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Abstract 

Remembering past events usually takes less time than their actual duration—their unfolding is 

temporally compressed in episodic memory. The rate of temporal compression (i.e., the ratio 

of the actual duration of an event to the duration of its remembering) is not constant but varies 

between individuals and as a function of the structure of events (e.g., how they can be divided 

into shorter sub-events). However, the cognitive mechanisms underlying these variations 

remain poorly understood. Given its role in the encoding and retrieval of information in 

episodic memory, working memory (WM) capacity could be an important determinant of 

temporal compression rates. We tested this hypothesis in two experiments in which we asked 

participants to watch and then mentally replay short videos showing people engaged in daily 

life activities. We showed that temporal compression rates depend on an interplay between 

WM and the structure of the remembered events: individuals' WM capacity (assessed using 

complex span tasks) were negatively associated with temporal compression rates, but only 

when the remembered events contained few event boundaries (i.e., few sub-events). This 

suggests that the temporal compression of events in episodic memory emerges when some of 

the sub-events to be retained are too long to be fully represented in WM. 

 

Keywords: Temporal compression, episodic memory, working memory, event segmentation. 
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The role of working memory capacity in the temporal compression of episodic 

memories: An individual differences approach 

Everyday experiences involve a continuous stream of incoming information that 

unfolds over time. Remembering such experiences typically takes less time than their actual 

duration in the past: the unfolding of events appears to be temporally compressed in episodic 

memories (D’Argembeau et al., 2022). The rate of this temporal compression is not constant 

but varies across events and individuals (Jeunehomme & D’Argembeau, 2020; Michelmann et 

al., 2023). While recent findings have shed light on the characteristics of events that 

determine their temporal structure and compression in memory (Bird, 2020; Brunec et al., 

2018; Clewett et al., 2019; Jeunehomme & D’Argembeau, 2020; Zacks, 2020), the cognitive 

mechanisms underlying individual differences in compression rates remain to be elucidated. A 

consistent body of research has shown that working memory (WM) capacity plays an 

important role in the encoding and retrieval of information in episodic memory (Unsworth, 

2019). However, most of these studies assessed memory for discrete stimuli (e.g., word lists) 

that lack the temporal structure of naturalistic events. Other studies suggest that WM capacity 

is involved in the segmentation and memorization of the continuous stream of sensory 

information (Jafarpour et al., 2022; Sargent et al., 2013), but its role in the temporal 

compression of events is unknown. To address this question, the present study aimed to 

investigate whether individual differences in episodic memory compression rates are related 

to WM capacity. 

The temporal compression of episodic memories  

If you try to remember an activity you performed earlier in the day (e.g., making 

coffee), it will probably take you less time than the actual event duration. This phenomenon 

has been referred to as the temporal compression of events in episodic memory 
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(D’Argembeau et al., 2022). Evidence for such compression mainly comes from studies that 

have examined how the unfolding of real-world or naturalistic events is remembered (e.g., 

Bonasia et al., 2016; Jeunehomme & D’Argembeau, 2019, 2023; Michelmann et al., 2019). 

For example, in some studies, participants were asked to mentally replay a series of events 

they previously experienced during a walk on a university campus. The duration of their 

mental replay of each event was measured by asking them to press a key at the beginning and 

end of their remembering. Temporal compression was then quantified by calculating the ratio 

between the actual event duration (as measured by a wearable camera that participants wore 

while experiencing the events) and the duration of its mental replay. On average, events were 

mentally replayed about eight times faster than their actual duration (Jeunehomme & 

D’Argembeau, 2019). Interestingly, however, there was substantial variation in compression 

rates across both individuals and events (i.e., the time needed to remember some events was 

close to their actual duration, whereas other events were remembered far more quickly). 

Verbal reports of memory content further showed that participants recalled the unfolding of 

events as a sequence of moments of past experience—referred to as experience units (e.g., “I 

left the building”, “then I walked to the bus stop”). Each experience unit was composed of a 

set of details that characterized a given moment of past experience, such as the people, 

objects, actions, and mental states involved. Importantly, however, the succession of 

experience units in memory was not a replica of the continuous flow of past experience but 

included discontinuities in the representation of the unfolding of events, as if participants 

mentally jumped from one moment of experience to another without representing everything 

that happened in between. Consequently, the rate of temporal compression of an event was 

negatively related to the density of recalled experience units (i.e., the number of experience 

units recalled by time unit of the actual event) that represented its unfolding (Folville et al., 

2020; Jeunehomme et al., 2020).  
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Based on these empirical studies, Jeunehomme and D’Argembeau (2020) proposed 

that the rate of temporal compression of an event in episodic memory depends on the 

proportion of past experience that is represented by the sequence of recalled experience units. 

According to this view, the unfolding of past episodes is remembered as a succession of 

experience units — each representing a particular moment of the past experience — that are 

separated by temporal discontinuities (i.e., moments of the past experience that are not 

remembered; Jeunehomme & D’Argembeau, 2020, 2023). The remembering of long and 

numerous experience units would increase the proportion of past experience that is 

represented in memory and thus lower temporal compression rates. According to this 

framework, temporal discontinuities (and thus temporal compression) in memory 

representations could result from at least two factors. First, from the fact that some sub-events 

are not remembered. For example, if I try to remember my breakfast this morning, I can see 

myself taking a mug from the cupboard and, immediately after, pouring coffee into it; the 

different things that happened between these two sub-events are skipped in my memory 

representation. This type of discontinuity depends on the number of recalled experience units. 

Second, some of the remembered sub-events may be only partially replayed. Let’s take the 

“coffee pouring” moment, this sub-event could, in reality, have lasted six seconds, but I could 

mentally relive only 2 of these 6 s. Thus, temporal compression also depends on the duration 

of recalled experience units. However, the cognitive mechanisms underlying the formation 

and retrieval of experience units remain unclear. Here, we suggest that WM capacity plays an 

important role in this respect, thereby modulating the rate of temporal compression of events 

in episodic memory. In the following sections, we first give a brief overview of research that 

has highlighted the role WM capacity in classical episodic memory tasks, and then discuss its 

role in naturalistic event processing.  
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Role of WM capacity in episodic memory 

WM enables the short-term maintenance and processing of information, which support 

many cognitive tasks such as solving math equation, reading, or understanding a narrative 

(Baddeley & Hitch, 1974). The efficiency of this system varies considerably from one 

individual to another and is frequently evaluated with complex span tasks in which 

participants are required to alternate between completing a processing task and memorizing a 

series of items (Conway et al., 2005). Research using these tasks has evidenced the important 

role of WM capacity in episodic memory. A recent review by Unsworth (2019) showed that 

performance on working and episodic memory tasks is strongly and consistently correlated 

(mean-weighted correlation coefficient = 0.58, 95%CI [0.56, 0.61]). Furthermore, research 

suggests that WM plays an important role in both the encoding (e.g., via its attentional control 

component, allowing for efficient, detailed and structured encoding) and retrieval (e.g., by 

supporting the self-generation and use of cues during memory search) of information in 

episodic memory (Unsworth, 2019). Taken together, studies that have examined the links 

between WM and episodic memory indicate that high WM capacity may support the 

construction of richer episodic memories, as well as a more efficient retrieval of those 

memories (for a review, see Unsworth, 2019; see also Lugtmeijer et al., 2019; Memel et al., 

2019; Miller et al., 2019; Sahu et al., 2016; Sörqvist & Rönnberg, 2012).  

Working memory and event memory  

While the contribution of WM in various aspects of episodic memory has been 

extensively studied, its role in temporal aspects of naturalistic memories (such as temporal 

segmentation and compression) has received much less attention. Beyond its implication in 

the memorization of discrete stimuli (e.g., word lists), WM may also play an important role in 

the ability to remember complex and temporally extended events (Bird, 2020; Loschky et al., 
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2020; Richmond & Zacks, 2017; Zacks, 2020; Zacks et al., 2007). According to event 

segmentation theory, we constantly segment the continuous flow of experience into 

meaningful units (e.g., pouring coffee, photocopying a document, writing an email, and so 

on). These events are temporally delimited by the perception of event boundaries (EBs; i.e., 

the perception that an event ends and another begins; Kurby & Zacks, 2008), which are 

triggered by significant shifts in the physical or conceptual features of the situation (e.g., 

entering a new room or moving on to another topic in a conversation). Between EBs, WM 

may enable the construction and maintenance of a mental model of the current situation (i.e., 

an event model) while continuously processing incoming information. These mental models 

representing “what is going on” would be used to make predictions about the near future and 

guide behavior accordingly (Richmond & Zacks, 2017). Following this view, when an EB is 

perceived, the current event model is updated and integrated in the episodic memory 

representation of the ongoing sequence of events—an experience unit is created in episodic 

memory on the basis of WM content (Bird, 2020; D’Argembeau, 2020; Loschky et al., 2020). 

This idea is supported by empirical studies showing that the number of recalled experience 

units when remembering the unfolding of events is predicted by the number of EBs contained 

in the events (Bonasia et al., 2016; Jeunehomme & D’Argembeau, 2020). 

Based on this framework, we suggest that the temporal compression of episodic 

memories depends on WM capacity because of its role in the encoding of experience units 

that represent the unfolding of events. Both the number and duration of experience units 

formed to represent an event in memory could vary according to the individuals’ WM 

capacity (see Figure 1a). First, the number of experience units formed to represent an event in 

memory may depend on how it is segmented. The identification of EBs at relevant moments 

of an event enables a better recall of its unfolding and a person’s segmentation ability lies in 

the aptitude to identify these particular EBs (as evidenced by the tendency to segment events 
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in a normative way; Sargent et al., 2013). This ability to segments events at relevant moments 

has been shown to be positively associated with WM capacity (Sargent et al., 2013) and 

negatively associated with WM forgetting rate (Jafarpour et al., 2022). Because of their better 

segmentation ability, individuals with high WM capacity may therefore recall more 

experience units. Second, individuals with higher WM capacity may also form longer 

experience units because they are able to accumulate more information in WM between 

successive event model updates (i.e., between EBs). The formation of more and longer 

experience units in episodic memory would then lead individuals with higher WM capacity to 

remember events with lower temporal compression.  

Besides its role in episodic memory encoding, WM may also be involved in the 

retrieval of experience units when remembering past experiences (see Figure 1b). When 

recalling a list of words after a delay, individuals with higher WM capacity have a stronger 

tendency to consecutively recall items that shared nearby list positions (i.e., they show a 

stronger temporal contiguity effect; Healey et al., 2019; Howard & Kahana, 1999; Kahana, 

1996; Spillers & Unsworth, 2011), which could in part explain why they outperform 

individuals with lower WM capacity in free recall tasks. This and related findings suggest that 

individuals with higher WM capacity are better able to retrieve contextual-temporal 

information linked to items and to use this information to probe memory for subsequent items, 

leading to better and more structured recall (Healey et al., 2019).  

Although this remains to be investigated, a similar mechanism could be involved in 

the retrieval of the unfolding of dynamic experiences, as suggested by the recent findings of 

Diamond & Levine (2020). When an experience unit is remembered, its encoding context 

may be retrieved and then serve as a cue for retrieving subsequent experience units. Higher 

WM capacity may allow for a more efficient retrieval and use of these temporal-contextual 
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cues, leading to a higher number of retrieved experience units. In addition, WM capacity 

could influence the duration of retrieved experience units. Event models represented in 

memory by experience units can be considered as multidimensional and temporally extended 

representations (Bird, 2020; Loschky et al., 2020; Richmond & Zacks, 2017; Zacks et al., 

2007) that integrate the different elements characterizing the ongoing situation (e.g., people, 

locations, objects, goals, and so on), as well as their temporal evolution (during spans of time 

in the order seconds). Memory for this temporal evolution may be more or less complete 

depending on the ease with which individuals are able to access information in long-term 

memory, which depends on WM capacity (Unsworth, 2019). As a results, individuals with 

lower WM capacity may retrieve some experience units only partially, such that the duration 

of retrieved experience units would be shorter (e.g., only 2 s of the 6-seconds event 

represented by the experience unit could be retrieved). Thus, WM capacity may in part 

determine temporal compression by modulating both the number and duration of experience 

units that can be accessed and maintained in mind during episodic retrieval. 

The current research 

As a first step to investigate the role of WM capacity in the temporal compression of 

events in episodic memory, we aimed to determine whether individual differences in WM 

capacity are related to temporal compression rates. As this study was the first to empirically 

investigate the potential link between WM capacity and the temporal compression of episodic 

memories, our goal was not to tease apart the different mechanisms by which WM could 

impact temporal compression (e.g., encoding vs retrieval processes) but rather to examine the 

global relationship between WM capacity and temporal compression rates, and to determine 

whether this relation depends on the segmental structural of events (i.e., the density of event 

boundaries).  
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We investigated these questions in two experiments. In each experiment, participants 

were asked to watch 40-s video clips showing people engaged in daily life activities. The 

number of EBs typically identified within these activities (i.e., EBs density) was high for half 

of the videos, and low for the other half. After each video, participants had to mentally replay 

its unfolding (allowing us to estimate temporal compression rates) and then to write down the 

content of their mental replay. This written description allowed us to identify the number of 

recalled experience units (using a standardized rating system) and their duration (by dividing 

the remembering duration by the number of experience units). We examined to what extent 

the temporal compression of events, as well as the number and duration of recalled experience 

units, were related to participants’ WM capacity (which was assessed with complex span 

tasks) and EBs density.  

If the efficient formation and retrieval of experience units in episodic memory relies 

(at least in part) on WM processes, WM capacity should be positively associated with the 

number and duration of recalled experience units, and negatively related to temporal 

compression rates. In addition, if the sequence of experience units recalled during the mental 

replay of past episodes mirror the meaningful units (i.e., events and sub-events) identified 

during perception by segmentation processes, the number of recalled experience units should 

be higher (and temporal compression lower) for videos that contain a higher density of EBs. 

Finally, we predicted the effect of EBs density on episodic memory would also depend on 

WM capacity. 
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Figure 1 

Hypothetical role of WM in the encoding and retrieval of experience units in episodic memory 

 

Note. (A) During ongoing experience, people maintain an active representation of “what’s happening 

now” (an event model) in WM. Each time they perceive an event boundary (EB), this event model is 

updated and transferred in episodic memory in the form of an experience unit. The number and 

duration of experience units composing the memory representation of an event determine its temporal 

compression. We assume that WM contributes to this process in two ways. First, WM may play a role 

in the segmentation process (i.e., in the identification of EBs), which then determines the number of 

experience units created for a given event (arrow 1). Second, WM may influence the duration of 
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experience units by determining the quantity of information that can be retained and integrated as a 

single unit between event model updates (arrow 2). (B) When retrieving an event from episodic 

memory, WM could influence the completeness of the mental replay of events, and thus their temporal 

compression, in two ways. First, the number of experience units remembered may depend on memory 

search processes driven by WM. WM capacity may allow to use temporal-contextual information to 

facilitate the retrieval of temporally contiguous experience units that represent the unfolding of the 

event (blue and gray arrows). Second, WM may also influence the duration of experience units that 

can be remembered by determining the quantity of information that can be retrieved and maintained 

within each experience unit (green arrows). EU: Experience unit, EB: Event boundary, D: temporal 

discontinuity. 

 

Experiment 1 

In Experiment 1, participants were asked to watch video clips showing people engaged 

in daily life activities. The number of EBs typically identified within these activities was high 

for half of the videos, and low for the other half. After each video, participants had to 

mentally replay its unfolding and then to write down the content of their mental replay. 

Individual differences in WM capacity were assessed using complex span tasks. We expected 

individual differences in WM capacity to be positively associated with the number of recalled 

experience units. Regarding the relation between WM capacity and the temporal compression 

of episodic memories, we formulated two hypotheses. Our main hypothesis was that a higher 

WM capacity would enable the recall of more and longer experience units, and thus be 

associated with lower temporal compression rates (hypothesis 1). However, people with 

higher WM capacity could be faster at retrieving experience units, which would reduce the 

time needed to mentally replay the videos and thus be associated with apparently higher 

temporal compression rates (hypothesis 2). To disentangle these two hypotheses, we 

examined estimates of the time needed to remember an experience unit (i.e., the total duration 

of memory replay divided by the number of recalled experience units). Indeed, according to 



14 

 

 

hypothesis 1, WM capacity should be positively associated with the duration of remembered 

experience units, whereas hypothesis 2 predicted a negative relationship.  

We also expected our episodic memory measures to differ according to the segmental 

structure of events, such that we would observe a higher number of recalled experience units 

for videos that contained more EBs. Furthermore, the temporal compression of events should 

be negatively associated with the number of recalled experience units and should thus be 

lower for videos that contain a higher density of EBs.  

Finally, in so far as the ability to perceive relevant EBs (i.e., EBs facilitating the 

creation of experience units in episodic memory) is associated with WM capacity (Sargent et 

al., 2013), we hypothesized that the effect of EBs density on our measures of interest 

(temporal compression and recalled experience units) would be greater for individuals with 

higher WM capacity. Thus, we expected to observe an interaction between the density of EBs 

within videos and WM capacity, such that the magnitude of the difference between high and 

low EBs videos would be positively associated with WM capacity. 

These hypotheses, as well as the methodological design and planned analyses, were 

pre-registered on OSF (https://osf.io/jt9ph). 

Method 

Participants 

Seventy-eight participants aged between 18 and 35 years (M = 26.06, SD = 5.84)  

were recruited on Prolific (https://www.prolific.co/; Palan & Schitter, 2018; Peer et al., 2021) 

and received a monetary compensation of £7.50 for their participation (the experiment lasted 

60 min, on average). To be eligible, participants had not to be currently taking any medication 

that could affect their ability to concentrate or have a history of psychiatric, psychological, or 

https://osf.io/jt9ph
https://www.prolific.co/
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neurological disorders. All participants were native English speakers. The study was approved 

by the ethics committee of the Faculty of Psychology of the University of Liège (ref. 2021-

030). 

The sample size of this study was estimated a priori using G*Power 3 (Faul et al., 

2007) to have a statistical power of 0.90 (with an alpha of .05, two-tailed) to detect  a 

significant relationship between individual differences in WM capacity and our measures of 

interests (temporal compression rates, and the number and duration of recalled experience 

units), with an effect size of r = 0.35 (see Miller et al., 2019).  

Materials  

WM capacity. To evaluate WM capacity, we used a battery of three automated 

complex span tasks whose content validity has been well established in the literature: the 

operation span (OSpan; Kane et al., 2004; Unsworth et al., 2005), symmetry span (SymSpan; 

Kane et al., 2004; Unsworth et al., 2009) and rotation span (RotSpan; Harrison et al., 2013; 

Kane et al., 2004).  Given that this study was conducted online, we used the shortened 

complex span tasks developed by Foster et al. (2015) to reduce the time needed for 

participants to complete the study and thus limit dropout. These shortened versions allow to 

reduce the time needed to complete the three WM tasks by 28% without unduly affecting the 

psychometric qualities of the measures (for more detail on how these shortened versions were 

developed, see Foster et al., 2015). 

The structure of these shortened tasks is similar to that of the classical versions. 

Participants are presented with a sequence of items that they must remember (i.e., the storage 

part of the task). In addition, they have to perform a secondary processing task between the 

presentation of each item in the sequence (i.e., the processing part of the task). The number of 

to-be-remembered items varies unpredictably from trial to trial. In the shortened tasks, 
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participants see each sequence length only once (for more detail, see Supplementary 

Materials). 

OSpan task. In the OSpan task, participants are asked to memorize letters 

(consonants) while solving mathematical problems that involve a parenthetical multiplication 

or division problem, followed by a number to be added to or subtracted from the product or 

dividend. The number of to-be-remembered items varies from three to seven. 

SymSpan task. In the SymSpan task, participants must determine if black and white 

geometric figures are symmetric along their vertical axes while also memorizing the location 

of red squares in a 4x4 grid. The number of to-be-remembered items varies from two to five. 

RotSpan task. During the RotSpan task, participants have to judge if presented letters 

are oriented correctly while memorizing the size and orientation of black arrows. The number 

of to-be-remembered items varies from two to five. 

Participants’ performance on each complex span task was evaluated by calculating the 

total number of items they accurately recalled in the correct serial position (for all trials), 

regardless of whether all items of the trial were correctly recalled or not (i.e., following the 

partial credit load method; Conway et al., 2005; Foster et al., 2015; Gonthier et al., 2016). 

Participants’ scores on the three complex span tasks were transformed into z-scores, which 

were then averaged to compute a global WM  score for each participant (Gonthier et al., 2016; 

Miller et al., 2019). The internal consistency of this composite measure was estimated using an 

omega total coefficient (ωt = 0.71; Gonthier et al., 2016; McDonald, 1999; Revelle & Zinbarg, 2009). 

Descriptive statistics for each WM task are available in the Supplementary Materials. 

Temporal compression in episodic memory. Individual differences in temporal 

compression, as well as the effect of EBs density on compression rates, were assessed using 

eight videos showing people performing daily life activities. Four videos contained a low 
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number of normative EBs (EB- videos) and the other four a high number of normative EBs 

(EB+ videos). Following the method of  Bangert et al. (2019),  these videos were edited from 

eight videos (lasting between 329 and 432 s) that were previously used in studies on event 

segmentation (Eisenberg & Zacks, 2016; Kurby & Zacks, 2011; Sargent et al., 2013). In these 

studies, while watching the videos, participants had to identify the smallest event units they 

found meaningful by pressing a key each time a sub-event ended and another sub-event 

begun. The number of normative EBs was computed for each second of each video by 

dividing the number of key presses by the number of participants who completed the 

segmentation task. Then, we calculated, within each video, the number of key presses for all 

possible segments of 40 s.1 Among the eight videos, we selected four segments that included a 

low number of EBs and four segments that included a high number of EBs. On average, the 

EB- and EB+ videos included 3.4 and 5.69 EBs, respectively (see Supplementary Materials 

for more detail regarding normative segmentation data of each video segment used in this 

study). 

 The temporal compression task (see Figure 2) contained eight trials (each participant 

saw the same eight videos in a random order). Each trial started with a fixation cross (3 s) 

followed by a video. Participants were instructed to carefully watch the video and, when it 

was over, to mentally replay its unfolding, in as much detail as possible. The time needed to 

remember the video was measured by asking participants to press the spacebar to indicate the 

start and end of their mental replay (Arnold et al., 2016; Bonasia et al., 2016; Jeunehomme et 

                                                           
1 Since the present experiment was carried out online, we wanted to reduce the time needed to 

complete it as much as possible (to avoid dropout), so we opted for 40 s videos. This duration was 

chosen based on a pre-test where we compared different durations, from 20 to 60 s, and which showed 

that a 40 s duration allowed to obtain an optimal ratio between segmentation effects and task duration. 
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al., 2020; Jeunehomme & D’Argembeau, 2019)2. Then, they had to write down every action 

that came to their mind during their mental replay of the video (they were instructed to write 

down one action per line; Zheng et al., 2020).   

Before starting the experimental trials, participants saw a video tutorial (filmed from a 

first-person perspective) summarizing what they need to do to perform the task properly. This 

video tutorial, as well as the stimuli used in the temporal compression task, are publicly 

available on OSF (https://osf.io/5xeha). The instructions were adapted from previous studies 

on temporal compression (Folville et al., 2020; Jeunehomme et al., 2020; Jeunehomme & 

D’Argembeau, 2019, 2020). Participants had to perform one practice trial to familiarize them 

with the entire procedure before starting the main task. 

For each trial of the main task, we computed the rate of temporal compression in 

memory as the ratio of the original duration of the video to the time taken to mentally replay it 

(Jeunehomme & D’Argembeau, 2019). A temporal compression rate of 1 indicates that the 

time taken to mentally replay the video was equal to its original duration, and temporal 

compression rates above 1 indicate the occurrence of temporal compression (e.g., a temporal 

compression rate of 2 means that the mental replay of the video was 2 times faster than its 

actual duration). 

 The number of experience units recalled by participants was quantified based on the 

written descriptions of their memories. We used a scoring system developed by Schwartz et 

al., (1991), the “Action Coding System”, which is frequently used in studies on event 

                                                           
2 We used a silent mental replay task rather than a think aloud procedure because research has shown 

that the verbalization of mental contents in the think aloud procedure takes time and thus increases the 

duration of a cognitive process (Fox et al., 2011), which would provide a biased estimate of 

remembering duration.   
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segmentation and memory (e.g., Sargent et al., 2013; Smith et al., 2021; Zheng et al., 2020). 

We considered the number of type 1 actions recalled by participants as a proxy of the number 

of experience units they mentally replayed. A type 1 action is defined as “the smallest 

component of a behavioral sequence that achieves a concrete, functional result of 

transformation, describable as the movement of an object from one place to another or as a 

change in the state of an object (e.g., from open to closed, on to off)…” (Schwartz et al., 1991, 

p. 384). The first author scored the content of each description and, to assess the reliability of 

the coding scheme, a second coder independently scored a random selection of 20% of 

descriptions. The inter-rater agreement was good (ICC = 0.93, 95%CI [0.9, 0.95], robust 

agreement = 0.87, 95%CI [0.79, 0.92]; see Supplementary Materials for more details). 

Finally, we estimated the time taken by participants to mentally replay each experience 

unit they reported for a given video by dividing the duration their mental replay by the 

number of experience units they reported.  

The reliability (average split-half) of the three measures of interest was r = 0.89 for 

temporal compression rate, r = 0.91 for the number of recalled experience units, and r = 0.93 

for the duration of recalled experience units.  
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Figure 2 

Unfolding of a trial in the temporal compression task 

 

Note. First, participants saw a fixation cross during 3 s and then a 40-s video showing a person 

engaged in a daily life activity. As soon as the video ended, they had to mentally replay its unfolding in 

as much detail as possible. They were asked to press the space bar to indicate the beginning and end 

of their remembering. Finally, they had to write down the content of their mental replay.  

 

Procedure 

Participants received an URL (on their prolific account) allowing them to take part in 

the experiment through Gorilla ((https://gorilla.sc/), a platform providing reliable RTs 

measures for online studies (Anwyl-Irvine et al., 2021; Anwyl-Irvine et al., 2020). They were 

asked to perform the tasks in a quiet and distraction-free environment and were informed that 

they must complete all tasks (in their entirety) to receive the monetary compensation. They 

first performed the three complex span tasks (Ospan, SymSpan and RotSpan) on E-Prime GO 

(https://pstnet.com/eprime-go/)3, which was downloaded from Gorilla. After the three 

                                                           
3 These tasks were originally developed on the E-Prime software (https://pstnet.com/products/e-

prime/) by the Georgia Tech Attention and Working Memory Lab, which kindly shared with us the E-

Studio files necessary to create an online version of each task using the E-Prime Go platform. E-Run 

files for the three tasks are available for download from their website (http://englelab.gatech.edu). 

https://gorilla.sc/
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complex span tasks, participants were allowed to take a 30 min break and then performed the 

temporal compression task on Gorilla.  

Data cleaning 

When using complex span tasks to evaluate WM capacity, it is recommended to 

exclude participants who show poor performance on the processing part of the tasks (to avoid 

including participants who neglected the processing part of the tasks; Conway et al., 2005). 

Following the approach of Gonthier et al., (2016), we excluded participants whose processing 

accuracy was below the fifth lower percentile of the sample for one of the three tasks (see 

Supplementary Materials for more detail).  

Regarding the temporal compression task, following our pre-registered plan, we 

excluded from the analyses: 1) all experimental trials for which the difference between the 

video’s duration of presentation and its real duration was greater than 3 s (to remove trials in 

which the video was not displayed correctly), and 2) trials with a duration of mental replay 

less than 2 s (i.e., to remove trials during which the participant inadvertently pressed the 

button twice or did not properly follow the instructions). If more than half of trials of one type 

(high or low density of EBs) had to be excluded for a given participant, the entire participant 

was excluded and replaced.  

Statistical analyses  

All statistical analyses were conducted using  R (version 4.0.3; R Core Team, 2020) 

and RStudio (version 1.3.1093; RStudio Team, 2020) on Windows 10 x64 (build 19044). 

Specific packages used for each analysis are detailed in the Supplementary Materials. Our 

main hypotheses were tested using linear mixed-effects models (Brown, 2021).  We fitted 

three models with the following outcome variables: temporal compression rates, the number 

of recalled experience units, the duration of recalled experience units. Three predictors were 
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included in all models: 1) participants’ WM composite score, which was a continuous 

predictor varying between subjects, 2) the EBs density of videos, which was a dichotomous 

within-subjects predictor, and 3) their interaction. We also ran another mixed-effects model 

evaluating if the number of recalled experience units predicted temporal compression rates 

(this model also included EBs density, WM score, and their interaction as predictors). In all 

models, EBs density was coded as -0.5 and 0.5, WM score was standardized, and the number 

of recalled experience units was centered at the participant level (Brauer & Curtin, 2018; 

Schielzeth, 2010).  

As the application conditions of classical linear mixed-effects models were not met, 

we used a robust alternative. We estimated our models with the DAStau procedure 

implemented in the robustlmm package (Koller, 2016). This method enables to handle both 

within- and between- participants outliers as well as missing values (Koller, 2013). Equations 

were estimated with the smoothed Hubber function (Koller, 2013). We first tried to include 

the maximal random effects structure for each analysis (Barr et al., 2013) and then we 

iteratively simplified the model until it converged and the equations could be properly 

estimated (Brauer & Curtin, 2018; Mirman, 2014). The models reported here contained two 

random effects: a random intercept for the participants and a random intercept for the stimuli 

(i.e., the videos; Baayen et al., 2008; Judd et al., 2017).  For each model, explained variance 

was assessed by computing Nakagawa’s R2s (Johnson, 2014; Nakagawa et al., 2017; 

Nakagawa & Schielzeth, 2013).  

Regarding inference criteria for fixed effects, we computed Wald’s 95% confidence 

intervals (95 % CIs) and p-values from standard errors (SE) and t-statistics returned by the  

models (considering an alpha of 0.05, two tailed).  For each model, we extracted estimated 

marginal means, estimated marginal slopes and their standard errors. We computed 
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asymptotic 95 % CIs for estimated marginal means and performed z-tests to assess the 

statistical significance of estimated marginal slopes. 

In the Results section, the match between our hypotheses and the collected data is 

assessed in the light of the different models described above. Descriptive statistics associated 

with each outcome are available in the Supplementary Materials. 

Results   

Temporal compression rates 

We fitted a mixed-effects model examining the effects of WM capacity, EBs density, 

and their interaction on the rates of temporal compression of events in episodic memory. 

Contrary to our prediction, we did not observe a significant main effect of WM capacity on 

temporal compression rates (Table 1). Interestingly, however, there was a significant 

interaction between WM capacity and the density of event boundaries included in the videos 

(see Figure 3A). Follow-up tests revealed that WM capacity was a significant predictor of 

temporal compression rates for videos that included a low density of EBs (b = -0.36, SE = 

0.16, z = -2.19, p = 0.028), but not for videos that included a high density of EBs (b = -0.18, 

SE = 0.16, z = -1.09, p = 0.274). According to the model estimates, for EB- stimuli, people 

whose WM score were one SD below the mean took, on average, 12.75 s (temporal 

compression rate = 3.14) to mentally replay the videos, while people with WM score one SD 

higher than the mean took, on average, 16.56 s (temporal compression rate = 2.42) to 

mentally replay the same videos. Finally, we obtained a weak but significant effect of EBs 

density (according to the model estimates, temporal compression rates were lower when EBs 

density was high). 
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Table 1 

Robust linear mixed effects model predicting temporal compression rates in Experiment 1 

Parameter Coefficient SE t df p 95% CI 

Intercept 2.55 0.18 13.87 585 < .001 [2.19, 2.92] 

WM capacity -0.27 0.16 -1.68 585 .093 [-0.59, 0.05] 

EBs density 0.44 0.19 2.31 585 .021 [0.07, 0.82] 

Interaction -0.18 0.07 -2.69 585 .007 [-0.31, -0.05] 

Observations 589      

Marginal R2 0.05      

Conditional R2 0.76      

 

Number of recalled experience units  

Next, we fitted a similar mixed-effects model with the number of recalled experience 

units as outcome. This showed that WM capacity was positively associated with the number 

of recalled experience units, independently of EBs density (the interaction was not significant; 

Table 2, Figure 3B). According to the model estimates, participants with a WM score one SD 

below the mean recalled, on average, 7.93 experience units, 95%CI [6.10, 9.79], while 

participants with a WM score one SD above the mean recalled, on average, 9.17 experience 

units, 95%CI [7.31, 10.68]. The main effect of segmentation was not significant. 
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Table 2 

Robust linear mixed-effects model predicting the number of recalled experience units in 

Experiment 1 

Parameter Coefficient SE t df p 95% CI 

Intercept 8.55 0.92 9.33 585 < .001 [6.75, 10.34] 

WM capacity 0.62 0.24 2.59 585 .010 [0.15, 1.09] 

EBs density -3.01 1.78 -1.70 585 .090 [-6.49, 0.47] 

Interaction -0.14 0.17 -0.87 585 .386 [-0.47, 0.18] 

Observations 589      

Marginal R2 0.16      

Conditional R2 0.76      

 

Associations between temporal compression and recalled experience units 

According to our hypotheses, temporal compression would result (at least in part) 

from the fact that the experience units remembered for a given past episode do not represent 

its entire unfolding (i.e., some segments of the past episode are not recalled). Thus, we 

expected that the number of recalled experience units would be negatively associated with 

temporal compression rates. WM capacity could be negatively associated with temporal 

compression rates not only because higher WM capacity would allow the recollection of more 

experience units, but also because it would increase the duration of recalled experience units 

(see Introduction). If it was the case, WM capacity should remain a significant predictor of 

temporal compression rates when the number of recalled experience units is taken into 

account. To investigate this possibility, we ran a model that not only included WM, EBs 

density, and their interaction as predictors of temporal compression rates, but also the number 
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of recalled experience units. Consistent with previous studies (e.g., Folville et al., 2020; 

Jeunehomme et al., 2020; Jeunehomme & D’Argembeau, 2019), the number of recalled 

experience units was negatively associated with temporal compression rates (Figure 3C). 

Importantly, the interaction between WM and EBs remained significant (Table 3).  

Table 3 

Robust linear mixed-effects model predicting temporal compression rates (with the number of 

recalled experience units included as predictor) in Experiment 1 

Parameter Coefficient SE t df p 95% CI 

Intercept 2.56 0.16 15.77 584 < .001 [2.24, 2.88] 

Recalled experience units -0.08 0.01 -6.48 584 < .001 [-0.11, -0.06] 

WM capacity -0.27 0.16 -1.66 584 .096 [-0.59, 0.05] 

EBs density 0.20 0.08 2.62 584 .009 [0.05, 0.35] 

Interaction -0.21 0.07 -3.07 584 .002 [-0.34, -0.07] 

Observations 589      

Marginal R2 0.07      

Conditional R2 0.77      

 

Duration of recalled experience units 

Our conceptualization of the role of WM capacity in the temporal compression of 

events in episodic memory assumed that WM capacity should be positively associated with 

both the number and duration of remembered experience units. This higher number and 

duration of recalled experience units should be associated to lower temporal compression 

rates. However, because of a greater facility to access information in long term memory 

(Unsworth, 2019), people with higher WM capacity could be faster at retrieving and mentally 
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reviewing experience units, which could then shorten overall mental replay durations. To 

investigate this possibility, we fitted a last model with the duration of remembered experience 

units as outcome. Neither WM capacity, EBs density, nor their interaction were significant 

predictors of the duration of recalled experience units (Table 4). 

Table 4 

Robust linear mixed-effects model predicting the duration of recalled experience units in 

Experiment 1 

Parameter Coefficient SE t df p 95% CI 

Intercept 2.49 0.19 12.91 585 < .001 [2.11, 2.87] 

WM capacity 0.06 0.15 0.40 585 .689 [-0.23, 0.34] 

EBs density 0.33 0.26 1.24 585 .214 [-0.19, 0.84] 

Interaction 0.13 0.08 1.71 585 .087 [-0.02, 0.28] 

Observations 589      

Marginal R2 0.01      

Conditional R2 0.66      
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Figure 3 

Plot of fitted values (and their 95% CIs) for each model of Experiment 1 

 

Note.  (A) Prediction of temporal compression by WM capacity for high and low EBs density videos. 

(B) Prediction of the number of recalled experience units by WM capacity for high and low EBs 

density videos. (C) Prediction of temporal compression by the number of recalled experience units. (D) 

Prediction remembered experience units duration by WM capacity, for high and low EBs density 

videos. 
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Discussion 

The main goal of Experiment 1 was to investigate the impact of WM capacity and EBs 

density on temporal compression rates in episodic memory. The main effect of WM capacity 

was not statistically significant but there was a significant interaction between the density of 

EBs and WM capacity. WM capacity was negatively associated with temporal compression 

rates, but only when EBs density was low. The lower and non-significant relation between 

WM capacity and temporal compression rates when the recalled activity contained a high 

density of EBs was against our expectations.  

We then focused on the number and duration of recalled experience units. First, we 

found that the number of recalled experience units was positively associated with WM 

capacity, regardless of EBs density. Second, we observed a significant negative relation 

between the number of recalled experience units and temporal compression rates, thus 

replicating results of previous studies (Folville et al., 2020; Jeunehomme et al., 2020; 

Jeunehomme & D’Argembeau, 2019). The interaction between WM capacity and EBs density 

in predicting temporal compression rates remained significant. Taken together, these results 

suggest that the interaction between WM capacity and EBs density in predicting compression 

rates is not due to differences in the number of recalled experience units. Another possibility 

would be that WM capacity allows the formation and retrieval of longer experience units for 

events that have fewer EBs. However, although the duration of remembered experience units 

for EB- stimuli tended to be longer with increasing WM capacity (see Figure 3D), this 

difference failed to reach statistical significance. We thus decided to conduct a second 

experiment to investigate whether the interaction between WM capacity and EB density on 

compression rates could be replicated, and to further investigate the associations between WM 

capacity and the number and duration of recalled experience units. 
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Experiment 2 

The results of Experiment 1 suggest that the influence of individual differences in WM 

capacity on temporal compression in episodic memory is complex and depends on the density 

of EBs within events. Thus, the first aim of Experiment 2 was to replicate the observed 

interaction between WM capacity and EB density on compression rates, using a sample size 

determined a priori for the investigation of this interaction. Furthermore, given the lack of 

significant main effect of EBs density on the number of recalled experience units in 

Experiment 1, we selected EB+ and EB- videos that were more contrasted regarding 

normative EBs density. Given these more contrasted videos, we expected to observe a 

significant effect of EBs density on both temporal compression rates and the number of 

recalled experience units. Other effects should be the same as in Experiment 1.  

Method 

Participants 

Participants were 210 young adults (109 females, 97 males and 4 non defined), aged 

between 18 and 35 years (M = 27.70, SD = 4.99), who were recruited on Prolific 

(https://www.prolific.co/; Palan & Schitter, 2018; Peer et al., 2021). They received a monetary 

compensation of £7.50 for their participation. The study was approved by the ethics 

committee of the Faculty of Psychology of the University of Liège (ref. 2021-030). The 

inclusion criteria were the same as in Experiment 1. The sample size was estimated a priori 

using the R package simr (1.0.5 ; Green & MacLeod, 2016; Kumle et al., 2021). Using data 

from Experiment 1, we ran Monte-Carlo simulations (Brysbaert & Stevens, 2018; DeBruine 

& Barr, 2021) to estimate the power we would have for the detection of the interaction 

between WM capacity and EBs density in the prediction of temporal compression across a 

range of sample sizes (between 80 and 240 participants). This analysis indicated that a 

https://www.prolific.co/
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statistical power of 90.70% (95%CI [88.73, 92.43]) could be achieved with a sample size of 

210 participants (considering an alpha of 0.05 and the same effect size as the one obtained in 

Experiment 1; see Supplementary Materials). 

Materials and procedure 

Stimuli used in Experiment 1 were initially created for another study investigating the 

effects of event segmentation and duration on temporal compression (following the method 

presented in Bangert et al., 2019). When designing that study, we not only had to extract a 

pair of 40-s segments (one EB+ and one EB-), but also a pair of 20-s segments (one EB+ and 

one EB-), for each of the eight videos. The four segments should not overlap, and the two 

pairs had to be contrasted in terms of normative EBs. Given these constrains, the 40-s EB+ 

segment extracted from a given video was not always the segment with the higher possible 

number of EBs (similarly, the 40-s EB- segments were not always those with the lower 

possible number of EBs-). Therefore, to obtain more contrasted stimuli in Experiment 2, we 

selected new video segments. Within each of the eight videos, we extracted the 40-s segment 

with the higher number of EBs and the segment with the lower number of EBs. Then, among 

these sixteen videos, we chose the eight videos (each extracted from a different video) with 

the highest and lowest number of EBs, resulting in four EB+ and four EB- stimuli. The 

average number of normative EBs was 3.6 for EB- videos and 6.33 for EB+ videos. In 

addition, we were careful not to include in EB+ videos sequences in which the actor 

performed the same action many times consecutively (even if the video, due to this repetition, 

contained many normative EBs). Otherwise, all tasks and procedures were identical to those 

of Experiment 1.  
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Data cleaning and statistical analyses 

Data cleaning and statistical analyses were identical to Experiment 1. Again, there was 

a good inter-rater agreement for the scoring of the number of recalled experience units (ICC = 

0.96, 95%CI [0.94, 0.97], robust agreement = 0.80, 95%CI [0.76, 0.84]). Internal consistency 

of the WM score was similar to Experiment1 (ωt = 0.76), as was the split-half reliability for 

temporal compression rates (r = 0.92), the number of recalled experience units (r = 0.89) and 

the duration of recalled experience units (r = 0.88). When an expected interaction was 

observed, we assessed the statistical significance of estimated marginal slopes with a one-

tailed z-test. All data and analysis scripts are available on OSF (https://osf.io/jt9ph). 

https://osf.io/jt9ph


33 

 

 

Results 

Temporal compression rates 

First, we replicated the interaction between WM capacity and EBs density observed in 

Experiment 1 (Table 5, Figure 4a). More precisely, we found that WM capacity was a 

significant predictor of temporal compression for EB- videos (b = -0.25, SE = 0.13, z = -1.93, 

p = 0.027), but not for EB+ videos (b = -0.10, SE = 0.13, z = 0.81, p = 0.21).  According to 

model estimates, for EB- stimuli, individuals with WM score one SD below the mean took, on 

average, 10.93 s (temporal compression rate = 3.66) to remember the videos, whereas 

individuals with WM score one SD above the mean took, on average, 12.63 s (temporal 

compression rate = 3.17) to mentally replay the same videos.  

As expected, there was also a significant main effect of EBs density on temporal 

compression rates (compression was lower when EBs density was high). The main effect of 

WM capacity was not significant (as in Experiment 1). 

Table 5 

Robust linear mixed-effects model predicting temporal compression rates in Experiment 2 

Parameter Coefficient SE t df p 95% CI 

Intercept 2.88 0.19 15.44 1,540 < .001 [2.51, 3.24] 

WM capacity -0.17 0.12 -1.41 1,540 .159 [-0.42, 0.07] 

EBs density 1.07 0.28 3.78 1,540 < .001 [0.51, 1.63] 

Interaction -0.14 0.06 -2.37 1,540 .018 [-0.26, -0.02] 

Observations 1,544      

Marginal R2 0.07      

Conditional R2 0.72      
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Number of recalled experience units  

As expected, participants recalled significantly more experience units for EB+ videos 

compared to EB- videos (Table 6). According to model estimates, 5.35 experience units were 

recalled on average for EB- videos (95%CI [1.91, 8.8]) vs. 11.62 for EB+ videos (95%CI 

[8.18, 15.05]). However, contrary to Experiment 1, there was no significant relationship 

between WM capacity and the number of recalled experience units (Figure 4b). There was 

also no significant interaction. 

Table 6 

Robust linear mixed-effects model predicting the number of recalled experience units in 

Experiment 2 

Parameter Coefficient SE t df p 95% CI 

Intercept 8.48 1.25 6.79 1,540 < .001 [6.03, 10.93] 

WM capacity 0.09 0.22 0.40 1,540 .690 [-0.35, 0.53] 

EBs density -6.27 2.46 -2.55 1,540 .011 [-11.09, -1.44] 

Interaction -0.12 0.16 -0.79 1,540 .430 [-0.43, 0.18] 

Observations 1,544      

Marginal R2 0.25      

Conditional R2 0.77      
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Relations between temporal compression and recalled experience units 

As in Experiment 1, there was a significant effect of the number of recalled experience 

units on temporal compression rates, such that temporal compression decreased with the 

number of recalled experience units (Figure 4c). In addition, the interaction between WM 

capacity and EBs density on compression rates remained significant when the number of 

recalled experience units was taken into account (Table 7). 

Table 7 

Robust linear mixed-effects model predicting temporal compression rates (with the number of 

recalled experience units included as predictor) in Experiment 2 

Parameter Coefficient SE t df p 95% CI 

Intercept 2.88 0.18 16.15 1,539 < .001 [2.53, 3.23] 

Recalled experience units -0.03 0.01 -2.53 1,539 .011 [-0.05, -0.01] 

WM capacity -0.17 0.12 -1.39 1,539 .164 [-0.41, 0.07] 

EBs density 0.91 0.27 3.36 1,539 .001 [0.38, 1.44] 

Interaction -0.14 0.06 -2.33 1,539 .020 [-0.26, -0.02] 

Observations 1,544      

Marginal R2 0.07      

Conditional R2 0.72      
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Duration of recalled experience units  

There was a significant effect of EBs density on the duration of recalled experience 

units (i.e., recalled experience units were longer when EBs density was low). According to 

model estimates, the average experience unit duration was 2.16 s (95%CI [1.43, 2.90]) when 

EBs density was high and 3.63 s (95%CI [2.90, 4.37]) when EBs density was low. The 

analysis also revealed a significant interaction between WM capacity and EBs density (Table 

8). As illustrated in Figure 4D, the trend observed in the first experiment (see Figure 3D) was 

confirmed. WM capacity was positively associated with the duration of remembered 

experience units, but only when EBs density was low (EB-: b = 0.25, SE = 0.11, z = 2.25, p = 

0.012; EB+: b = 0.01, SE = 0.11, z = 0.05, p = 0.479). According to model estimates, for EB- 

videos, experience units remembered by individuals with WM score one SD above the mean 

were, on average, 506 ms longer than those remembered by individuals with WM score 

situated one SD below the mean. 

Table 8 

Robust linear mixed-effects model predicting the duration of recalled experience units in 

Experiment 2 

Parameter Coefficient SE t df p 95% CI 

Intercept 2.90 0.27 10.56 1,540 < .001 [2.36, 3.44] 

WM capacity 0.13 0.11 1.22 1,540 .221 [-0.08, 0.34] 

EBs density 1.47 0.51 2.87 1,540 .004 [0.47, 2.47] 

Interaction 0.25 0.07 3.31 1,540 .001 [0.10, 0.39] 

Observations 1,544      

Marginal R2 0.11      

Conditional R2 0.60      
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Figure 4 

Plot of fitted values (and their 95% CIs) for each model of Experiment 2 

 

Note. (A) Prediction of temporal compression by WM capacity for high and low EBs density videos. 

(B) Prediction of the number of recalled experience units by WM capacity for high and low EBs 

density videos. (C) Prediction of temporal compression by the number of recalled experience units. (D) 

Prediction remembered experience units duration by WM capacity, for high and low EBs density 

videos. 
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Discussion 

The interaction between WM capacity and EBs density in predicting compression rates 

in episodic memory was replicated in Experiment 2 with a sample size that was specifically 

determined to investigate this interaction. Similarly to Experiment 1, individual differences in 

WM capacity were predictive of temporal compression rates for events with a low density of 

EBs (the higher the WM capacity, the lower the temporal compression rates), but not for 

events with a high density of EBs.  

We also found a clear effect of EBs density on both recalled experience units and 

temporal compression rates (the number of recalled experience units was significantly higher 

and temporal compression rates were significantly lower for EB+ videos compared to EB- 

videos). These results further highlight the key role of event segmentation in shaping the way 

we remember their unfolding. However, contrary to Experiment 1, we did not observe a 

significant main effect of WM capacity on the number of recalled experience units. This 

discrepancy could result from the use of more contrasted stimuli in Experiment 2 (see the 

Method section). In these more contrasted stimuli, the sub-events composing the depicted 

activities (e.g., changes/updates in the actions performed by the actors) were perhaps obvious 

enough to be identified with little WM resources. Consequently, the number of recalled 

experience units might be less dependent on WM capacity. Despite this possibility, it is worth 

noting that the number of recalled experience units remained a strong predictor of temporal 

compression rates. 

Finally, by using videos more contrasted in terms of EBs density, we sought to clarify 

the interplay between EBs density and WM capacity in determining the duration of 

remembered experience units. We found that the mean duration of recalled experience units 

was significantly shorter for EB+ videos than for EB- videos. In addition, we observed a 
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significant interaction between EBs density and WM capacity: the duration of remembered 

experience units was longer with higher WM capacity, but only for EB- videos. Note that a 

similar pattern was observed in Experiment 1 (see Figure 3D), although the interaction failed 

to reach statistical significance. This further suggests that the association between WM and 

the temporal compression of events in episodic memory when EBs density is low results from 

the need of high WM capacity to remember experience units representing longer sub-events.   
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General Discussion 

The main goal of this research was to examine the role of WM capacity in the 

temporal compression of events in episodic memory. We hypothesized that individuals with 

higher WM capacity would compress events to a lesser extent because they would recall more 

and longer experience units to represent the unfolding of events. Our results showed that the 

relation between WM capacity and temporal compression was in fact dependent on the 

segmental structure of events.  

WM, event segmentation, and the duration of experience units 

The results of Experiments 1 and 2 showed that WM capacity was related to the 

temporal compression of information in episodic memory when events included few EBs: in 

this case, higher WM capacity was associated with lower compression rates. Furthermore, 

Experiment 2 revealed a positive association between the duration of recalled experience units 

and WM capacity for events with a low EBs density. Considering the fact that events with 

fewer EBs were composed of longer sub-events, these results suggest that higher WM 

capacity may reduce the temporal compression of events in episodic memory by enabling the 

remembering of longer segments of past experience (i.e., the duration of remembered sub-

events is closer to their actual duration in the past). By contrast, our results suggest that when 

events can be segmented into smaller meaningful units, remembering their unfolding is less 

demanding in terms of WM resources. 

The role of WM capacity in determining the duration of experience units that represent 

the unfolding of events in episodic memory could take place during event perception. When 

there is little change in the ongoing situation (e.g., a man continuously turning a car jack 

during 40 s), perceived EBs are temporally distant from each other, such that additional WM 

resources may be needed to enable the active maintenance of longer event models. When the 
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event model that needs to be maintained exceeds WM capacity, the corresponding sub-event 

would be only partially integrated in episodic memory as an experience unit—some 

proportion of experience would not be represented (Figure 5). Therefore, the duration of 

experience units formed to represent long sub-events may depend on WM capacity: the higher 

this capacity, the longer the experience units encoded in episodic memory, and thus the lower 

the temporal compression of events4.   

Figure 5 

Schematic representation of the assumed influence of WM capacity on the duration of 

experience units that compose episodic memories 

 

Note. When the event model that needs to be maintained between two EBs exceeds WM capacity (e.g., 

because of its duration), it is only partially integrated in episodic memory, leading to temporal gaps in 

the representation of the event’s unfolding (see EU 3). Thus, temporal compression may depend on 

both the temporal distance between perceived EBs and WM storage capacity. EU: Experience unit, 

EB: Event boundary. 

                                                           
4 The duration of experience units formed to represent long sub-events may depend on individual’s 

WM capacity but also on different features of the sub-event (e.g., the complexity of perceptual 

information). The identification of these features, as well as their interaction with sub-events duration, 

will be needed to deepen our understanding of the mechanisms determining the duration of experience 

units formed during event perception. 
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Another, not mutually exclusive, possibility is that WM capacity determines the 

duration of experience units at the time of retrieval. When one remembers an experience, past 

event models corresponding to particular moments of that experience (i.e., experience units) 

are sequentially reactivated (Jeunehomme et al., 2022). The quantity of information retrieved 

for each experience unit—details about the temporal evolution of persons, objects, actions, 

and so on—may depend on the ease with which individuals are able to access and maintain 

information in memory, an ability strongly associated with WM capacity (Unsworth, 2019). 

WM capacity may thus determine the quantity of information that can be represented within 

each experience unit5 during retrieval (i.e., information that is retrieved, maintained online, 

and manipulated for the purpose of mental replay; Hassabis & Maguire, 2007), such that the 

duration of replayed experience units is longer with increasing WM capacity.  

WM, event segmentation, and the number of recalled experience units 

We expected to observe a higher number of recalled experience units for activities that 

included a higher number of normative EBs and a positive relationship between WM capacity 

and the number of recalled experience units.  In Experiment 1, participants recalled, on 

average, more experience units for EB+ videos compared to EB- videos, but the difference 

was not statistically significant. In Experiment 2, where more contrasted stimuli were used, 

there was a statistically significant effect of EBs density; on average, participants recalled two 

times more actions for EB+ videos than EB- videos. These results are in line with the view 

                                                           
5 Research examining the holistic vs fragmented nature of information forgetting in episodic memory 

(e.g., Andermane et al., 2021) suggests that the retrieval of event representations tend to be all-or-

none: either all components (e.g., objects, persons, location) are remembered or the event is not 

remembered. Nevertheless, in most of these studies, event representations corresponded to learned 

associations between static elements (e.g., a place, a celebrity and an object). The dynamic/temporally 

extended nature of memory representations for daily-life events was not taken into account. 
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that the perception of EBs plays an important role in shaping memories for naturalistic events 

(Brunec et al., 2018; Jeunehomme & D’Argembeau, 2020; Radvansky & Zacks, 2017; Zacks, 

2020).  

The relation between WM and the number of recalled experience units was less clear. 

Although we observed a weak but a statistically significant increase of recalled experience 

units as a function of participants’ WM capacity in Experiment 1, this effect was not 

replicated in Experiment 2. The lack of a robust link between WM capacity and the number of 

recalled experience units may seem surprising given the results of Sargent et al. (2013) who 

reported a positive association between WM capacity and the number of sub-events recalled 

after watching videos depicting everyday events. This discrepancy could be due to 

methodological differences between the two studies. Notably, there were substantial 

differences in the duration of stimuli (351 s, on average, in the study of Sargent et al. vs. 40 s 

in the present study). Event segmentation is known to operate simultaneously at multiple time 

scales, leading to the formation of hierarchically organized memory representations: groups of 

fine-grained events cluster into larger event units (Hard et al., 2011; Radvansky & Zacks, 

2017; Zacks, 2020). The involvement of WM in the formation of event models could be more 

important at particular levels of this hierarchy (e.g., for abstract event models covering long 

periods of time vs more specific models corresponding to shorter sub-events). As a result, the 

number of experience units representing the event in episodic memory could be more or less 

dependent on WM capacity at different levels of event model specificity. To test this 

hypothesis, it would be worthwhile to investigate whether the relationship between WM 

capacity and the number of recalled experience units varies as a function of the duration of the 

remembered event, and whether this relates to differences in event segmentation efficiency.  
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Regarding memory retrieval, previous studies suggest that high WM individuals tend 

to outperform low WM individuals because they are better at retrieving the different 

contexts/categories associated with clusters of items and to switch between them (Unsworth, 

2019). Hence, they recall more items in total but not more items per cluster. In the same vein, 

when remembering complex and hierarchically organized events, high WM individuals may 

recall a higher number of basic event models because they are better at retrieving their shared 

contexts (i.e., the higher-level event models to which they belong). It follows that the 

involvement of WM in the retrieval of experience units could also depend on the level of 

specificity of recall (and thus, on the duration of the remembered episode). 
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Limitations and perspectives 

In this study, we showed that individual differences in the temporal compression of 

events in episodic memory result, at least in part, from an interplay between WM capacity and 

the segmental structure of the remembered events. Although our main findings were in line 

with our conceptualization and consistent across two experiments, some limitations should be 

acknowledged. First, we evaluated global WM capacity and in future studies it would be 

interesting to further investigate the specific role of WM sub-processes in the temporal 

compression of events in episodic memory. Another limitation of our results is that they do 

not allow us to determine whether WM determines the temporal compression of events in 

episodic memory during the encoding or retrieval of events, or both. Future studies are needed 

to investigate the role of WM at these different phases of episodic memory processing. In 

addition, since participants did not segment the videos, we had no means to know the number 

and duration of segments they identified during event perception. Future studies including a 

segmentation task would be useful to evaluate if the relation between WM capacity and 

temporal compression is mediated (at least partially) by individual differences in 

segmentation ability. Finally, in our two experiments, we manipulated the average number of 

normative EBs included in the videos, but the temporal distance between EBs was not 

controlled (although, because the duration of the videos was constant, videos that included a 

higher number of EBs also included EBs that were on average closer in time). Future studies 

could specifically manipulate the duration of the sub-events to be remembered. This would 

enable to further characterize how WM determines the duration up to which event models can 

be remembered without loss of temporal resolution. 

  



46 

 

 

Conclusion 

This study sheds a first light on the contribution of WM to the temporal compression 

of daily life events in episodic memory. We showed that the role of WM capacity depends on 

the segmental structure of the to-be-remembered events. When individuals have to remember 

events composed of a small number of long sub-events, high WM capacity allows for more 

complete remembering of event unfolding and thus lowers temporal compression rates. 

Nevertheless, WM capacity seems less important when events can be more easily 

decomposed into sub-events. Further studies need to specify the exact mechanisms of the 

influence of WM on the temporal compression of information in episodic memory. 
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Supplementary materials 

Additional information about sample characteristics   

We used an ID filter implemented in Prolific to ensure that participants who were 

recruited for Experiment 1 would not be allowed to take part in Experiment 2. 

Sample characteristics: Experiment 1 

The number of studies participants had previously successfully completed on Prolific, 

the number of studies from which they were rejected, their approval rate, and the time they 

took to complete the experiment are shown in Table S1. The nationality of participants is 

shown on Figure S1. 

 

Table S1 

Supplementary information about participants included in Experiment 1 (n = 78) 

 
Number of 

approvals 

Number of 

rejections 

Prolific 

scores 

Time taken 

(minutes) 

Min 21 0 96 39.18 

Q1 137.25 0 100 58 

Median 291 1 100 67.63 

Q3 568.25 2.75 100 79.71 

Max 2079 13 100 115 
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Figure S1 

Nationality of participants included in Experiment 1

 

Sample characteristics: Experiment 2 

The number of studies participants had previously successfully completed on Prolific, 

the number of studies from which they were rejected, their approval rate, and the time they 

took to complete the experiment are shown in Table S2. The nationality of participants is 

shown on Figure S2. 
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Table S2 

Supplementary information about participants included in Experiment 2 (n = 210) 

 
Number of 

approvals 

Number of 

rejections 

Prolific 

scores 

Time taken 

(minutes) 

Min 18 0 87 43.17 

Q1 103 0 100 56.68 

Median 208.5 1 100 66.65 

Q3 447.75 2 100 83 

Max 3526 20 100 145 

 

Figure S2 

Nationality of participants included in Experiment 2 
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Supplementary information about video stimuli 

Stimuli used in Experiments 1 and 2 were edited based on the same eight videos 

showing people engaged in daily life activities (see Figure S3). These had previously been 

used in studies on event segmentation (e.g., Eisenberg & Zacks, 2016; Kurby & Zacks, 2011; 

Sargent et al., 2013).  Data from these previous studies enabled us to create 40-s videos 

depicting events with either a high or a low number of normative event boundaries (EBs; see 

Table 3). 

 

Figure S3 

Daily life activities depicted in the eight basic videos 

 

 

Note. From left to right: a woman washing her car (432s), a woman preparing breakfast (329s), a man 

gardening (353 s), a man photocopying the pages of a book (348s), a man sweeping a room (329s), a 

lady setting up a tent (379s), a man changing the tire of his car (342s), a man preparing a livingroom 

for a birthday party (378s).  
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Table S3 

Supplementary information about the normative segmentation data of the selected 40-s videos 

 

Note. The number of normative EBs was computed by dividing the total number of EBs identified in 

the videos during previous studies by the number of participants who performed the segmentation task. 

In Experiment 2, despite the high number of keypresses, the party video was selected as a low EBs 

stimulus because the keypresses refer to the repetition of the same action (i.e., a man putting a plate on 

the table).  

Experiment 1 

  Washing 

car 

Breakfast Gardening Photocopying Sweeping Tent Tire Party 

Number of 

participants 

in the norm 

 

40 

 

42 

 

42 

 

28 

 

28 

 

67 

 

28 

 

42 

  

Number of 

normative 

EBs 

 

1.65 

 

4.62 

 

8.17 

 

5 

 

5.8 

 

2.18 

 

3.79 

 

5.24 

 

Density of 

EBs 

 

Low 

 

Low 

 

High 

 

High 

 

High 

 

Low 

 

High 

 

Low 

 

Experiment 2 

 Washing 

car 

Breakfast Gardening Photocopying Sweeping Tent Tire Party 

Number of 

participants 

in the norm 

 

40 

 

42 

 

42 

 

28 

 

28 

 

67 

 

28 

 

42 

  

Number of 

normative 

EBs 

 

1 

 

8.5 

 

4.26 

 

5 

 

5.8 

 

6 

 

0.7 

 

8.45 

  

Density of 

EBs 

 

Low 

 

High 

 

Low 

 

High 

 

High 

 

High 

 

Low 

 

Low 
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Additional information about the complex span tasks 

The unfolding of the trials was similar across the three tasks (OSpan, SymSpan, 

RotSpan). First, participants were presented with a problem from the processing task and were 

instructed to solve it as quickly as possible (and to click on the mouse as soon as it was done; 

this step must be completed within a limited time window; see Methods). Then, they gave 

their answer and immediately received a feedback. Immediately after, one of the items they 

had to memorize was briefly displayed. A new problem then appeared on the screen and so 

on.  At recall, participants were asked to select the items they were presented with, in the 

order they were presented. They were provided with a "Blank" button to indicate that they 

remembered seeing an item but did not know which one and a "Clear" button for modifying  

their answers. After recall, they received a feedback on how many items they correctly 

recalled and how many errors they made during the processing problems. Immediately 

afterwards, the next trial began. The specificities of each task are shown in Figure S4. 

Before each task, participants received built-in standardized instructions. Then, they 

received a practice session consisting of three parts. First, they were trained on the "storage" 

part alone, then on the "processing" part alone. During these first two parts, they received 

feedback after each answer they gave. Finally, they had to perform a series of trials including 

both the "storage" and the "processing" parts (as in the main task). 

During the "processing only" part of the training, participants’ response times were 

recorded. During the processing part of the main task, participants had to systematically give 

their answers within a defined time window (to minimize opportunities to refresh the to-be-

remembered items). The upper limit of this time window was individualized for each 

participant and corresponded to the participant’s average response time during the last part of 

the training + 2.5 SDs. 
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Figure S4 

Unfolding of a trial in the three complex span tasks 

 

Note. Panel A: Operation span. Participants first see a math problem (parenthetical multiplication or 

division problem, followed by a number to add or subtract from the product or dividend ; e.g., (3x3) + 

8 = ?; all terms and signs are randomly selected). Then, a digit (e.g., 3) is presented and the 

participants are required to click either a "true" or "false" box to indicate whether the number 

presented is the correct solution to the problem they saw just before. After receiving feedback on their 

response, they are presented with a letter for 1 s (consonant; written in Arial font, size 28). Then, 

another math problem is displayed and so on. At recall, a 4 x 3 matrix of letters (F, H, J, K, L, N, P, Q, 

R, S, T, and Y; i.e., the 12 letters used in the task) is displayed. Participants must select the letters they 

have seen, in the correct order, by checking the boxes next to them. Panel B: Symmetry span. During 

the processing task, an 8 × 8 matrix is presented with some squares filled with black. Then, 

participants have to judge whether the black-square design is symmetric along its vertical axis by 

clicking on either a "yes" or "no" box. Next, a 4 x 4 array with one cell filled with red is displayed for 

650 ms. At recall, participants have to click on the cells of an empty matrix to reproduce the sequence 

of red square locations in the order they appeared during the previous presentations. Panel C: 

Rotation Span. The processing task starts with the presentation of a normal or mirror-reversed G, F, R, 

J or L rotated at 0°, 45°, 90°, 135°, 180°, 225°, 270°, or 315°. Then, participants must indicate 

whether the letter was in the normal orientation or mirror reversed (by clicking either on a “yes” or a 

“no” box). After that, a short or long arrow pointing in one of eight directions is displayed for 650 ms. 

At recall, participants are presented with eight short and eight long arrows radiating from the center 

of the screen. Participants have to recall all of the arrows from the preceding displays, in the order 

they appeared, by clicking on their head. 
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Processing accuracy criteria in the WM tasks 

When using complex span tasks to evaluate WM capacity, it is usually recommended 

to exclude participants who show poor performance on the processing part of the tasks (to 

avoid including participants who neglected the processing part of the tasks; Conway et al., 

2005). A common approach is to exclude participants who scored below 85% of accuracy 

(Redick et al., 2012; Unsworth et al., 2005), which is what we had planned to do when pre-

registering the study. However, Gonthier et al. (2016) argued that this criterion is too severe 

and its application to our sample would have led the exclusion of more than 25% of the data. 

Thus, following the approach of Gonthier et al., (2016), we decided to only exclude 

participants whose processing accuracy was below the fifth lower percentile of the sample for 

one of the three tasks (see the Method section). 

To ensure that the relations we observed between our variables of interest were not 

dependent on the chosen exclusion criterion, we also performed our main analyses (for the 

two experiments) with a dataset including only participants who scored above 85% on the 

processing parts of the three tasks. The results were similar to those reported in the main text 

(for Experiment 1, see Figure S5; for Experiment 2 see Figure S6). 
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Figure S5 

Results for the main analyses of Experiment 1 when including only participants who scored 

above 85% for the processing part of each of the three complex span tasks (N participants = 

56, N observations = 425) 

 

Note. (A) Prediction of temporal compression by WM capacity for high and low EBs density videos. 

(B) Prediction of the number of recalled experience units by WM capacity for high and low EBs 

density videos.  (C) Prediction of temporal compression by the number of recalled experience units. 

(D) Prediction of remembered experience units duration by WM capacity, for high and low EBs 

density videos. 
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Figure S6 

Results for the main analyses of Experiment 2 when including only participants who scored 

above 85% for the processing part of each of the three complex span tasks (N participants = 

166, N observations = 1220)   

 

Note. (A) Prediction of temporal compression by WM capacity for high and low EBs density videos. 

(B) Prediction of the number of recalled experience units by WM capacity for high and low EBs 

density videos.  (C) Prediction of temporal compression by the number of recalled experience units. 

(D) Prediction of remembered experience units duration by WM capacity, for high and low EBs 

density videos. 
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Inter-rater agreement 

Experiment 1 

Following guidelines proposed by Hallgren (2012) and Koo & Li (2016), inter-rater 

reliability was assessed with a two-way agreement ICC (single rater, average-measures; 

(McGraw & Wong, 1996; Shrout & Fleiss, 1979). The resulting ICC was 0.93 (95%CI [0.90, 

0.95]). Nevertheless, the number of recalled experience units was not normally distributed. 

We thus computed a non-parametric agreement index (binomial proportions test; Bland & 

Altman, 1999), which indicated that the difference between the two raters was equal or 

inferior to one experience unit in 86.67% of the cases (95%CI [79.34, 91.67]). We further 

inspected the agreement between the two raters through a Bland-Altman analysis (Giavarina, 

2015). We looked for the presence of potential fixed bias, or, in other words, systematic 

variations in the differences between the number of experience units identified by the first and 

the second rater as a function of the number of recalled experience units (computed by 

averaging estimations of the two raters). There was no notable bias.  

Experiment 2 

Again we had good inter-rater agreement for the scoring of the number of recalled 

experience units (ICC = 0.96, 95%CI [0.94, 0.97], robust agreement = 0.80, 95%CI [0.76, 

0.84]). The Bland-Altman analysis did not reveal any substantial bias. 
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R packages  

The R project dependencies were managed with renv version 0.17.3 (Ushey & 

Wickham, 2023). Data formatting and pre-processing were performed with the help of the 

dplyr package (v1.0.5; Wickham et al., 2021). 

 Internal consistency/reliability measures were computed with the psych package 

(v2.3.6; Revelle, 2023). 

Regarding inter-rater agreement, ICCs were computed with the package irr (v0.84.1; 

Gamer et al., 2019) and the non-parametric agreement indices with the package SimplyAgree 

(v0.1.2; Caldwell, 2022). 

Robust linear mixed-effects models were fitted with the robustlmm package (v2.4.4, 

Koller, 2016). CIs and p-values associated with fixed effects coefficients, as well as models’ 

R2s, were computed with functions from the packages parameters (v0.13.0; Lüdecke et al., 

2020) and performance (v0.7.1; Lüdecke et al., 2021).  For each model, we extracted 

estimated marginal means, estimated marginal slopes and their standard errors with the 

package emmeans (v1.6.3; Lenth, 2016). Extraction of models’ estimates across different 

values of manipulated variables (and their asymptotic 95% CIs) was done with the effects 

package (v4.2.0; Fox & Weisberg, 2019). 

Tables were made with the packages insight (v0.14.15; Lüdecke et al., 2019), flextable 

(v0.9.1; Gohel & Skintzos, 2023) and rempsyc (v0.1.1; Thériault, 2023). Figures were made 

with the packages ggplot2 (v3.3.5; Wickham, 2016), gridExtra (v2.3; Auguie, 2017) and  

ggpubr (v0.4.0; Kassambara, 2020).  
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Power analyses for Experiment 2 

The sample size of  Experiment  2 was estimated a priori using the R package simr 

(v1.0.5; Green & MacLeod, 2016; Kumle et al., 2021). We used data from Experiment 1 to 

run Monte-Carlo simulations (Brysbaert & Stevens, 2018; DeBruine & Barr, 2021)  in order 

to estimate the power we would have for the detection of the interaction between WM 

capacity and EBs density in the prediction of temporal compression across a range of sample 

sizes (between 80 and 240 participants). The estimated power (and its 95% CI) for each 

sample size is reported on Figure S7 (panels A and B). We also conducted a sensitivity 

analysis. With a sample size fixed at 210 participants, we estimated the power we would have 

for the detection of an interaction, with an effect size from 5% to 20% smaller than the one 

observed in Experiment 1 (Figure S7C). 
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Figure S7 

Power curves for the detection of the interaction between WM capacity and EBs density in the 

prediction of temporal compression (based on 1000 simulations) 

 

Note. (A) estimates of statistical power (and its 95% CI) across a range of sample sizes (ranging from 

80 to 240 participants). (B) estimates for sample sizes ranging from 190 to 230 participants (zoom on 

the panel A). (C) estimates of the statistical power achievable with a sample size of 210 participants 

and an effect size from 5% to 20% smaller than the one obtained in Experiment 1. 
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Descriptive statistics  

Descriptive statistics for each WM task and outcome variables are shown in Tables S4 

and S5 (for Experiment 1) and Tables S7 and S8 (for Experiment 2). A detailed distributional 

plot for each outcome variable is displayed in Figure S8 for Experiment 1 and S10 for 

Experiment 2. In Tables S6 (for Experiment 1) and S9 (for Experiment 2), we report 

correlations between all variables involved in the statistical analyses. Finally, Figures S9 (for 

Experiment 1) and S11 (for Experiment 2) show the distribution of the differences of temporal 

compression rates between EB+ and EB- stimuli as a function of participants’ WM score. 
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Table S4 

Descriptive statistics regarding WM tasks and correlations between them (Experiment 1) 

 

 

 

 

 

 

 

 

Table S5 

Descriptive statistics for outcome variables (Experiment 1) 

Outcome N Mean SD Skew Kurtosis Distribution 

TCR 78 3.19 2.60 2.44 7.07  

Recalled 

experience 

units 

78 8.47 2.24 -0.06 -0.74  

 

Recalled 

experience 

units duration 

78 2.84 1.74 1.72 3.83  

 

 

Span Tasks Descriptive Statistics Correlations (Pearson’s r) 

  N Mean SD Skew Kurtosis  OSpan RotSpan SymSpan 

Ospan  78 19.63 5.21 -1.60 2.71    0.34 

SymSpan  78 10.37 2.67 -0.37 -0.48   0.50  

RotSpan  78 9.24 3.25 -0.33 -0.95  0.17   



72 

 

 

Figure S8 

Density plot and descriptive statistics for the three outcome variables (Experiment 1). Values 

are reported separately for each EBs density 

 

Note. (A) Temporal compression rates. (B) The number of recalled experience units. (C) The duration 

of recalled experience units. Skewness and Geary’s kurtosis measures (Borroni & De Capitani, 2022; 

Geary, 1936)  were computed with the package moments (v0.14.1; Komsta & Novomestky, 2022) 
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Table S6 

Correlation matrices for Experiment 1 

Correlations between WM scores and the three outcome variables for EB- stimuli 

(Spearman’s rho) 

 TCR 

Recalled 

experience 

units 

Recalled 

experience 

units duration 

WM Score 

TCR 1.00 -0.31 -0.87 -0.25 

Recalled 

experience 

units 

-0.31 1.00 -0.09 0.28 

Recalled 

experience 

units duration 

-0.87 -0.09 1.00 0.12 

WM Score -0.25 0.28 0.12 1.00 

Correlations between WM scores and the three outcome variables for EB+ stimuli 

(Spearman’s rho). 

 TCR 

Recalled 

experience 

units 

Recalled 

experience 

units duration 

WM Score 

TCR 1.00 -0.28 -0.77 -0.16 

Recalled 

experience 

units 

-0.28 1.00 -0.28 0.25 

Recalled 

experience 

units duration 

-0.77 -0.28 1.00 -0.01 

WM Score -0.16 0.25 -0.01 1.00 
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Figure S9  

Density plots representing the distribution of the differences of temporal compression between 

EB+ and EB- stimuli (at the subject level; Experiment 1) 

 

Note. The golden line represents the average difference. (A) participants whose WM score was above 

the sample median. (B) participants whose WM score was below the sample median. 
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Table S7 

Descriptive statistics regarding WM tasks and correlations between them (Experiment 2) 

Span Tasks Descriptive Statistics Correlations (Pearson’s r) 

  N Mean SD Skew Kurtosis  OSpan RotSpan SymSpan 

Ospan  210 20.03 4.54 -1.07 1.02    0.31 

SymSpan  210 9.93 3.04 -0.63 0.14   0.53  

RotSpan  210 9.60 2.98 -0.38 -0.41  0.33   

 

 

Table S8 

Descriptive statistics for outcome variables (Experiment 2) 

Outcome N Mean SD Skew Kurtosis Distribution 

TCR 210 3.61 2.75 1.71 3.26  

Recalled 

experience units 
210 8.76 3.21 0.47 0.52  

Recalled 

experience units 

duration 

210 3.93 3.26 2.60 8.81  
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Figure S10 

Density plot and descriptive statistics for the three outcome variables (Experiment 2). Values 

are reported separately for each EBs density  

 

Note. (A) Temporal compression rates. (B) The number of recalled experience units. (C) The duration 

of recalled experience units. 
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Table S9 

Correlation matrices for Experiment 2  

Correlations between WM scores and the three outcome variables for EB- stimuli 

(Spearman’s rho) 

 TCR 
Recalled 

experience units 

Recalled 

experience units 

duration 

WM Score 

TCR 1.00 -0.27 -0.67 -0.07 

Recalled 

experience units 
-0.27 1.00 -0.36 -0.05 

Recalled 

experience units 

duration 

-0.67 -0.36 1.00 0.10 

WM Score -0.07 -0.05 0.10 1.00 

Correlations between WM scores and the three outcome variables for EB+ stimuli 

(Spearman’s rho) 

 TCR 
Recalled 

experience units 

Recalled 

experience units 

duration 

WM Score 

TCR 1.00 -0.44 -0.70 -0.04 

Recalled 

experience units 
-0.44 1.00 -0.18 -0.01 

Recalled 

experience units 

duration 

-0.70 -0.18 1.00 -0.02 

WM Score -0.04 -0.01 -0.02 1.00 
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Figure S11 

Density plots representing the distribution of the differences of temporal compression between 

EB+ and EB- stimuli (at the subject level; Experiment 2) 

 

Note. The golden line represents the average difference. (A) participants whose WM score was above 

the sample median. (B) participants whose WM score was below the sample median. 
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