

Synbiotics for Sustainable African Farms

Hary RAZAFINDRALAMBO^{1,*}, Majid MOUNIR², Sonagnon KOUHOUNDE³, Kifouli ADEOTI⁴, Philippe JACQUES¹

¹ Gembloux Agro-Bio Tech, University of Liege, Gembloux, BELGIUM
 ² Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, MOROCCO
 ³ Université Aube Nouvelle, Bobo-Dioulasso, BURKINA FASO
 ⁴Université d'Abomey-Calavi, Cotonou, BENIN

* E-mail: h.razafindralambo@uliege.be

75th International Symposium on Crop Protection - 21 May 2024, Ghent

Menu

- URBANE context & WP contribution
- What are synbiotics?
- Materials for Sustainable African farms
- Methodology
- Bacillus screening & biofertilizer effect on tomato
- Conclusion

URBANE project

(https://urbane-project.eu/)

LIÈGE université Gembloux Agro-Bio Tech

ONE HEALTH APPROACHES TO SUPPORT AGROECOLOGICAL TRANSFORMATION OF PERI-URBAN FARMING

Objective: URBANE aims to develop & demonstrate through 6 case studies in Africa a series of **technology-** and **nature-based solutions**, applying a **One Health approach** for tackling issues related to the application & intensification of peri-urban agriculture (e.g., food nutrition security, zoonotic diseases, environmental degradation, antimicrobial resistance, etc.)

Sustainable Development Goals:

- Contributing directly to meeting several SDGs
- Overlapping with the objectives of the Paris Agreement on climate change.

16 COUNTRIES (10 EU & 6 AU) & 27 PARTNERS

Type of action:	HORIZON Research and Innovation Actions Project		
Project duration:	48 months (2022-2026)		
Total budget:	5.015.233,25€		
Coordinator:	CYPRUS RESEARCH AND INNOVATION CENTER LTD (CY.R.I.C)		

SYNBIOTICS FOR SUSTAINABLE ANIMAL & PLANT FARMING (WP4)

Partner :ULIEGE – Gembloux Agro-Bio Tech (BELGIUM)Participant :Laboratory of Microbial Processes and Interactions (TERRA, Gembloux)

What are **SYNBIOTICS**?

- **Definition** (SYN = together BIOTIC = life)
 - Probiotics + Prebiotics^[1]
 - Complementary & Synergistic^[2]
 - Live microbes + substrates [3]
 - <u>Syn</u>biotic ≠ <u>Sym</u>biotic

• Applications

- Human & Animal Health
- Plant & Environment Protection

Statistical data

[1] Gibson & Roberfroid . The Journal of Nutrition. 1995, 125:1401–1412
[2] Kolida & Gibson. Annual Review of Food Science and Technology. 2011, 2:373–393
[3] Swanson et al. Nature Reviews Gastroenterology & Hepatology. 2020, 17:687–701

Synbiotic Components for Sustainable African Farms

Sources of Native Probiotic Strains

Standard prebiotics

- Fructo-oligosaccharide FOS & Inulin (DP 2 to 60)
- Source: chicory
- Purity > 99.5% (w/w)
- Physical state: powder

FOS

Inulin

Native probiotic strains

Isolation & Identification methods

- Selective media (MRS, LB, YPD,...)
- Isolation & purification (colonies)
- Phenotype analyses
 - Colonies
 - Microscopic images
 - ...
- Sequencing 16s rRNA (% ID)
- Specific proteins by MALDI-TOF MS (score)

Genera, species, strains (~ 180)

- Lactic Acid bacteria
 Cactobacillus Leuconostoc Luconostoc
- Soil Bacteria
 ^c Bacillus sp.
 ^c Pseudomonas sp.
 ^c.
- Fungi
 - Saccharomyces sp.
 - *Yarrowia* sp.
 - · · · ·

🔺 L. plantarum

Bacillus : Screening & Selection criteria

D.0 = 1,4

Bacillus subtilis B1

Microbial profiling 1.

- Growth rate & biomass yield
- Antagonism to pathogens
- ۲ ...

....

2. **Metabolite production**

- Supernatant UV-Visible spectrum
- Organic acids
- Lipopeptides (surfactin, fengycin, ...)
- Bioemulsifiers (El24)
- Antioxidants (DPPH, ...)

Synbiotic design, formulation & assessment

METHODOLOGY

- Combination of selected ingredients
 - Probiotic strain
 - Oligosaccharide prebiotic (FOS, Inulin)
- Optimization
 - Ratio (%)
 - Doses (CFU/g, % w/w)

Formulation

- Pellets (without drying)
- Powder (with drying + thermoprotectors)

Assessment

- QC (powder)
- Performance (activity)
- Stability (powder + activity)

ASSESSMENT CRITERIA

- OD600 vs. time
 - Culture media
 - Prebiotic
 - Probiotic
 - Prebiotic + Probiotic
- Cell viability (CFU/g)
- Thermophysical fingerprints (powder) [4]
- Probiotic survival rate (%)
- Relative humidity (Aw)
- Colour (BI)

Synbiotic activities on tomato culture for trials in Benin (Aug-Nov 2023)

Material

- Tomato variety: Cobra 26 F1
- B. subtilis (probiotic); FOS (prebiotic)
- *B. subtilis* + FOS (synbiotic)

Methodology

- Field experiment on pilot sites in farms
- Fisher blocks design (triplicate)
- Seed germination & transplanting ^[5]
- Treatments^[6]
 - seed incubation
 - soil surface application
 - Agro-morphological assessment ^[7]
 - · plants (height, leaf area)
 - · fruits (weight, size, firmness)

Biofertilizer effect of biotic species on tomato

Treatment	Tomato		
	weight	size	firmness
Control	-	-	-
Prebiotic		-	
Probiotic	++	-	++
Synbiotic		-	

Results

- Tomato firmness increases with probiotic & decreases with prebiotic and synbiotic vs. Control
- Less soft fruit (more resistant to spoilage microorganisms attack)
- Better quality (longer shelf-life)

Conclusion

- **Isolation** of native strains from African (> 180)
- Double identification (genomic & proteomic)
- Microbial & metabolic profiles
- Selection of potential strain
- Synbiotic design, formulation & controls
- Lab production for case studies in Africa
- Preliminary results of performance on tomato growth

Acknowledgment, team & collaborators

- Hary Razafindralambo WP/TS leader (BE)
- Philippe Jacques TS leader (BE)
- Majid Mounir CS leader (MO)

Co-funded by

the European Union

- Kouhounde Sonagnon CS leader (BF)
- Kifouli Adeoti CS leader(BJ)
- PhD students (IC, MO, BF, BJ)

GIGA

LIÈGE université

Collaborators

Thank you for your attention!