 2
options

ag
en

ts

Figure 3. The agent-clusters in this value pattern are \{ 1,2\} , \{ 3\} , and the option-clusters are
\{ 1\} ,\{ 2,3\} ,\{ 4\} ,\{ 5\} .

Figure 4. (Left) \{ 1, 2\} , \{ 3\} are agent clusters; agents 1, 2, 3 are color-isomorphic; none of the agents are
color-complementary. (Right) \{ 1\} , \{ 2\} , \{ 3\} are agent clusters; agents 1 and 3 are color-isomorphic; agents 1
and 2 are color-complementary.

Definition 2.3. Two agents (options) are color-complementary if the row (column) pattern
of one can be transformed into the row (column) pattern of the other by a color permutation.

Examples of agent-clusters, color-isomorphism, and color-complementarity are given in
Figure 4.

Nontrivial color-isomorphism and color-complementarity characterize disagreement value
patterns. Two color-isomorphic agents not belonging to the same agent-cluster disagree on
the value of the permuted options. Two color-isomorphic options not belonging to the same
option-cluster are such that the permuted agents disagree on their value. Similarly, two color-
complementary agents not belonging to the same agent-cluster disagree on options whose
colors are permuted. Two color-complementary options not belonging to the same option-
cluster are such that the agents whose colors were permuted disagree on those option values.

3. Indecision-breaking as synchrony-breaking from full synchrony. We study patterns of
values in the context of bifurcations, in which the solutions of a parametrized family of ODEs
change qualitatively as a parameter \lambda varies. Specifically, we consider synchrony-breaking
bifurcations, in which a branch of fully synchronous steady states (zij = zkl for all i, j, k, l)
becomes dynamically unstable, leading to a branch (or branches) of states with a more complex
value pattern. The fully synchronous state is one in which the group of agents expresses no
preferences about the options. In such a state, it is impossible for the single agent and for the
group as a whole to coherently decide which options are best. The fully synchronous state
therefore corresponds to indecision; an agent group in such a state is called undecided .

Characterizing indecision is important because any possible value pattern configuration
can be realized as an infinitesimal perturbation of the fully synchronous state. In other
words, any decision can be made from indecision. Here, we show how exchanging opinions
about option values through an influence network leads to generic paths from indecision to
decision through synchrony-breaking bifurcations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BREAKING INDECISION IN OPINION DYNAMICS 1787

The condition for steady-state bifurcation is that the linearization J of the ODE at the
bifurcation point has at least one eigenvalue equal to 0. The corresponding eigenspace is called
the critical eigenspace. In (4.4), we show that in the present context, there are three possible
critical eigenspaces for generic synchrony-breaking. The bifurcating steady states are de-
scribed in Theorems 7.1, 7.3, and 9.2. For each of these cases, bifurcation theory for networks
leads to a list of ``axial"" patterns---for each, we give a decision-making theoretic interpreta-
tion in sections 3.1--3.3. These informal descriptions are made precise by the mathematical
statements of the main results in sections 7 and 9.

In the value patterns in Figures 1, 2, and 5, we use the convention that the value of red
nodes is small, the value of blue nodes is high, and the value of yellow nodes is between that
of red and blue nodes. Blue nodes correspond to favored options, red nodes to disfavored
options, and yellow nodes to options about which an agent remains neutral. That is, to linear
order, yellow nodes assign to that option the same value as before synchrony is broken. Color
saturation of red and blue encodes for deviation from neutrality, where appropriate.

3.1. Consensus bifurcation. All agents assign the same value to any given option. There
is one agent-cluster and two option-clusters. All values for a given option-cluster are equal and
different from the values of the other cluster. Options from different option-clusters are not
color-isomorphic but are color-complementary. One option cluster is made of favored options,
and the other option cluster is made of disfavored options. In other words, there is a group
consensus about which options are favored. See Figure 1 (left) for a typical consensus value
pattern. The sum of the zij along each row is zero to leading order in \lambda .

3.2. Deadlock bifurcation. All options are assigned the same value by any given agent.
There is one option-cluster and two agent-clusters. All values for a given agent-cluster are
equal and different from the values of the other cluster. Agents from different agent-clusters are
not color-isomorphic but are color-complementary. One agent cluster favors all the options,
and the other agent cluster disfavors all the options. Each agent is deadlocked about the
options, and the group is divided about the overall options' value. See Figure 1 (right) for a
typical deadlock value pattern. The sum of the zij along each column is zero to leading order
in \lambda .

3.3. Dissensus bifurcation. This case is more complex and splits into three subcases.

3.3.1. Dissensus with color-isomorphic agents. Each agent assigns the same high value
to a subset of favored options and the same low value to a subset of disfavored options and,
possibly, remains neutral about a third subset of options. All agents are color-isomorphic, but
there are at least two distinct agent-clusters. Therefore, there is no consensus about which
options are (equally) favored.

There are at least two distinct option-clusters with color-isomorphic elements. Each agent
expresses preferences about the elements of each option cluster by assigning the same high
value to some of them and the same low value to some others. There might be a further
option-cluster made of options about which all agents remain neutral.

There might be pairs of color-complementary agent and option clusters. See Figure 2
(top) for typical dissensus value patterns of this kind with (left) and without (right) color-
complementary pairs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1788 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

Figure 5. Examples of polarized dissensus value patterns (section 3.3.3).

3.3.2. Dissensus with color-isomorphic options. This situation is similar to section 3.3.1,
but now all options are color-isomorphic, and there are no options about which all agents
remain neutral. There might be an agent-cluster of neutral agents who assign the same
midrange value to all options. See Figure 2 (bottom) for typical dissensus value patterns of
this kind with (left) and without (right) color-complementary pairs.

3.3.3. Polarized dissensus. There are two option-clusters and two agent-clusters. For
each combination of one option-cluster and one agent-cluster, all values are identical. Members
of distinct agent-clusters are color-isomorphic and color-complementary if and only if members
of distinct option-clusters are color-isomorphic and color-complementary or, equivalently, if
and only if the number of elements in each agent-cluster is the same and the number of
elements in each option-cluster is the same.

In other words, agents are polarized into two clusters. Each cluster has complete consensus
on the option values and places the same value on all options within a given option-cluster.
The second agent-cluster does the same but disagrees with the first agent-cluster on all values.
See Figure 5 for typical polarized dissensus value patterns without (left) and with (right) color-
isomorphism and color-complementarity.

4. Influence networks. We now describe the mathematical context in more detail and
make the previous informal descriptions precise.

The main modeling assumption is that the value zij \in \BbbR assigned by agent i to option
j evolves continuously in time. We focus on dynamics that evolve toward equilibrium and
describe generic equilibrium synchrony patterns. Each variable zij is associated to a node
(i, j) in an influence network . The set of nodes of the influence network is the rectangular
array

\scrC = \{ (i, j) : 1\leq i\leq m,1\leq j \leq n\} .

We assume that all nodes are identical; they are represented by the same symbol in Figure 6
(left). Arrows between the nodes indicate influence; that is, an arrow from node (k, l) to node
(i, j) means that the value assigned by agent i to option j is influenced by the value assigned
by agent k to option l.

4.1. Arrow types. We assume that there are three different types of interaction between
nodes, determined by different types of arrow in the network, represented graphically by
different styles of arrow, Figure 6 (left). The arrow types are distinguished by their tails:

\bullet (Row arrows) The intra-agent, interoption influence neighbors of node (i, j) are the
n - 1 nodes in the subset

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(i, j)

(k, j)

(i, l)

(k, l)

1

1

2

2

m
n

Figure 6. An m\times n influence network \scrN mn has three distinct arrow types: gray dashed row arrow, solid
black column arrow, and black dashed diagonal arrow. (Left) Inputs to node (i, j). (Right) Arrows inputting to
node (1,1) (arrowheads omitted). There is a similar set of arrows inputting to every other node.

Ai,j = \{ (i,1), . . . , (i, n)\} \setminus \{ (i, j)\} .

Arrows whose head is (i, j) and whose tail is in Ai,j have the same arrow type repre-
sented by a gray dashed arrow. In Figure 6 (right), these arrows connect all distinct
nodes in the same row in an all-to-all manner.

\bullet (Column arrows) The interagent, intraoption influence neighbors of node (i, j) are the
m - 1 nodes in the subset

Oij = \{ (1, j), . . . , (m,j)\} \setminus \{ (i, j)\} .

Arrows whose head is (i, j) and whose tail is in Oij have the same arrow type repre-
sented by a solid black arrow. In Figure 6 (right), these arrows connect all distinct
nodes in the same column in an all-to-all manner.

\bullet (Diagonal arrows) The interagent, interoption influence neighbors of node (i, j) are
the mn - m - n+ 1 nodes in the subset

Eij = \{ (k, l) : k \not = i, l \not = j\} .

Arrows whose head is (i, j) and whose tail is in Eij have the same arrow type repre-
sented by a black dashed arrow. In Figure 6 (right), these arrows connect all distinct
nodes that do not lie in the same row or in the same column in an all-to-all manner.

We denote an m\times n influence network by \scrN mn. The network \scrN mn is homogeneous (all
nodes have isomorphic sets of input arrows) and all-to-all coupled or all-to-all connected (any
two distinct nodes appear as the head and tail, respectively, of some arrow).

Other assumptions on arrow or node types are possible to reflect different modeling as-
sumptions but are not discussed in this paper.

4.2. Symmetries of the influence network. The influence network \scrN mn is symmetric:
Its automorphism group, the set of permutations of the set of nodes \scrC that preserve node and
arrow types and incidence relations between nodes and arrows, is nontrivial. In particular,
swapping any two rows or any two columns in Figure 6 (right) leaves the network structure
unchanged. It is straightforward to prove that \scrN mn has symmetry group
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1790 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

\Gamma = \bfS m \times \bfS n,

where \bfS m swaps rows (agents) and \bfS n swaps columns (options). More precisely, \sigma \in \bfS m and
\tau \in \bfS n act on \scrC by

(\sigma , \tau )(i, j) = (\sigma (i), \tau (j)).

The symmetries of the influence network can be interpreted as follows. In the decision-
making process, agents and options are a priori indistinguishable. In other words, all the
agents count the same and have the same influence on the decision-making process, and all
the options are initially equally valuable. This is the type of decision-making situation we
wish to model and whose dynamics we wish to understand.

4.3. Admissible maps. A point in the state space (or phase space) \BbbP is an m \times n rec-
tangular array of real numbers z = (zij). The action of \Gamma on points z = (zij) \in \BbbP is defined
by

(\sigma , \tau )z = (z\sigma  - 1(i)\tau  - 1(j)).

Let

\bfitG : \BbbP \rightarrow \BbbP 

be a smooth map \bfitG = (Gij) on \BbbP so that each component Gij is smooth and real-valued.
We assume that the value zij assigned by agent i to option j evolves according to the value
dynamics

(4.1) \.zij =Gij(z).

In other words, we model the evolution of the values assigned by the agents to the different
options as a system of ODEs on the state space \BbbP .

The map \bfitG for the influence network is assumed to be admissible [49, Definition 4.1].
Roughly speaking, admissibility means that the functional dependence of the map \bfitG on the
network variable z respects the network structure. For instance, if two nodes (k1, l1), (k2, l2)
input a third one (i, j) through the same arrow type, then \bfitG ij(z) depends identically on zk1l1

and zk2l2 in the sense that the value of \bfitG ij(z) does not change if zk1l1 and zk2l2 are swapped
in the vector z. Our assumptions about the influence network select a family of admissible
maps that can be analyzed from a network perspective to predict generic model-independent
decision-making behaviors.

Because the influence network has symmetry \bfS m\times \bfS n and there are three arrow types, by
[49, Remark 4.2], the components of the admissible map \bfitG in (4.1) satisfy

(4.2) Gij(z) =G(zij , zAij
, zOij

, zEij
),

where the function G is independent of i, j and the notation zAij
, zOij

, and zEij
means that G

is invariant under all permutations of the arguments appearing under each overbar. That is,
each arrow type leads to identical interactions.

It is well known [2, 26] that the symmetry of \scrN mn implies that any admissible map \bfitG is
\Gamma -equivariant, that is,

\gamma \bfitG (z) =\bfitG (\gamma z)

for all \gamma \in \Gamma . It is straightforward to verify directly that (4.2) are \Gamma -equivariant. Given
\gamma = (\sigma , \tau )\in \Gamma , with \sigma \in \bfS m and \tau \in \bfS n,
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BREAKING INDECISION IN OPINION DYNAMICS 1791

((\sigma , \tau )\bfitG )ij(z) = G\sigma  - 1(i) \tau  - 1(j)(z)

= G(z\sigma  - 1(i) \tau  - 1(j), zA\sigma  - 1(i) \tau  - 1(j)
, zO\sigma  - 1(i) \tau  - 1(j)

, zE\sigma  - 1(i)\tau  - 1(j)
)

= Gij((\sigma , \tau )z).

4.4. Solutions arise as group orbits. An important consequence of group equivariance is
that solutions of any \Gamma -equivariant ODE arise in group orbits. That is, if z(t) is a solution and
\gamma \in \Gamma , then \gamma z(t) is also a solution. Moreover, the type of solution (steady, periodic, chaotic)
is the same for both, and they have the same stabilities. Such solutions are often said to be
conjugate under \Gamma .

In an influence network, conjugacy has a simple interpretation. If some synchrony pattern
can occur as an equilibrium, then so can all related patterns in which agents and options are
permuted in any manner. Effectively, we can permute the numbers 1, . . . ,m of agents and
1, . . . , n of options without affecting the possible dynamics. This is reasonable because the
system's behavior ought not to depend on the choice of numbering.

Moreover, if one of these states is stable, so are all the others. This phenomenon is a
direct consequence of the initial assumption that all agents are identical and all options are
identical. Which state among the set of conjugate ones occurs, in any specific case, depends
on the initial conditions for the equation. In particular, whenever we assert the existence of
a pattern as an equilibrium, we are also asserting the existence of all conjugate patterns as
equilibria.

4.5. Equivariance versus admissibility. If a network has symmetry group \Gamma , then every
admissible map is \Gamma -equivariant, but the converse is generally false. In other words, admis-
sible maps for the influence network are more constrained than \Gamma -equivariant maps. As a
consequence, bifurcation phenomena that are not generic in equivariant maps (because not
sufficiently constrained) become generic in admissible maps (because the extra constraints
provide extra structure).

1

In practice, this means that equivariant bifurcation theory applied
to influence networks might miss some of the bifurcating solutions, i.e., those that are generic
in admissible maps but not in equivariant maps. Section 9.5 illustrates one way in which this
can happen. Other differences between bifurcations in equivariant and admissible maps are
discussed in detail in [26].

For influence networks, we have the following results.

Theorem 4.1. The equivariant maps for \bfS m \times \bfS n are the same as the admissible maps for
\scrN mn if and only if (m,n) = (m,1), (1, n), (2,2), (2,3), (3,2).

Proof. See [46, Theorem 3].

In contrast, the linear case is much better behaved.

1As an elementary analog of this phenomenon, consider the class of real-valued maps f(x,\lambda ) and the class
of odd-symmetric real-valued maps g(x,\lambda ) =  - g( - x,\lambda ). The first class clearly contains the second, which is
more constrained (by symmetry). Whereas the pitchfork bifurcation is nongeneric in the class of real valued
maps, it becomes generic in the odd-symmetric class.
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1792 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

Theorem 4.2. The linear equivariant maps for \bfS m\times \bfS n are the same as the linear admissible
maps for \scrN mn for all m,n.

Proof. See (4.3) and Remark 6.1.

4.6. Irreducible representations of \bfGamma acting on \BbbP . In equivariant bifurcation theory, a
key role is played by the irreducible representations of the symmetry group \Gamma acting on \BbbP .
Such a representation is absolutely irreducible if all commuting linear maps are scalar multiples
of the identity. See [27, Chapter XII, sections 2--3].

The state space \BbbP = \BbbR mn admits a direct sum decomposition into four \Gamma -invariant sub-
spaces with a clear decision-making interpretation for each. These subspaces of \BbbP are

(4.3)

V\mathrm{s} = all entries equal (fully synchronous subspace),
V\mathrm{c} = all rows identical with sum 0 (consensus subspace),
V\mathrm{d}\mathrm{l} = all columns identical with sum 0 (deadlock subspace),
V\mathrm{d} = all rows and all columns have sum 0 (dissensus subspace),

whose dimensions are, respectively, 1, (n - 1)(m - 1), n - 1,m - 1.
Each subspace V\mathrm{d}, V\mathrm{c}, V\mathrm{d}\mathrm{l}, V\mathrm{s} is an absolutely irreducible representation of \Gamma acting on \BbbP .

The kernels of these representations are \bfone ,\bfS m \times \bfone ,\bfone \times \bfS n,\Gamma , respectively. Since the kernels
are unequal, the representations are nonisomorphic. A dimension count shows that

(4.4) \BbbR mn = V\mathrm{s} \oplus V\mathrm{c} \oplus V\mathrm{d}\mathrm{l} \oplus V\mathrm{d}.

Two related group-theoretic decompositions are also used later (see Theorems 7.1 and
7.3):

(4.5)
Fix(\bfS m \times \bfone ) = V\mathrm{c} \oplus V\mathrm{s},
Fix(\bfone \times \bfS n) = V\mathrm{d}\mathrm{l} \oplus V\mathrm{s},

where the fixed-point subspace Fix(H) of a subgroup H \subseteq \Gamma is the set of all z \in \BbbP such that
\alpha z = z for all \alpha \in H.

4.7. Value-assignment interpretation of irreducible representations. The subspaces in
decomposition (4.4) admit the following interpretations:

V\mathrm{s} is the fully synchronous subspace, where all agents assign the same value to every
option. This is the subspace of undecided states that we will assume lose stability in
synchrony-breaking bifurcations.

V\mathrm{c} is the consensus subspace, where all agents express the same preferences about the
options. This subspace is the critical subspace associated to synchrony-breaking bi-
furcations leading to consensus value patterns described in section 3.1.

V\mathrm{d}\mathrm{l} is the deadlock subspace, where each agent is deadlocked and agents are divided about
the option values. This subspace is the critical subspace associated to synchrony-
breaking bifurcations leading to deadlock value patterns described in section 3.2.

V\mathrm{d} is the dissensus subspace, where agents express different preferences about the options.
This subspace is the critical subspace associated to synchrony-breaking bifurcations
leading to dissensus value patterns described in sections 3.3.1, 3.3.2, and 3.3.3.
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BREAKING INDECISION IN OPINION DYNAMICS 1793

4.8. Value-assignment decompositions. We also define two additional important value-
assignment subspaces:

(4.6)
V\mathrm{p} = V\mathrm{c} \oplus V\mathrm{d} (preference subspace),
V\mathrm{i} = V\mathrm{s} \oplus V\mathrm{d}\mathrm{l} (indecision subspace).

By (4.4) and (4.6),

\BbbR mn = V\mathrm{p} \oplus V\mathrm{i},

and each V\ast is \Gamma -invariant.
Each introduced subspace and its decomposition admits a value-assignment interpretation.

By (4.3) and (4.6), points in V\mathrm{p} have row sums equal to 0 and generically have entries in a row
that are not all equal for at least one agent. Hence, generically, for at least one agent, some
row elements are maximum values over the row, and the corresponding options are favored
by the given agent. That is, the subspace V\mathrm{p} consists of points where at least some agents
express preferences among the various options. In contrast, points in V\mathrm{i} have entries in a row
that are all equal, so all agents are deadlocked, and the group is in a state of indecision. This
decomposition distinguishes rows and columns, reflecting the asymmetry between agents and
options from the point of view of value assignment.

5. Parametrized value dynamics. To understand how a network of indistinguishable
agents values and forms preferences among a set of a priori equally valuable options, we
model the transition between different value states of the influence network---for example,
from fully synchronous to consensus---as a bifurcation. To do so, we introduce a bifurcation
parameter \lambda \in \BbbR into model (4.1), (4.2), which leads to the parametrized dynamics

\.\bfitZ =\bfitG (\bfitZ , \lambda ),(5.1a)

Gij(\bfitZ , \lambda ) =G(zij , zAij
, zOij

, zEij
, \lambda ) .(5.1b)

We assume that the parametrized ODE (5.1) is also admissible and hence \Gamma -equivariant.
That is,

\gamma \bfitG (\bfitZ , \lambda ) =\bfitG (\gamma \bfitZ , \lambda ) .

Depending on context, the bifurcation parameter \lambda can model a variety of environmental
or endogenous parameters affecting the valuation process. In honeybee nest site selection, \lambda is
related to the rate of stop-signaling, a cross-inhibitory signal that enables value-sensitive deci-
sion making [43], [39]. In animal groups on the move, \lambda is related to the geometric separation
between the navigational options [3], [9], [35], [38]. In phenotypic differentiation, \lambda is related
to the concentration of quorum-sensing autoinducer molecules [37], [54]. In speciation models,
\lambda can be an environmental parameter, such as food availability [8], [47]. In robot swarms, \lambda is
related to the communication strength between the robots [19]. In human groups, \lambda is related
to the attention paid to others [4].

6. The undecided solution and its linearization. It is well known that equivariant maps
leave fixed-point subspaces invariant [27]. Since admissible maps \bfitG are \Gamma -equivariant, it
follows that the 1-dimensional undecided (fully synchronous) subspace V\mathrm{s} = Fix(\Gamma ) is flow-
invariant, that is, invariant under the flow of any admissible ODE. Let v \in V\mathrm{s} be nonzero.
Then, for x\in \BbbR , we can write
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1794 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

\bfitG (xv,\lambda ) = g(x,\lambda )v,

where g : \BbbR \times \BbbR \rightarrow \BbbR . Undecided solutions are found by solving g(x,\lambda ) = 0. Suppose
that g(x0, \lambda 0) = 0. We analyze synchrony-breaking bifurcations from a path of solutions to
g(x,\lambda ) = 0 bifurcating at (x0, \lambda 0).

Remark 6.1. In general, any linear admissible map is linear equivariant. In influence
networks \scrN mn, all linear equivariant maps are admissible. More precisely, the space of linear
admissible maps is 4-dimensional (there are three arrow types and one node type). The
space of linear equivariants is also 4-dimensional (there are four distinct absolutely irreducible
representations (4.4)). Therefore, linear equivariant maps are the same as linear admissible
maps. This justifies applying equivariant methods in the network context to find the generic
critical eigenspaces.

We now consider synchrony-breaking bifurcations. Since the four irreducible subspaces in
(4.4) are nonisomorphic and absolutely irreducible, Remark 6.1 implies that the Jacobian J
of (5.1) at a fully synchronous equilibrium (x0v,\lambda 0) has up to four distinct real eigenvalues.
Moreover, it is possible to find admissible ODEs so that any of these eigenvalues is 0 while
the others are negative. In short, there are four types of steady-state bifurcation from a fully
synchronous equilibrium, and each can be the first bifurcation. When the critical eigenvector
is in V\mathrm{s}, the generic bifurcation is a saddle-node of fully synchronous states. The other
three bifurcations correspond to the other three irreducible representations in (4.4) and are
synchrony-breaking.

6.1. The four eigenvalues and their value-assignment interpretation. Let

\alpha =
\partial Gij

\partial zij
, \beta =

\partial Gij

\partial zil
, \gamma =

\partial Gij

\partial zkj
, \delta =

\partial Gij

\partial zkl
.

Here, 1 \leq i, k \leq m (with k \not = i), 1 \leq j, l \leq n (with l \not = j), and all partial derivatives
are evaluated at the fully synchronous equilibrium (x0v,\lambda 0). The parameters \beta ,\gamma , \delta are the
linearized weights of row, column, and diagonal arrows in the influence network associated to
(5.1), respectively, while \alpha is the gain of the linearized internal dynamics. Also, let

(6.1)

c\mathrm{d} = \alpha  - \beta  - \gamma + \delta ,
c\mathrm{c} = \alpha  - \beta + (m - 1)(\gamma  - \delta ),
c\mathrm{d}\mathrm{l} = \alpha  - \gamma + (n - 1)(\beta  - \delta ),
c\mathrm{s} = \alpha + (n - 1)\beta + (m - 1)\gamma + (m - 1)(n - 1)\delta .

Then a simple calculation reveals that

(6.2)

J | V\mathrm{d}
= c\mathrm{d}I(m - 1)(n - 1),

J | V\mathrm{c}
= c\mathrm{c}In - 1,

J | V\mathrm{d}\mathrm{l}
= c\mathrm{d}\mathrm{l}Im - 1,

J | V\mathrm{s}
= c\mathrm{s} .
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We can write (6.1) in matrix form as\left[    
c\mathrm{d}
c\mathrm{c}
c\mathrm{d}\mathrm{l}
c\mathrm{s}

\right]    =

\left[    
1  - 1  - 1 1
1  - 1 m - 1 1 - m
1 n - 1  - 1 1 - n
1 n - 1 m - 1 (m - 1)(n - 1)

\right]    
\left[    
\alpha 
\beta 
\gamma 
\delta 

\right]    \equiv L

\left[    
\alpha 
\beta 
\gamma 
\delta 

\right]    .

Since det(L) = - m2n2 \not = 0, the matrix L is invertible. Therefore, any of the three synchrony-
breaking bifurcations can occur as the first bifurcation by making an appropriate choice of
the partial derivatives \alpha ,\beta , \gamma , \delta of \bfitG .

For example, synchrony-breaking dissensus bifurcation (c\mathrm{d} = 0) can occur from a stable
deadlocked equilibrium (c\mathrm{c}, c\mathrm{d}\mathrm{l}, c\mathrm{s} < 0) if we choose \alpha ,\beta , \gamma , \delta by\left[    

\alpha 
\beta 
\gamma 
\delta 

\right]    =L - 1

\left[    
0
 - 1
 - 1
 - 1

\right]    .

7. \bfS \bfitn consensus and \bfS \bfitm deadlock bifurcations. We summarized synchrony-breaking
consensus and deadlock bifurcations in sections 3.1 and 3.2. We now revisit these bifurcations
with more mathematical detail. Both types of bifurcation reduce mathematically to equivari-
ant bifurcation for the natural permutation action of \bfS m or \bfS n. This is not immediately clear
because of potential network constraints, but in these cases, it is easy to prove [2] that the
admissible maps (nonlinear as well as linear) are the same as the equivariant maps. In section
9, we see that the same comment does not apply to dissensus bifurcations.

The equivariant branching lemma [27, Chapter XIII, Theorem 3.3] states that generically,
for every axial subgroup \Sigma , there exists a branch of steady-state solutions with symmetry \Sigma .
The branching occurs from a trivial (group invariant) equilibrium. More precisely, let \Gamma be a
group acting on \BbbR n, and let

(7.1) \.x= f(x,\lambda ),

where f is \Gamma -equivariant, f(x0, \lambda 0) = 0 (so x0 is a trivial solution; that is, \Gamma fixes x0), and x0
is a point of steady-state bifurcation. That is, if J is the Jacobian of f at x0, then K =ker(J)
is nonzero. Generically, K is an absolutely irreducible representation of \Gamma . A subgroup \Sigma \subset \Gamma 
is axial relative to a subspace K \subset \BbbP if \Sigma is an isotropy subgroup of \Gamma acting on K such that

dimFixK(\Sigma ) = 1,

where the fixed-point subspace FixK(H) of a subgroup H \subset \Gamma relative to K is the set of all
z \in K such that \alpha z = z for all \alpha \in H. Suppose that a \Gamma -equivariant map has a \Gamma -invariant
equilibrium at x0 and that the kernel of the Jacobian at x0 is an absolutely irreducible subspace
V . Then generically, for each axial subgroup \Sigma of \Gamma acting on V , a branch of equilibria with
symmetry \Sigma bifurcates from x0. Therefore, all conjugate branches also occur, as discussed in
section 4.4.

In principle there could be other branches of equilibria [18] and other interesting dynamics
[31]. For example, [14] consider secondary bifurcations to \bfone \times (\bfS p \times \bfS q \times \bfS n - p - q), which are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1796 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

not axial. We focus on the equilibria given by the equivariant branching lemma because these
are known to exist generically.

7.1. Balanced colorings, quotient networks, and ODE-equivalence. The ideas of ``bal-
anced"" coloring and ``quotient network"" were introduced in [28], [49]. See also [25, 26].

Let z be a network node, and let I(z) be the input set of z consisting of all arrows whose
head node is z. Suppose that the nodes are colored. The coloring is balanced if any two
nodes z1, z2 with the same color have color-isomorphic input sets. That is, there is a bijection
\sigma : I(z1)\rightarrow I(z2) such that the tail nodes of a\in I(z1) and \sigma (a)\in I(z2) have the same color.

It is shown in the above references that when the coloring is balanced, the subspace Q,
where two node values are equal whenever the nodes have the same color, is a flow-invariant
subspace for every admissible vector field. The subspaces Q are the network analogs of fixed-
point subspaces of equivariant vector fields. Finally, it is also shown that Q is the phase
space for a network whose nodes are the colors in the balanced coloring. This network is the
quotient network (Figure 7, right). Through identification of same-color nodes in Figure 7
(middle), the quotient network exhibits self-coupling and two different arrows (dashed gray
and dashed black) between pairs of nodes in such a way that the number of arrows between
colors is preserved. For example, each red node of the original network receives a solid arrow
from a red node, a dashed gray arrow and a dashed black arrow from a white node, and a
dashed gray arrow and a dashed black arrow from a blue node, both in Figure 7 (middle) and
in Figure 7 (right), and similarly for the other colors.

Two networks with the same number of nodes are ODE-equivalent if they have the same
spaces of admissible vector fields. Dias and Stewart [15] show that two networks are ODE-
equivalent if and only if they have the same spaces of linear admissible maps. It is straight-
forward to check that the networks in Figures 7 (right) and 8 have the same spaces of linear
admissible maps and hence are ODE-equivalent. Therefore, the bifurcation types from fully
synchronous equilibria are identical in these networks. These two ODE-equivalent networks,
based on the influence network\scrN 23, can help to illustrate the bifurcation result in Theorem 7.1.

7.2. Consensus bifurcation (\bfitc \bfc = \bfzero ). Branches of equilibria stemming from consensus
bifurcation can be proved to exist using the equivariant branching lemma applied to a suitable
quotient network. The branches can be summarized as follows.

Theorem 7.1. Generically, there is a branch of equilibria corresponding to the axial sub-
group \bfone \times (\bfS k \times \bfS n - k) for all 1\leq k\leq n - 1. These solution branches are tangent to V\mathrm{c}, lie in
the subspace Fix(\bfS m \times \bfone ) = V\mathrm{c} \oplus V\mathrm{s}, and are consensus solutions.

Proof. We ask, What are the steady-state branches that bifurcate from the fully synchro-
nous state when c\mathrm{c} = 0? Using network theory, we show in four steps that the answer reduces
to \bfS n

\sim = \bfone \times \bfS n equivariant theory. Figures 7 and 8 illustrate the method when (m,n) = (2,3).
1. Let G\mathrm{c} be the quotient network determined by the balanced coloring where all agents

for a given option have the same color and different options are assigned different
colors. The quotient G\mathrm{c} is a homogeneous all-to-all coupled n-node network with
three different arrow-types and multiarrows between some nodes. The V\mathrm{c} bifurcation
occurs in this quotient network.
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BREAKING INDECISION IN OPINION DYNAMICS 1797

Figure 7. (Left) The influence network \scrN 23 has three distinct arrow types: gray dashed row arrow, solid
black column arrow, and black dashed diagonal arrow. (Middle) Balanced 3-coloring given by Fix(1 \times \bfS 2).
(Right) Three-node quotient network G\mathrm{c} of (middle).

Figure 8. Three-node quotient network with \bfS 3-symmetry that is ODE-equivalent to G\mathrm{c} illustrated in Fig-
ure 7 (right).

2. The network G\mathrm{c} is ODE-equivalent to the standard all-to-all coupled n simplex \scrG n with
no multiarrows (Figure 8). Hence, the steady-state bifurcation theories for networks
G\mathrm{c} and \scrG n are identical.

3. The admissible maps for the standard n-node simplex network \scrG n are identical to
the \bfS n-equivariant maps acting on \BbbR n - 1. Using the equivariant branching lemma, it is
known that, generically, branches of equilibria bifurcate from the trivial (synchronous)
equilibrium with isotropy subgroup \bfS k \times \bfS n - k symmetry, where 1\leq k\leq n - 1; see [8].
Consequently, generically, consensus deadlock-breaking bifurcations lead to steady-
state branches of solutions with \bfone \times (\bfS k \times \bfS n - k) symmetry.

4. The bifurcating branches of equilibria are tangent to the critical eigenspace V\mathrm{c}. Addi-
tionally, (4.5) implies that the admissible map leaves the subspace Fix(\bfS m\times \bfone ) = V\mathrm{c}\oplus V\mathrm{s}

invariant. Hence, the solution branches lie in the subspace V\mathrm{c}\oplus V\mathrm{s} and consist of arrays
with all rows identical. See (4.3).

Remark 7.2. As a function of \lambda , each bifurcating consensus branch is tangent to V\mathrm{c}. Hence,
consensus bifurcation branches are zero row-sum (section 2.3), and each agent values k options
higher and the remaining lower in such a way that the average value remains constant to linear
order in \lambda along the branch. Since the bifurcating solution branch is in V\mathrm{c}\oplus V\mathrm{s}, the bifurcating
states have all rows equal; that is, all agents value the options in the same way. In particular,
all agents favor the same k options and disfavor the remaining n  - k ones, and the agents
are in a consensus state. Symmetry therefore predicts that in breaking indecision toward
consensus, the influence network transitions from an undecided one-option-cluster state to a
two-option-cluster consensus state made of favored and disfavored options. Intuitively, this
happens because the symmetry of the fully synchronous undecided state is lost gradually in
the sense that the bifurcating solutions still have large (axial) symmetry group. Secondary
bifurcations can subsequently lead to state with smaller and smaller symmetry in which fewer
and fewer options are favored.

7.3. Deadlock bifurcation (\bfitc \bfd \bfl = \bfzero ). The existence of branches of equilibria stemming
from deadlock bifurcation can be summarized as follows.
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1798 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

Theorem 7.3. Generically, there is a branch of equilibria corresponding to the axial sub-
group (\bfS k \times \bfS m - k)\times \bfone for 1\leq k \leq m - 1. These solution branches are tangent to V\mathrm{d}\mathrm{l}, lie in
the subspace Fix(\bfone \times \bfS n) = V\mathrm{d}\mathrm{l} \oplus V\mathrm{s}, and are deadlock solutions.

The proof is analogous to that of consensus bifurcation in Theorem 7.1.

Remark 7.4. As a function of \lambda , each bifurcating solution branch is tangent to V\mathrm{d}\mathrm{l}. Hence,
the column sums vanish to first order in \lambda ; i.e., deadlock branches are zero column-sum. It
follows that generically at first order in \lambda , each column has some unequal entries, and therefore
agents assign two different values to any given option. This means that agents are divided
about option values. Since the bifurcating solution branch is in V\mathrm{d}\mathrm{l}\oplus V\mathrm{s}, the bifurcating states
have all columns equal; that is, each agent assigns the same value to all the options, so each
agent is deadlocked. In particular, k agents favor all options, and m  - k agents disfavor
all options. Symmetry therefore predicts that in breaking indecision toward deadlock, the
influence network transitions from an undecided one-agent-cluster state with full symmetry to
a two-agent-cluster deadlock state with axial symmetry made of agents that favor all options
and agents that disfavor all options. Secondary bifurcations can subsequently lead to state
with smaller and smaller symmetry in which fewer and fewer agents favor all options.

7.4. Stability of consensus and deadlock bifurcation branches. In consensus bifurcation,
all rows of the influence matrix (zij) are identical and have sum zero. In deadlock bifurcation,
all columns of the influence matrix (zij) are identical and have sum zero. As shown in sections
7.2 and 7.3, these problems abstractly reduce to \bfS N -equivariant bifurcation on the nontrivial
irreducible subspace \bigl\{ 

x\in \BbbR N : x1 + \cdot \cdot \cdot + xN = 0
\bigr\} 
,

where N =m for deadlock bifurcation and N = n for consensus bifurcation.
This bifurcation problem has been studied extensively as a model for sympatric speciation

in evolutionary biology [8], [47]. Indeed, this model can be viewed as a decision problem in
which the agents are coarse-grained tokens for organisms, initially of the same species (such
as birds), which assign preference values to some phenotypic variable (such as beak length) in
response to an environmental parameter \lambda , such as food availability. It is therefore a special
case of the models considered here, with m agents and one option. The primary branches of
bifurcating states correspond to the axial subgroups, which are (conjugates of) \bfS p\times \bfS q, where
p+ q=N .

Ihrig's theorem [36, Theorem 4.2] or [27, Chapter XIII, Theorem 4.4] shows that in many
cases, transcritical branches of solutions that are obtained using the equivariant branching
lemma are unstable at bifurcation. See Figure 9. Indeed, this is the case for axial branches
for the \bfS N bifurcations, N > 2, and at first sight, this theorem would seem to affect their
relevance. However, simulations show that equilibria with these synchrony patterns can exist
and be stable. They arise by jump bifurcation, and the axial branch to which they jump has
regained stability by a combination of two methods:

(a) The branch ``turns round"" at a saddle-node.
(b) The stability changes when the axial branch meets a secondary branch. Secondary

branches correspond to isotropy subgroups of the form \bfS a \times \bfS b \times \bfS c, where a+ b+ c=N .
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z

λ

axial branch
intervals of stability

Ihrig's Theorem applies here

Figure 9. Sketch illustrating solution stability near but not at bifurcation. Such bifurcations lead to jump
transitions rather than smooth transitions. The vertical z coordinate is multidimensional.

The fact that these axial solutions can both exist and be stable in model equations is
shown in [17] and [47]. Simulations of consensus and deadlock bifurcations are discussed in
section 11.1, and simulations of dissensus bifurcations are discussed in section 11.2. The main
prediction is that despite Ihrig's theorem, axial states can and do occur stably. However, they
do so through a jump bifurcation to an axial branch that has regained stability, not by local
movement along an axial branch. This stability issue appears again in dissensus bifurcation,
and simulations in section 11.3 show that axial solutions can be stable even though they are
unstable at bifurcation.

8. Axial balanced colorings for homogeneous networks. The analysis of branches of
bifurcating solutions in the dissensus subspace V\mathrm{d} requires a natural network analog of the
equivariant branching lemma. This new version applies to exotic colorings (not determined
by a subgroup \Sigma ) as well as orbit colorings (determined by a subgroup \Sigma ). See section 2.1.
We deal with the generalization here and apply it to V\mathrm{d} in section 9.

For simplicity, assume that each node space of \scrG is 1-dimensional and that f in (7.1) is
a 1-parameter family of admissible maps. Let \Delta be the diagonal space of fully synchronous
states. By admissibility, f : \Delta \times \BbbR \rightarrow \Delta . Hence, we can assume generically that f has a trivial
steady-state bifurcation point at x0 \in \Delta . Given a coloring  \triangleleft  \triangleright , its synchrony subspace \Delta  \triangleleft  \triangleright is
the subspace where all nodes with the same color are synchronous.

Definition 8.1. Let K be the kernel (critical eigenspace for steady-state bifurcation) of the
Jacobian J = Df | x0,\lambda 0

. Then a balanced coloring  \triangleleft  \triangleright with synchrony subspace \Delta  \triangleleft  \triangleright is axial
relative to K if

(8.1)
K \cap \Delta = \{ 0\} ,

dim(K \cap \Delta  \triangleleft  \triangleright ) = 1.

8.1. The synchrony-breaking branching lemma. We now state and prove the key bifur-
cation theorem for this paper. The proof uses the method of Liapunov--Schmidt reduction
and various standard properties [27, Chapter VII, section 3].
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1800 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

Figure 10. Two axial patterns (for V\mathrm{d}) with the same linearization on V\mathrm{d}.

Theorem 8.2. With the above assumptions and notation, let  \triangleleft  \triangleright be an axial balanced coloring.
Then generically, a unique branch of equilibria with synchrony pattern  \triangleleft  \triangleright bifurcates from x0
at \lambda 0.

Proof. The first condition in (8.1) implies that the restriction f : \Delta \times \BbbR \rightarrow \Delta is nonsingular
at (x0, \lambda 0). Therefore, by the implicit function theorem, there is a branch of trivial equilibria
X(\lambda ) in \Delta for \lambda near \lambda 0, so f(X(\lambda ), \lambda ) \equiv 0, where x0 = X(\lambda 0). We can translate the
bifurcation point to the origin so that without loss of generality, we may assume f(0, \lambda ) = 0
for all \lambda near 0.

The second condition in (8.1) implies that 0 is a simple eigenvalue of J \prime = J | \Delta  \triangleleft  \triangleright 
. Therefore,

Liapunov--Schmidt reduction of the restriction f : \Delta  \triangleleft  \triangleright \times \BbbR \rightarrow \Delta  \triangleleft  \triangleright leads to a reduced map
g :\BbbR \{ v\} \times \BbbR \rightarrow \BbbR \{ v\ast \} , where \Delta  \triangleleft  \triangleright \cap K =\BbbR (v) and v\ast is the left eigenvector of J \prime for eigenvalue
0. The zeros of g near the origin are in 1:1 correspondence with the zeros of f | \Delta  \triangleleft  \triangleright \times \BbbR near
x0 = 0. We can write g(sv,\lambda ) = h(s,\lambda )v\ast . By [48], Liapunov--Schmidt reduction can be chosen
to preserve the existence of a trivial solution, so we can assume h(0, \lambda ) = 0.

General properties of Liapunov--Schmidt reduction [23] and the fact that x \mapsto \rightarrow \lambda x is ad-
missible for each \lambda imply that h\lambda (0,0) is generically nonzero. The implicit function theorem
now implies the existence of a unique branch of solutions h(\Lambda (\lambda ), \lambda )\equiv 0 in \Delta  \triangleleft  \triangleright , that is, with
 \triangleleft  \triangleright synchrony. Since K \cap \Delta =0, this branch is not a continuation of the trivial branch.

The uniqueness statement in the theorem shows that the synchrony pattern on the branch
concerned is precisely  \triangleleft  \triangleright and not some coarser pattern.

Let the network symmetry group be \Gamma , and let \Sigma be a subgroup of \Gamma . Since K is \Gamma -
invariant, FixK(\Sigma ) = Fix\BbbP (\Sigma )\cap K. Therefore, if Fix\BbbP (\Sigma )\cap K is 1-dimensional, then \Sigma is axial
on K, and Theorem 8.2 reduces to the equivariant branching lemma.

Remark 8.3. Figure 10 shows two balanced patterns on a 2\times 4 array. On the whole space
\BbbR 2\otimes \BbbR 4, these are distinct, corresponding to different synchrony subspaces \Delta 1,\Delta 2, which are
flow-invariant. When intersected with V\mathrm{d}, both patterns give the same 1-dimensional space,
spanned by \biggl[ 

1  - 1 0 0
 - 1 1 0 0

\biggr] 
.

By Theorem 8.2 applied to V\mathrm{d}, there is generically a branch that is tangent to the kernel V\mathrm{d}

and lies in \Delta 1 and a branch that lies in \Delta 2. However, \Delta 1 \subseteq \Delta 2. Since the bifurcating branch
is locally unique, it must lie in the intersection of those spaces; that is, it corresponds to the
synchrony pattern with fewest colors. See Figure 10 (left).

9. Dissensus bifurcations (c\bfd = 0). Our results for axial dissensus bifurcations, with
critical eigenspace V\mathrm{d}, have been summarized and interpreted in section 3.3 We now state the
results in more mathematical language and use Theorem 8.2 to determine solutions that are
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BREAKING INDECISION IN OPINION DYNAMICS 1801

Figure 11. (Left) 3\times 6 Latin rectangle with three colors. (Right) 3\times 4 rectangle that satisfies (b) but not (a).

generically spawned at a deadlocked dissensus bifurcation: see Theorem 9.2. In this section,
we verify that case sections 3.3.1, 3.3.2, and 3.3.3 are all the possible dissensus axials.

The analysis leads to a combinatorial structure that arises naturally in this problem. It
is a generalization of the concept of a Latin square, and it is a consequence of the balance
conditions for colorings.

Definition 9.1. A Latin rectangle is an a\times b array of colored nodes such that
(a) each color appears the same number of times in every row;
(b) each color appears the same number of times in every column.

Condition (a) is equivalent to the row couplings being balanced. Condition (b) is equivalent
to the column couplings being balanced.

Definition 9.1 is not the usual definition of ``Latin rectangle,"" which does not permit
multiple entries in a row or column and imposes other conditions [1].

Henceforth, we abbreviate colors by R (red), B (blue), G (green), and Y (yellow). The
conditions in Definition 9.1 are independent. Figure 11 (left) shows a 3\times 6 Latin rectangle
with (R,B,G) columns and (R,R,B,B,G,G) rows. Counting colors shows that Figure 11
(right) satisfies (b) but not (a).

In terms of balance, in Figure 11 (left), each R node has one R, two B, and two G
row-arrow inputs; one B and one G column-arrow input; and four R, three B, and three G
diagonal-arrow inputs. Similar remarks apply to the other colors.

In contrast, in Figure 11 (right), the R node in the first row has one B and two G row-
arrow inputs, whereas the R node in the second row has two B row-arrow inputs and one
G row-arrow input. Therefore, the middle pattern is not balanced for row-arrows, which in
particular implies that it is not balanced.

The classification of axial colorings on influence networks is as follows.

Theorem 9.2. The axial colorings relative to the dissensus space V\mathrm{d}, up to reordering rows
and columns, are as follows:

(a)  \triangleleft  \triangleright = [B0 B1 ], where B0 is a rectangle with one color (Y) and B1 is a Latin rectangle
with two colors (R,B). The fraction 0< \rho < 1 of red nodes in every row of B1 is the
same as the fraction of red nodes in every column of B1. Similarly for blue nodes. If
in \Delta  \triangleleft  \triangleright \cap V\mathrm{d} the value of yellow nodes is zY , the value of red nodes is zR, and the value
of blue nodes is zB, then zY = 0 and

(9.1) zB = - \rho 

1 - \rho 
zR.

Possibly B0 is empty.
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1802 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

(b)  \triangleleft  \triangleright = [B0

B1
], where B0 is a rectangle with one color (Y) and B1 is a Latin rectangle with

two colors (R,B). The fraction 0< \rho < 1 of red nodes in every row of B1 is the same
as the fraction of red nodes in every column of B1. Similarly for blue nodes. If in
\Delta  \triangleleft  \triangleright \cap V\mathrm{d} the value of yellow nodes is zY , the value of red nodes is zR, and the value of
blue nodes is zB, then zY = 0 and

(9.2) zB = - \rho 

1 - \rho 
zR.

Possibly B0 is empty; if so, this pattern is the same as (a) with empty B0.
(c)  \triangleleft  \triangleright = [B11 B12

B21 B22
], where Bij are nonempty rectangles with only one color. Let zij be the

value associated to the color of Bij in \Delta  \triangleleft  \triangleright \cap V\mathrm{d}, and let B11 be r\times s, B12 be r\times (n - s),
B21 be (m - r)\times s, and B22 be (m - r)\times (n - s). Then

z12 = - s

n - s
z11,(9.3a)

z21 = - r

m - r
z11,(9.3b)

z22 =
s

n - s

r

m - r
z11.(9.3c)

Remark 9.3. The theorem implies that axial patterns of cases (a) and (b) either have
two colors, one corresponding to a negative value of zij and the other to a positive value, or,
when the block B0 occurs, there can also be a third value that is zero to leading order in
\lambda . Axial patterns of case (c) have four colors, two corresponding to positive values and two
corresponding to negative values, when r \not = m

2 or s \not = n
2 , or two colors, one corresponding to a

positive value and the other to a negative value, when r= m
2 and s= n

2 .

9.1. Proof of Theorem 9.2. We need the following theorem, whose proof follows directly
from imposing the balanced coloring condition and can be found in [26].

Theorem 9.4. A coloring of \scrN mn is balanced if and only if it is conjugate under \bfS m \times \bfS n

to a tiling by rectangles, meeting along edges, such that
(a) each rectangle is a Latin rectangle;
(b) distinct rectangles have disjoint sets of colors.

See Figure 12 for an illustration.

Proof of Theorem 9.2. Using Theorem 9.4, decompose the coloring array  \triangleleft  \triangleright into its com-
ponent Latin rectangles Bij . Here, 1 \leq i \leq s and 1 \leq j \leq t. Suppose that Bij contains
nij distinct colors. Let z \in \Delta  \triangleleft  \triangleright \cap V\mathrm{d}. This happens if and only if z \in \Delta  \triangleleft  \triangleright and all row- and
column-sums of z are zero.

We count equations and unknowns to find the dimension of \Delta  \triangleleft  \triangleright \cap V\mathrm{d}. There are s distinct
row-sum equations and t distinct column-sum equations. These are independent except that
the sum of entries over all rows is the same as the sum over all columns, giving one linear
relation. Therefore, the number of independent equations for z is s+ t - 1. The number of
independent variables is

\sum 
ij nij . Therefore,

dim(\Delta  \triangleleft  \triangleright \cap V\mathrm{d}) =
\sum 
ij

nij  - s - t+ 1,
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I1

I2

I3

J1 J2 J3 J4

Figure 12. Rectangular decomposition. Each subarray must be a Latin rectangle, and distinct subarrays
have disjoint color-sets.

and coloring  \triangleleft  \triangleright is axial if and only if

(9.4)
\sum 
ij

nij = s+ t.

Since nij \geq 1, we must have st\leq s+ t. It is easy to prove that this condition holds if and only
if

(s, t) = (1, t) (s, t) = (s,1) (s, t) = (2,2).

We now show that these correspond, respectively, to cases (a), (b), (c) of the theorem.
If (s, t) = (2,2), then (9.4) implies that each nij = 1. This is case (c).
If (s, t) = (1, t), then s+ t - st= t+1 - t= 1. Now (9.4) requires exactly one n1j to equal

2 and the rest to equal 1. Now Remark 8.3 comes into play. The columns with n1j = 1 satisfy
the column-sum condition; hence, those z1j = 0, and we can amalgamate those columns into
a single zero block B0. This is case (a).

Case (b) is dual to case (a), and a similar proof applies.
Finally, the ZRS and ZCS conditions give (9.1), (9.2), and (9.3).

9.2. Orbit axial versus exotic axial. Axial matrices in Theorem 9.2(c) are orbital. Let
Bij be a pi \times qj matrix. Let \Sigma be the group generated by elements that permute rows
\{ 1, . . . , p1\} , permute rows \{ p1 + 1, . . . , p1 + p2\} , permute columns \{ 1, . . . , q1\} , and permute
columns \{ q1+1, . . . , q1+ q2\} . Then the axial matrices in Theorem 9.2(c) are those in Fix(\Sigma ).

However, individual rectangles, being orbital, need not imply that the entire pattern is
orbital.

Axial matrices in Theorem 9.2(a) are orbital if and only if the p\times q Latin rectangle B1 is
orbital. Suppose B1 is orbital, being fixed by the subgroup T of \bfS p \times \bfS q. Then [B0 B1] is the
fixed-point space of the subgroup \Sigma generated by T and permutations P of the columns in
B0. Hence, [B0 B1] is orbital. Conversely, if [B0 B1] is orbital, then the group \~T fixes [B0 B1].
There is a subgroup T of \~T that fixes the columns of B0, and Fix(T ) consists of multiples of
B1. Thus, B1 is orbital.

9.3. Two or three agents. We specialize to 2\times n and 3\times n arrays. Here, it turns out
that all axial patterns are orbital. Exotic patterns appear when m\geq 4.
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1804 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

9.3.1. \bftwo \times \bfitn array. The classification can be read off directly from Theorem 9.2, observing
that every 2-color 2\times k Latin rectangle must be conjugate to one of the form

(9.5)

\biggl[ 
R R \cdot \cdot \cdot R B B \cdot \cdot \cdot B
B B \cdot \cdot \cdot B R R \cdot \cdot \cdot R

\biggr] 
with k even and k/2 nodes of each color in each row.

This gives the form of B1 in Theorem 9.2(a). Here, \rho = 1/3, and q must be divisible by 3.
There can also be a zero block B0 except when n is even and k = n/2. Theorem 9.2(b) does
not occur.

For Theorem 9.2(c), the B1j must be 1\times k, and the B2j must be 1\times (n - k).
Both types are easily seen to be orbit colorings.

9.3.2. \bfthree \times \bfitn array. The classification can be read off directly from Theorem 9.2, observing
that every 2-color 3\times k Latin rectangle must (permuting colors if necessary) be conjugate to
one of the form

(9.6)

\left[  R R \cdot \cdot \cdot R B B \cdot \cdot \cdot B B B \cdot \cdot \cdot B
B B \cdot \cdot \cdot B R R \cdot \cdot \cdot R B B \cdot \cdot \cdot B
B B \cdot \cdot \cdot B B B \cdot \cdot \cdot B R R \cdot \cdot \cdot R

\right]  
with k = 3l and k/3 R nodes and 2k/3 B nodes in each row. Here, \rho = 1/3, and q must be
divisible by 3.

Theorem 9.2(a): Border this with a zero block B0 when n \not = 3l.
Theorem 9.2(b): B0 must be 1\times n. Then B1 must be a 2\times n Latin rectangle with two

colors, already classified. This requires n = 2k with k R nodes and k B nodes in each row.
(No zero block next to this can occur.)

Theorem 9.2(c): Without loss of generality, B11 is 2\times k, and B21 is 2\times (n - k), while B12

is 1\times k, and B22 is 1\times (n - k). All three types are easily seen to be orbit colorings.

9.4. Two or three options. When the number of options is 2 or 3, the axial patterns
are the transposes of those discussed in section 9.3. The interpretations of these patterns are
different because the roles of agents and options are interchanged.

9.5. Exotic patterns. For large arrays, it is difficult to determine which 2-color Latin
rectangles are orbital and which are exotic because the combinatorial possibilities for Latin
rectangles explode, and the possible subgroups of \bfS m \times \bfS n also grow rapidly. Here, we show
that exotic patterns exist. This has implications for bifurcation analysis: Using only the
equivariant branching lemma omits all exotic branches. These are just as important as the
orbital ones.

Figure 13 shows an exotic 4\times 6 pattern  \triangleleft  \triangleright . To prove that this pattern is exotic, we find
its isotropy subgroup H in \bfS 4\times \bfS 6 and show that Fix(H) is not  \triangleleft  \triangleright . Theorem 9.7 below shows
that there are many exotic 4\times n patterns for larger n and provides an alternative proof that
this pattern is exotic.

Regarding stability, we note that Ihrig's theorem [36] applies only to orbital patterns, and
it is not clear whether a network analog is valid. Currently, we cannot prove that an exotic
pattern can be stable near bifurcation, though in principle such solutions can be stable in
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BREAKING INDECISION IN OPINION DYNAMICS 1805

Figure 13. (Left) Exotic 4\times 6 pattern. (Right) Pattern for Fix(H).

phase space. See section 11.4. However, simulations show that both orbital axial branches
and exotic axial branches can regain stability. See the simulations in section 11.3.

The general element of \bfS 4\times \bfS 6 permutes both rows and columns. We claim the following.

Lemma 9.5. Let \sigma ij interchange columns i and j in Figure 13, and let \rho kl interchange rows
k and l. Then the isotropy subgroup H of  \triangleleft  \triangleright is generated by the elements

\rho 13\rho 24\sigma 12, \rho 12\rho 34\sigma 36\sigma 45, \sigma 34, \sigma 56.

Also, Fix(H) is not  \triangleleft  \triangleright , so  \triangleleft  \triangleright is exotic.

Proof. The proof divides into four parts.
1. The network divides into column components where two columns in a column compo-

nent are either identical or can be made identical after color swapping. In this case, there are
two column components, one consisting of columns \{ 1,2\} and the other of columns \{ 3,4,5,6\} .
It is easy to see that elements in any subgroup H \subseteq \bfS 4 \times \bfS 6 map column components to col-
umn components; thus, H preserves column components because the two components contain
different numbers of columns. Therefore, H is generated by elements of the form

(\rho ,\alpha )\in \bfS 
(1,2,3,4)
4 \times \bfS 

(1,2)
2 or (\rho ,\beta )\in \bfS 

(1,2,3,4)
4 \times \bfS 

(3,4,5,6)
4 ,

where \rho \in \bfS 
(1,2,3,4)
4 permutes rows \{ 1,2,3,4\} , \alpha \in \bfS 

(1,2)
2 permutes columns \{ 1,2\} , and \beta \in 

\bfS 
(3,4,5,6)
4 permutes columns \{ 3,4,5,6\} .

2. The only element of H that contains the column swap \sigma 12 is \rho 13\rho 24\sigma 12 since \sigma 12 swaps
colors in the first column component. This is the first generator in H.

3. Elements inH that fix colors in the second column component are generated by \sigma 34, \sigma 56.
The elements that swap colors are generated by \rho 12\rho 34\sigma 36\sigma 45.

4. It is straightforward to verify that any element in H fixes the pattern in Figure 13
(right).

9.6. \bffour \times \bfitk exotic dissensus value patterns. In this section, we show that the example of
exotic value patterns in section 9.5 is not a rare case. Exotic 4\times k dissensus value patterns
are indeed abundant.

9.6.1. Classification of \bffour \times \bfitk 2-color Latin rectangles. Let B be a 4\times k Latin rectangle.
With colors R,B, there are ten possible columns: four with one R and six with two Rs.

Column balance and row balance imply that the columns are color-isomorphic, so either
the columns are in the first set a1 -- a4 or the second set b1 -- b6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

2/
24

 to
 1

39
.1

65
.3

1.
13

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1806 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

a1 a2 a3 a4 b1 b2 b3 b4 b5 b6
Figure 14. The ten 2-color 4-node columns divided into two sets.

Figure 15. Typical pattern from first set of columns a1 -- a4 in Figure 14.

For the first set, row balance implies that all four columns must occur in equal numbers.
Hence, this type of Latin rectangle can only occur if the k is a multiple of 4. For k = 12, the
pattern looks like Figure 15. This pattern is always orbital.

The second set is more interesting. We have grouped the column patterns in color-
complementary pairs: (b1, b2), (b3, b4), and (b5, b6).

Lemma 9.6. Suppose a 4\times n Latin rectangle has \mu i columns of type bi. Then

(9.7) \mu 1 = \mu 2 = \nu 1, \mu 3 = \mu 4 = \nu 2, \mu 5 = \mu 6 = \nu 3.

Proof. Suppose the Latin rectangle has \mu i columns of type bi. The row-balance condition
is that the total number of R nodes in each row is the same. Therefore, the sums

\mu 1 + \mu 3 + \mu 5,

\mu 1 + \mu 4 + \mu 6,

\mu 2 + \mu 4 + \mu 5,

\mu 2 + \mu 3 + \mu 6

are all equal. This yields three independent equations in six unknowns. It is not hard to see
that this happens if and only if (9.7) holds.

Lemma 9.6 shows that in 4\times n Latin rectangles, color-complementary pairs of columns
occur in equal numbers. For each color-complementary pair, we call the number \nu i its mul-
tiplicity . For purposes of illustration, we can permute columns so that within the pattern
identical columns occur in blocks. A typical pattern is Figure 16. Observe that this type of
Latin rectangle exist only when k is even.
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BREAKING INDECISION IN OPINION DYNAMICS 1807

Figure 16. Typical pattern from second set of columns b1 -- b6 in Figure 14. The multiplicity of the color-
complementary pair (b1, b2) is 3. The multiplicity of the color-complementary pair (b3, b4) is 1. The multiplicity
of the color-complementary pair (b5, b6) is 2.

9.6.2. Sufficiency for a \bffour \times \bfitk Latin rectangle with two colors to be exotic. We now
prove a simple sufficient condition for a 2-coloring of a 4\times n Latin rectangle to be exotic. In
particular, this gives another proof for the 4\times 6 example.

Theorem 9.7. Let  \triangleleft  \triangleright be a 2-coloring of a 4 \times n Latin rectangle in which the colors R
and B occur in equal proportions. Suppose that two color-complementary pairs have different
multiplicities. Then  \triangleleft  \triangleright is exotic.

Proof. Each column contains two R nodes and two B nodes. By Lemma 9.6, color-
complementary pairs of columns occur in equal numbers, so the multiplicity of such a pair
is defined. The isotropy subgroup H of  \triangleleft  \triangleright acts transitively on the set of nodes of any given
color, say, R. Let C1 be one color-complementary pair of columns, and let C2 be the other.

The action of \bfone \times Sn \subseteq \bfS m \times \bfS n permutes the set of columns. It preserves the pattern in
each column, so it preserves complementary pairs. The action of \bfS m \times \bfone \subseteq \bfS m \times \bfS n leaves
each column fixed setwise. It permutes the pattern in each column simultaneously, so it maps
complementary pairs of columns to complementary pairs.

Therefore, any element of \bfS m \times \bfS n and, in particular, of H preserves the multiplicities of
complementary pairs. Thus, H cannot map any column of C1 to a column of C2, so H cannot
map any node in C1 to a node in C2. But both C1 and C2 contain an R node by the Latin
rectangle property, which contradicts H being transitive on R nodes.

To construct exotic 4\times n axial 2-color patterns for all even n\geq 6, we concatenate blocks of
complementary pairs of columns that do not all have the same multiplicity. The 4\times 6 pattern
of Figure 13 (left) is an example.

This proof relies on special properties of columns of length 4, notably Lemma 9.6. Columns
of odd length cannot occur as complementary pairs in Latin rectangles. However, at least one
exotic pattern exists for a 5 \times 5 influence network [46], and it seems likely that they are
common for larger m,n. More general sufficiency conditions than that in Theorem 9.7 can
probably be stated.

10. An\bfscrN \bfitm \bfitn -admissible value-formation ODE. We propose the following\scrN mn-admissible
value-formation dynamics:

(10.1) \.zij = - zij + \lambda 

\left(  S1

\left(  \~\alpha zij +
\sum 
k \not =i

\~\gamma zkj

\right)  +
\sum 
l \not =j

S2

\left(  \~\beta zil +
\sum 
k \not =i

\~\delta zkl

\right)  \right)  .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

2/
24

 to
 1

39
.1

65
.3

1.
13

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1808 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

Here, S1 and S2 are sigmoidal functions, 1\leq i\leq m, and 1\leq j \leq n. Model (10.1) is intimately
related to and inspired by the model of opinion dynamics introduced in [4].

Model (10.1) has two main components: a linear degradation term (modeling resistance to
change assigned values) and a saturated network interaction term whose strength is controlled
by the bifurcation parameter \lambda . The network interaction term is in turn composed of four
terms, modeling the four arrow types of \scrN mn networks. The sigmoids S1 and S2 satisfy

(10.2) Si(0) = 0, S\prime 
i(0) = 1, S

(n)
i (0) \not = 0, n\geq 2.

With this choice, the trivial equilibrium for this model is zij = 0 for all i, j.
In simulations, we use

(10.3) Si(x) =
tanh(x - si) + tanh(si)

1 - tanh(si)2
,

which satisfies (10.2) whenever si \not = 0.

10.1. Parameter interpretation. Parameter \~\alpha tunes the weight of the node self-arrow,
that is, the node's internal dynamics. When \alpha < 0, the resistance to change assigned value
is increased through nonlinear self-negative feedback on option values. When \alpha > 0, the
resistance to change assigned value is decreased through nonlinear self-positive feedback on
option values.

Parameter \~\beta tunes the weight of row arrows, that is, intra-agent, interoption interactions.
When \~\beta < 0, an increase in one agent's valuation of any given option tends to decrease its
valuations of other options. When \~\beta > 0, an increase in one agent's valuation of any given
option tends to increase its valuations of other options.

Parameter \~\gamma tunes the weight of column arrows, that is, interagent, intraoption interac-
tions. When \~\gamma < 0, an increase in one agent's valuation of any given option tends to decrease
other agents' valuations of the same option. When \~\gamma > 0, an increase in one agent's valuation
of any given option tends to increase other agents' valuations of the same option.

Parameter \~\delta tunes the weight of diagonal arrows, that is, interagent, interoption interac-
tions. When \~\delta < 0, an increase in one agent's valuation of any given option tends to decrease
other agents' valuations of the all other options. When \~\delta > 0, an increase in one agent's
valuation of any given option tends to increase other agents' valuations of all other options.

10.2. Bifurcation conditions. Conditions for the various types of synchrony-breaking bi-
furcation can be computed by noticing that in model (10.1),

(10.4) c\mathrm{d} = - 1 + \lambda \~c\mathrm{d} c\mathrm{c} = - 1 + \lambda \~c\mathrm{c} c\mathrm{d}\mathrm{l} = - 1 + \lambda \~c\mathrm{d}\mathrm{l} c\mathrm{s} = - 1 + \lambda \~c\mathrm{s},

where
\~c\mathrm{d} = \~\alpha  - \~\beta  - \~\gamma + \~\delta ,

\~c\mathrm{c} = \~\alpha  - \~\beta + (m - 1)
\Bigl( 
\~\gamma  - \~\delta 

\Bigr) 
,

\~c\mathrm{d}\mathrm{l} = \~\alpha  - \~\gamma + (n - 1)
\Bigl( 
\~\beta  - \~\delta 

\Bigr) 
,

\~c\mathrm{s} = \~\alpha + (n - 1) \~\beta + (m - 1)\~\gamma + (m - 1)(n - 1)\~\delta .

For instance, if \~c\mathrm{d} > 0 and \~c\mathrm{d} > \~c\mathrm{c}, \~c\mathrm{d}\mathrm{l}, \~c\mathrm{s}, then a dissensus synchrony-breaking bifurcation
happens at \lambda = 1

\~c\mathrm{d}
.
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BREAKING INDECISION IN OPINION DYNAMICS 1809

11. Stable solutions. This section divides into four parts:
(11.1) Simulation of consensus and deadlock synchrony-breaking.
(11.2) Simulation of dissensus synchrony-breaking.
(11.3) Discussion of the stability of dissensus bifurcation branches.
(11.4) Stable equilibria can exist in balanced colorings.

11.1. Simulation of consensus and deadlock synchrony-breaking. To simulate consensus
and deadlock synchrony-breaking, we use s1 = 0.5 and s2 = 0.3 in (10.1) and (10.3). For
consensus synchrony-breaking, we set

(11.1) \~c\mathrm{d} = \~c\mathrm{d}\mathrm{l} = \~c\mathrm{s}  - 1.0, \~c\mathrm{c} = 1.0, \lambda = - 1 + \varepsilon ,

and for deadlock synchrony-breaking, we set

(11.2) \~c\mathrm{d} = \~c\mathrm{c} = \~c\mathrm{s} = - 1.0, \~c\mathrm{d}\mathrm{l} = 1.0, \lambda = 1+ \varepsilon ,

where 0\leq \varepsilon \ll 1. In other words, both for consensus and deadlock synchrony-breaking, we let
the bifurcation parameter \lambda be slightly above the critical value at which bifurcation occurs. In
simulations, we use \varepsilon = 10 - 2. Initial conditions are chosen randomly in a small neighborhood
of the unstable fully synchronous equilibrium.

After exponential divergence from the neutral point (Figures 17a and 18a), trajectories
converge to a consensus (Figure 17b) or deadlock (Figure 18b) value pattern, depending on
the chosen bifurcation type. Observe that the value patterns that trajectories converge to are
``far"" from the neutral point. In other words, the network ``jumps"" away from indecision to a
value pattern with distinctly different value assignments compared to those before bifurcation.
This is a consequence of model-independent stability properties of consensus and deadlock
branches, as we discuss next. A qualitatively similar behavior would have been observed for
\varepsilon = 0, i.e., for \lambda exactly at bifurcation, with the difference that divergence from the fully
synchronous equilibrium would have been subexponential because of zero (instead of positive)
eigenvalues of the linearization. Also, for \varepsilon = 0, trajectories could have converged to different
consensus or deadlock value patterns as compared to \varepsilon = 10 - 2 because of possible secondary
bifurcations that are known to happen close to \bfS n-equivariant bifurcations and that lead to
primary-branch switching [8], [47], [17].

11.2. Simulation of dissensus synchrony-breaking. We simulate dissensus synchrony-
breaking for two sets of parameters:

\~c\mathrm{d} = 1.0, \~c\mathrm{c} = - 1.0, \~c\mathrm{d}\mathrm{l} = - 0.5, \~c\mathrm{s} = - 0.5, s1 = 0.5, s2 = 0.3, \lambda =
1

\~c\mathrm{d}
+ \varepsilon ,(11.3)

\~c\mathrm{d} = 1.0, \~c\mathrm{c} = - 1.0, \~c\mathrm{d}\mathrm{l} = - 1.0, \~c\mathrm{s} = - 1.0, s1 = - 0.1, s2 = - 0.3, \lambda =
1

\~c\mathrm{d}
+ \varepsilon .(11.4)

Initial conditions are chosen randomly in a small neighborhood of the unstable neutral point,
and in simulations, \varepsilon = 10 - 2. The resulting temporal behaviors and final value patterns are
shown in Figures 19 and 20.

For both sets of parameters, trajectories jump toward a dissensus value pattern. For the
first set of parameters (Figure 19), the value pattern has a block of zeros (first and second
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1810 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

(a) Evolution of valuations by 4 agents on 6 options at consensus symmetry-
breaking. Simulation of (10.1) with parameters (11.1).

(b) Final simulation pattern of valuations of
4 agents on 6 options at consensus symmetry-
breaking. Option 6 is chosen.

Figure 17. Possible consensus symmetry-breaking between 4 agents and 6 options. Transient value assign-
ment is shown through time series in (a). The final value pattern is shown in (b) and is of consensus type.

columns) corresponding to options about which the agents remain neutral. The pattern in
Figure 19b is orbital, with symmetry group \bfZ 4. For the second set of parameters (Figure 20),
each agent favors half the options and dislikes the other half, but there is disagreement about
the favored options. The precise value pattern follows the rules of a Latin rectangle with two
red nodes and two blue nodes per column and three red nodes and three blue nodes per row.
The pattern in Figure 20b is exotic and is a permutation of the pattern in Figure 13 (left).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BREAKING INDECISION IN OPINION DYNAMICS 1811

(a) Evolution of valuation by 4 agents on 6 options at deadlock symmetry-breaking.
Simulation of (10.1) with parameters (11.2).

(b) Final simulated value pattern by 4 agents on
6 options at deadlock symmetry-breaking. Agent 2
values all the options positively. Other agents value
all the options negatively.

Figure 18. Possible deadlock symmetry-breaking pattern obtained by simulation of 4 agents on 6 options.
Transient value assignment is shown through time series in (a). The final value pattern is shown in (b) and is
of deadlock type.

With parameter set (11.4), model (10.1) has stable equilibria with synchrony patterns
given by both exotic and orbital dissensus value patterns. It must be stressed that here,
for the same set of parameters but different initial conditions, trajectories converge to value
patterns corresponding to different Latin rectangles with the same column and row proportions
of red and blue nodes, both exotic and orbital ones. Therefore, multiple (conjugacy classes
of) stable states can coexist, even when proportions of colors are specified.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1812 FRANCI, GOLUBITSKY, STEWART, BIZYAEVA, AND LEONARD

(a) Evolution of 4 agents' valuations about 6 options at dissensus symmetry-
breaking with parameter set (11.3).

(b) Final value pattern of 4 agents' valuations about
6 options at dissensus symmetry-breaking with pa-
rameter set (11.3). All agents are neutral about
Options 1 and 3. Agent 1 favors Option 5. Agent 2
favors Option 2. Agent 3 favors Option 6. Agent 4
favors Option 4.

Figure 19. Dissensus symmetry-breaking between 4 agents and 6 options with parameter set (11.3). Tran-
sient value assignment is shown through time series in (a). The final value pattern is shown in (b) and is of
orbital dissensus type.

11.3. Stability of dissensus bifurcation branches. As discussed in section 7.4 for con-
sensus and deadlock bifurcations, solutions given by the equivariant branching lemma are
often unstable near bifurcation but can regain stability away from bifurcation. The way this
happens in dissensus bifurcations is likely to be similar to the way \bfS N axial branches regain

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) Evolution of 4 agents' valuations about 6 options at dissensus symmetry-
breaking with parameter set (11.4).

(b) Final value pattern of 4 agents' valuations about
6 options at dissensus symmetry-breaking with pa-
rameter set (11.4). Agent 1 favors Options 1,2,5.
Agent 2 favors Options 3,4,6. Agent 3 favors Op-
tions 1,5,6. Agent 4 favors Options 2,3,4.

Figure 20. Dissensus symmetry-breaking between 4 agents and 6 options with parameter set (11.4). Tran-
sient value assignment is shown through time series in (a). The final value pattern is shown in (b) and is of
exotic dissensus type.

stability, that is, through saddle-node ``turning-around"" and secondary bifurcations. This ob-
servation is verified by simulation for both orbital and exotic axial solutions. See section 11.2.
The analytic determination of stability or instability for dissensus axial solutions involves large
numbers of parameters and is beyond our capability.

We know, by the existence of a nonzero quadratic equivariant [20, section 6.1], that Ihrig's
theorem might apply to orbital dissensus bifurcation branches. We do not know if a similar

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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result applies to exotic orbital dissensus bifurcation branches, but our numerical simulations
suggest that this is the case. Our simulations also show that both types of pattern can be
stable in our model for values of the bifurcation parameter close to the bifurcation point.

11.4. Stable equilibria can exist for any balanced coloring. Furthermore, we show that
whenever  \triangleleft  \triangleright is a balanced coloring of a network, there exists an admissible ODE having a
linearly stable equilibrium with synchrony pattern  \triangleleft  \triangleright .

Theorem 11.1. Let  \triangleleft  \triangleright be a balanced coloring of a network \scrG . Then, for any choice of node
spaces, there exists a \scrG -admissible map f such that the ODE \.x = f(x) has a linearly stable
equilibrium with synchrony pattern  \triangleleft  \triangleright .

Proof. Let y be a generic point for  \triangleleft  \triangleright ; that is, yc = yd if and only if c  \triangleleft  \triangleright d. Balanced
colorings refine input equivalence. Therefore, each input equivalence class \scrK of nodes is a
disjoint union of  \triangleleft  \triangleright -equivalence classes: \scrK =\scrK 1 \.\cup \cdot \cdot \cdot \.\cup \scrK s. If c, d \in \scrK , then yc = yd if and only
if c, d belong to the same \scrK i. Writing variables in standard order (that is, in successive blocks
according to arrow-type), we may assume that Pc = Pd whenever c\sim I d.

Next, we define a map f\scrK : P\scrK \rightarrow P\scrK such that

f\scrK (yd) = 0 \forall d\in \scrK ,

Df\scrK (yd) = - id d \forall d\in \scrK ,

where id d is the identity map on Pd. This can be achieved with a polynomial map by poly-
nomial interpolation. Now define g : P \rightarrow P by

gc(x) = f\scrK (xc) when c\in \scrK .

The map g is admissible since it depends only on the node variable, and its components on
any input equivalence class are identical. Now gc(yd) = f\scrK (yd) = 0, so y is an equilibrium
of g. Moreover, Df | y is a block-diagonal matrix with blocks  - id c for each c \in \scrC ; that is,
Df | y = - idP , where idP is the identity map on P . The eigenvalues of Df | y are therefore all
equal to  - 1, so the equilibrium y is linearly stable.

12. Discussion. Making decisions out of indecision is a practical problem for many liv-
ing and nonliving groups of agents. From a modeling perspective, this problem possesses
both symmetries and a dynamical network structure. Symmetries arise from translating in-
decision into the assumption that agents and options are indistinguishable. The network
structure arises because agents can exchange their valuations of the available options. Un-
der the assumption of symmetry and network structure, our work reveals that prototypical
decision-making behaviors (consensus, deadlock, dissensus) can all generically emerge out of
indecision through symmetric synchrony-breaking. The type of synchrony-breaking studied in
this paper further provides the first example of exotic equilibrium solutions in an application.
Recall section 9.5.

It is important to stress that our assumptions must be understood in a qualitative and
approximate sense. In particular, the symmetry assumption that agents and options are in-
terchangeable cannot be verified exactly in practice. For instance, agents can have intrinsic

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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biases (however small) toward certain options, and these biases make the options not inter-
changeable in the eyes of an agent. Similarly, some agents can have slightly more importance
in the decision-making process. Our theory is, however, predictive also in the presence of
such small violations of the exact symmetry assumption. In particular, normally hyperbolic
portions of bifurcation branches (i.e., all portions that do not contains singularities, that is,
almost all the bifurcation diagram) are robust to perturbations, including in terms of their
stability (for instance, in the C1 sense). Thus, whereas violations to exact symmetry can
favor (or converge to) some branches instead of others, the branch structure and the type of
observed decision making are robustly preserved. Our theory is thus practically relevant in
all cases in which agents and options are close to interchangeable and especially useful when
making decisions out of indecision is important for the group behavior.

Our theory falls short when the symmetry assumption is strongly violated. The most
common cases in which this happens are probably when the influence network between the
agents possesses specific (e.g., sparsely connected) topologies or when agents have strong
biases. In these cases, however, one can still apply the methods outlined in this paper with
different symmetry groups and/or network structures.
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