

Flexural buckling of mild and high-strength steel hot-rolled sections

Improvement proposal for the flexural buckling design rules

L. Saufnay & J-F. Demonceau

UEE department, University of Liège (ULiège), Liège, Belgium

Loris.Saufnay@uliege.be

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}^2}}$$
 but $\chi \le 1$

Where $\phi = 0.5 * [1 + \alpha * (\bar{\lambda} - 0.2) + \bar{\lambda}^2]$

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}^2}}$$
 but $\chi \le 1$

Where $\phi = 0.5 * [1 + \alpha * (\overline{\lambda} - 0.2) + \overline{\lambda}^2]$

Key

Relative slenderness $\overline{\lambda}$ Reduction factor χ

Figure 8.5 — Buckling curves

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}^2}}$$
 but $\chi \le 1$

Where $\phi = 0.5 * [1 + \alpha * (\overline{\lambda} - 0.2) + \overline{\lambda}^2]$ Imperfection parameter

Key

Relative slenderness $\overline{\lambda}$ Reduction factor χ

Figure 8.5 — Buckling curves

Imperfection factor α

0,13

0,21

0,34

0,76

0,49

76

Column resistance – design procedure acc. to EC3

	$\chi = rac{1}{\phi}$. Here ϕ =	1 ⊢ √φ 0.5 ∗ [: In	$\frac{1}{2^2 - \overline{\lambda}^2} b^2$ 1 + $\alpha \cdot (\overline{\lambda} - 0)$ nperfection p	ut $\chi \leq$ (0.2) + $\bar{\lambda}^2$]	1	Imper	fection	factor	X FPrEN19 1,1 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,3 0,4 0,3 0,4 0,3 0,4 0,5 0,4 0,5 0,4 0,5 0,5 0,4 0,5 0,5 0,5 0,4 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	93-1-1:20			
				EN1993-1-2	1:2005	FprEN199	93-1-1:2022	0,2 0,1					
Cross-section			Limits	Buckling about axis	S235-S420	S460	S235- S420	S460 up to S700 inclusive	$\frac{0}{0} 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 2$ Key Relative slenderness $\overline{\lambda}$ Reductive factor χ	,8 2 2,2 2,4	4 2,6 2,8 3	3 7	
	1		t < 10	v-v	а	a.	а	a		ioi bucking cu	Ives		
ons	± z	1.2	$l_f \leq 40 \ mm$	<u> </u>	b	a	b	a	Buckling curve a_0 a Imperfection factor α 0.13 0.21	0.34	C 0.49	0	
ecti		$\sim q$	t > 10 mm	<u>v-v</u>	b	a	b	a		0,34	0,49	0	
H-S	= v - v	u/u	$l_f > 40 mm$	<i>z-z</i>	с	a	с	b					
- or		5	$t_{\epsilon} < 100 mm$	у-у	b	а	b	а					
ed I		, , ,	-,	<i>z-z</i>	с	a	с	b					
colle	z	< <i>q</i> ,	$t_f > 100 mm$	у-у	d	с	d	с			6		
Ł	← Ŭ →	/y	,	z-z	d	с	d	с					

Column resistance – design procedure acc. to EC3

	$\chi = rac{1}{\phi}$ H	1 - √φ 0.5 * [:	$\frac{1}{2^2 - \overline{\lambda}^2} b^2$	$\operatorname{ut} \chi \leq 0.2) + \overline{\lambda}^2]$	1		for the second	factor	x FprEN1993-1-1:2022 1,1					
		In	nperfection p	arameter		Imper	rection	Tactor						
					EN1993-1-2	1:2005	FprEN199	93-1-1:2022						
C	ross-section	Limits		Buckling about axis	S235-S420	S460	S235- S420	S460 up to S700 inclusive	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -					
				<i>v-v</i>	я	a.	а	a.						
suc	t z	1.2	$t_f \leq 40 \ mm$	<u>y y</u> 7-7	b the second sec	a ₀	h h	a	Buckling curve a_0 a b c d					
ecti		P = q	t > 10 mm	v-v	b	a	b	a						
H-S-	< v v	u/u	$l_f > 40 mm$	<i>z-z</i>	с	a	с	b						
- or		5	$t_{\epsilon} \leq 100 mm$	у-у	b	а	b	а	Superior buckling resistance for HSS is					
ed I		-1:		<i>z-z</i>	с	a	с	b						
soll	z	< <i>q</i> ,	$t_f > 100 mm$	у-у	d	с	d	с	still contemplated but, with few changes 7					
ц	→	/y		<i>z-z</i>	d	с	d	с	between the two standard versions					

Literature review and research objective

Type of sections	Maquoi, 1982	Jönsson & Stan, 2016	Somodi & Kövesdi, 2017	Meng & Gardner, 2020
Hot-rolled (y-y)	$a^* + (\overline{2} - 0.2)$	$\alpha * (\overline{\lambda}\varepsilon - 0, 2)$ with; $\varepsilon = \sqrt{\frac{235}{f_y}}$ Class 4 neglected, only for	/	/
Hot-rolled (z-z)	$\boldsymbol{u} * (\lambda = 0, 2)$	/	/	/
Welded I-sections	$\alpha^* = \alpha * \left(\frac{235}{f_y}\right)^n$ n=0.8, Maquoi, 1982 ;	/	$\boldsymbol{\alpha}^* * (\overline{\lambda} - 0, 2)$ $\boldsymbol{\alpha}^* = \boldsymbol{\alpha} * \left(\frac{235}{f_y}\right)^{0.6}$	/
Hot-finished tubes	n=1.0, Johansson, 2005 ;	/	/	$\pmb{lpha}^* * (\overline{\lambda} - 0, 1)$
Cold-formed tubes		/	$\boldsymbol{\alpha}^* * (\overline{\lambda} - 0.2)$ $\boldsymbol{\alpha}^* = \boldsymbol{\alpha} * \left(\frac{235}{f_y}\right)^{0.5}$	$\alpha^*=0.24\epsilon$ for hot-finished $\alpha^*=0.56\epsilon \text{ for cold-formed}$

Literature review and research objective

Type of sections	Maquoi, 1982	Jönsson & Stan, 2016	Somodi & Kövesdi, 2017	Meng & Gardner, 2020
Hot-rolled (y-y)	$a^* + (\overline{2} - 0.2)$	$\alpha * (\overline{\lambda} \varepsilon - 0.2)$ with; $\varepsilon = \sqrt{\frac{235}{f_y}}$ Class 4 neglected, only for	/	/
Hot-rolled (z-z)	$\boldsymbol{u} * (\lambda = 0, 2)$		/	/
Welded I-sections	$\alpha^* = \alpha * \left(\frac{235}{f_y}\right)^n$ n=0.8, Maquoi, 1982 ;	1	$\boldsymbol{\alpha}^* * (\overline{\lambda} - 0, 2)$ $\boldsymbol{\alpha}^* = \boldsymbol{\alpha} * \left(\frac{235}{f_y}\right)^{0.6}$	/
Hot-finished tubes	n=1.0, Johansson, 2005 ;	/	/	$\pmb{lpha}^* * (\overline{\lambda} - 0, 1)$
Cold-formed tubes		/	$\boldsymbol{\alpha}^* * (\overline{\lambda} - 0, 2)$ $\boldsymbol{\alpha}^* = \boldsymbol{\alpha} * \left(\frac{235}{f_y}\right)^{0.5}$	$\alpha^*=0.24\epsilon$ for hot-finished $\alpha^*=0.56\epsilon \text{ for cold-formed}$

Research objective: to define a new modified imperfection factor for hot-rolled sections in order to restore the continuity in the design procedure 9

Literature review and research objective

Type of sections	Maquoi, 1982	Jönsson & Stan, 2016	Somodi & Kövesdi, 2017	Meng & Gardner, 2020
Hot-rolled (y-y)		$\alpha * (\bar{\lambda}\varepsilon - 0, 2)$ with; $\varepsilon = \sqrt{\frac{235}{f_y}}$	/	/
	$\alpha^* * (\overline{\lambda} - 0.2)$	strong axis buckling		
Hot-rolled (z-z)	u (<i>n</i> 0,2)	/	/	/
Welded I-sections	$\alpha^* = \alpha * \left(\frac{235}{f_y}\right)^n$	/	$\boldsymbol{\alpha}^* * (\overline{\lambda} - 0, 2)$ $\boldsymbol{\alpha}^* = \boldsymbol{\alpha} * \left(\frac{235}{f_y}\right)^{0.6}$	/
Hot-finished tubes	n=1.0, Johansson, 2005 ;	/	/	$\pmb{lpha}^* * (\overline{\lambda} - 0, 1)$
Cold-formed tubes		/	$\boldsymbol{\alpha}^* * (\overline{\lambda} - 0, 2)$ $\boldsymbol{\alpha}^* = \boldsymbol{\alpha} * \left(\frac{235}{f_y}\right)^{0.5}$	$\alpha^*=0.24\epsilon$ for hot-finished $\alpha^*=0.56\epsilon \text{ for cold-formed}$

Research objective: to define a new modified imperfection factor for hot-rolled sections in order to restore the continuity in the design procedure 10

GMNIA analyses in the FINELG software with beam finite elements

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic
- Class 1-2-3 cross-sections:

$$\bar{\lambda} = \sqrt{\frac{A * f_y}{N_{cr}}} \to L_{model} = \frac{i * \pi * \bar{\lambda}}{\sqrt{\frac{f_y}{E}}} \text{ and } \chi = \frac{N_{u,FEM}}{A_{FEM} * f_y}$$

Support conditions & Initial bow imperfection

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic Initial bow imperfection
- Class 1-2-3 cross-sections:

$$\bar{\lambda} = \sqrt{\frac{A * f_y}{N_{cr}}} \rightarrow L_{model} = \frac{i * \pi * \bar{\lambda}}{\sqrt{\frac{f_y}{E}}} \text{ and } \chi = \frac{N_{u,FEM}}{A_{FEM} * f_y}$$

Nominal yield strength prescribed in FprEN1993-1-1 and EN10025

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic
- Class 1-2-3 cross-sections:

$$\bar{\lambda} = \sqrt{\frac{A * f_y}{N_{cr}}} \rightarrow L_{model} = \frac{i * \pi * \bar{\lambda}}{\sqrt{\frac{f_y}{E}}} \text{ and } \chi = \frac{N_{u,FEM}}{A_{FEM} * f_y}$$

- Nominal yield strength prescribed in FprEN1993-1-1 and EN10025
- Initial geometrical imperfection amplified by L/1000

C Support conditions & Initial bow imperfection

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic
- Class 1-2-3 cross-sections:

$$\bar{\lambda} = \sqrt{\frac{A * f_y}{N_{cr}}} \rightarrow L_{model} = \frac{i * \pi * \bar{\lambda}}{\sqrt{\frac{f_y}{E}}} \text{ and } \chi = \frac{N_{u,FEM}}{A_{FEM} * f_y}$$

- Nominal yield strength prescribed in FprEN1993-1-1 and EN10025
- Initial geometrical imperfection amplified by L/1000
- Classical residual stress pattern (acc. to FprEN1993-1-14:2024)

C Support conditions & Initial bow imperfection

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic
- Class 1-2-3 cross-sections:

$$\bar{\lambda} = \sqrt{\frac{A * f_y}{N_{cr}}} \rightarrow L_{model} = \frac{i * \pi * \bar{\lambda}}{\sqrt{\frac{f_y}{E}}} \text{ and } \chi = \frac{N_{u,FEM}}{A_{FEM} * f_y}$$

- Nominal yield strength prescribed in FprEN1993-1-1 and EN10025
- Initial geometrical imperfection amplified by L/1000
- Classical residual stress pattern (acc. to FprEN1993-1-14:2024)

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic
- Class 1-2-3 cross-sections:

$$\bar{\lambda} = \sqrt{\frac{A * f_y}{N_{cr}}} \rightarrow L_{model} = \frac{i * \pi * \bar{\lambda}}{\sqrt{\frac{f_y}{E}}} \text{ and } \chi = \frac{N_{u,FEM}}{A_{FEM} * f_y}$$

- Nominal yield strength prescribed in FprEN1993-1-1 and EN10025
- Initial geometrical imperfection amplified by L/1000
- Classical residual stress pattern (acc. to FprEN1993-1-14:2024)
- Weak-axis and strong-axis buckling

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic
- Class 1-2-3 cross-sections:

$$\bar{\lambda} = \sqrt{\frac{A * f_y}{N_{cr}}} \rightarrow L_{model} = \frac{i * \pi * \bar{\lambda}}{\sqrt{\frac{f_y}{E}}} \text{ and } \chi = \frac{N_{u,FEM}}{A_{FEM} * f_y}$$

- Nominal yield strength prescribed in FprEN1993-1-1 and EN10025
- Initial geometrical imperfection amplified by L/1000
- Classical residual stress pattern (acc. to FprEN1993-1-14:2024)
- Weak-axis and strong-axis buckling
- The focus is made on profiles with height-to-width ratios above 1.2 and flange thickness below 40mm, i.e, HEM500 & HEB400

C Support conditions & Initial bow imperfection

- GMNIA analyses in the FINELG software with beam finite elements
- Stress-strain relationship : elastic perfectly plastic
- Class 1-2-3 cross-sections:

$$\bar{\lambda} = \sqrt{\frac{A * f_y}{N_{cr}}} \rightarrow L_{model} = \frac{i * \pi * \bar{\lambda}}{\sqrt{\frac{f_y}{E}}} \text{ and } \chi = \frac{N_{u,FEM}}{A_{FEM} * f_y}$$

- Nominal yield strength prescribed in FprEN1993-1-1 and EN10025
- Initial geometrical imperfection amplified by L/1000
- Classical residual stress pattern (acc. to FprEN1993-1-14:2024)
- Weak-axis and strong-axis buckling
- The focus is made on profiles with height-to-width ratios above 1.2 and flange thickness below 40mm, i.e, HEM500 & HEB400

Limits	Designation	h [mm]	b [mm]	t _w [mm]	t _f [mm]	r [mm]	Class in S460	Class in S690
h/b > 1.2	HEB400	400	300	13.5	24	27	2 21	3
/ t, ≤ 40mm	HEM500	524	306	21	40	27	1	2

Validation on existing buckling tests

The validation was performed on the experimental tests carried out on heavy hot-rolled sections at the Fritz Engineering Laboratory in 1972

Validation on existing buckling tests

The validation was performed on the experimental tests carried out on heavy hot-rolled sections at the Fritz Engineering Laboratory in 1972

Validation on existing buckling tests

The validation was performed on the experimental tests carried out on heavy hot-rolled sections at the Fritz Engineering Laboratory in 1972

A good correspondence between numerical simulations and the new upcoming standard FprEN1993-1-1: 2022 has been contemplated.

Intermediate grades are categorized within the same buckling curve as S235, which has been evaluated as very conservative.

Proposal of a new modified imperfection factor

Proposal of a new modified imperfection factor $\alpha^* * (\overline{\lambda} - 0.2) \Rightarrow \alpha^* = \alpha * \left(\frac{235}{f_y}\right)^{0.7}$

Proposal of a new modified imperfection factor

$$\alpha^* * (\overline{\lambda} - 0, 2) \Rightarrow \alpha^* = \alpha * \left(\frac{235}{f_y}\right)^*$$

This exponent is chosen to respect the current recommended factors for S235 and S460

Proposal of a new modified imperfection factor

$$\alpha^* * (\overline{\lambda} - 0, 2) \Rightarrow \alpha^* = \alpha * \left(\frac{235}{f_y}\right)^*$$

This exponent is chosen to respect the current recommended factors for S235 and S460

 α_{FEM} evaluated for each f_y

This exponent is chosen to respect the current recommended factors for S235 and S460

Benefit in terms of buckling resistance

Benefit in terms of buckling resistance

Advantage of this proposal: to keep the same buckling curve denomination for S235 ; to continuously account for the yield strength and thus to induce weight saving. Indeed, even a small increase of buckling resistance may lead to a gain of one or several profiles when designing a steel column.

Existing design rules for flexural buckling have been assessed;

- Existing design rules for flexural buckling have been assessed;
- A literature review has been realised to determine existing continuous expressions ;

- Existing design rules for flexural buckling have been assessed;
- ✓ A literature review has been realised to determine existing continuous expressions ;
- ✓ A new modified imperfection factor has been proposed ;

- Existing design rules for flexural buckling have been assessed;
- A literature review has been realised to determine existing continuous expressions ;
- ✓ A new modified imperfection factor has been proposed ;

					Buckling curves		
Cr	oss-section	Limits		Buckling about axis	S235 S275 S355 S420	S460 up to S700 inclusive	
ions	÷ z	>1.2	t < 10 mm	у-у	а	a ₀	
-sect		<d h<="" td=""><td>$l_f \leq 40 mm$</td><td>z-z</td><td>b</td><td>а</td></d>	$l_f \leq 40 mm$	z-z	b	а	
d I- or H	e y y	≤1.2	$t_f \leq 100 \ mm$	у-у	b	а	
Rolled		≥d/h	,	Z-Z	с	b	

Table 8.3 of FprEN1993-1-1: 2022

- Existing design rules for flexural buckling have been assessed;
- ✓ A literature review has been realised to determine existing continuous expressions ;
- A new modified imperfection factor has been proposed ;

Table 8.3 of Fpr<u>EN</u>1993-1-1: 2022

	Cross-section		Limits	Buckling about axis	Buckling curve
ions	÷ z	>1.2	t₂ ≤ 40 mm	у-у	а
l-sect		;d/h	$t_f \leq 40 mm$	z-z	b
d - or H	z y y	≤1.2	$t_f \leq 100 mm$	у-у	b
Rolled	z b	-d/h		z-z	с

- Existing design rules for flexural buckling have been assessed;
- ✓ A literature review has been realised to determine existing continuous expressions ;
- A new modified imperfection factor has been proposed ;
- ✓ This proposal may lead to weight, carbon & cost savings.

Table 8.3 of Fpr<u>EN</u>1993-1-1: 2022

- Existing design rules for flexural buckling have been assessed;
- A literature review has been realised to determine existing continuous expressions ;
- ✓ A new modified imperfection factor has been proposed ;
- ✓ This proposal may lead to weight, carbon & cost savings.
- The approach can be applied to other section typologies in order to generalize the conclusions;

- Existing design rules for flexural buckling have been assessed;
- A literature review has been realised to determine existing continuous expressions ;
- ✓ A new modified imperfection factor has been proposed ;
- ✓ This proposal may lead to weight, carbon & cost savings.
- The approach can be applied to other section typologies in order to generalize the conclusions;
- Buckling tests should be realised to confirm the numerical results and calibrate the partial safety coefficient.

- Existing design rules for flexural buckling have been assessed;
- A literature review has been realised to determine existing continuous expressions ;
- A new modified imperfection factor has been proposed ;
- ✓ This proposal may lead to weight, carbon & cost savings.
- The approach can be applied to other section typologies in order to generalize the conclusions;
- Buckling tests should be realised to confirm the numerical results and calibrate the partial safety coefficient.

Extended version

Journal paper: *L. Saufnay, J-P Jaspart and J.-F. Demonceau.* "Improvement of the prediction of the flexural buckling resistance of hot-rolled mild and high-strength steel members" Engineering Structures, Elsevier, 2024 [Manuscript accepted – in production]

Proposal of modification

LIÈGE université Urban & Environmental Engineering

Thank you for your attendance !

Questions?

Loris.Saufnay@uliege.be