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Abstract
Genetic improvement of udder health in dairy cows is of high relevance as mas-
titis is one of the most prevalent diseases. Since it is known that the heritability 
of mastitis is low and direct data on mastitis cases are often not available in large 
numbers, auxiliary traits, such as somatic cell count (SCC) are used for the ge-
netic evaluation of udder health. In previous studies, models to predict clinical 
mastitis based on mid- infrared (MIR) spectral data and a somatic cell count- 
derived score (SCS) were developed. Those models can provide a probability of 
mastitis for each cow at every test- day, which is potentially useful as an addi-
tional auxiliary trait for the genetic evaluation of udder health. Furthermore, 
MIR spectral data were used to estimate contents of lactoferrin, a glycoprotein 
positively associated with immune response. The present study aimed to esti-
mate heritabilities (h2) and genetic correlations (ra) for clinical mastitis diagnosis 
(CM), SCS, MIR- predicted mastitis probability (MIRprob), MIR + SCS- predicted 
mastitis probability (MIRSCSprob) and lactoferrin estimates (LF). Data for this 
study were collected within the routine milk recording and health monitoring 
system of Austria from 2014 to 2021 and included records of approximately 
54,000 Fleckvieh cows. Analyses were performed in two datasets, including test- 
day records from 5 to 150 or 5 to 305 days in milk. Prediction models were ap-
plied to obtain MIR-  and SCS- based phenotypes (MIRprob, MIRSCSprob, LF). 
To estimate heritabilities and genetic correlations bivariate linear animal mod-
els were applied for all traits. A lactation model was used for CM, defined as a 
binary trait, and a test- day model for all other continuous traits. In addition to 
the random animal genetic effect, the fixed effects year- season of calving and 
parity- age at calving and the random permanent environmental effect were con-
sidered in all models. For CM the random herd- year effect, for continuous traits 
the random herd- test day effect and the covariate days in milk (linear and quad-
ratic) were additionally fitted. The obtained genetic parameters were similar 
in both datasets. The heritability found for CM was expectedly low (h2 = 0.02). 
For SCS and MIRSCSprob, heritability estimates ranged from 0.23 to 0.25, and 
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1  |  INTRODUCTION

The consideration of health traits for breeding purpose 
is of increasing importance in dairy cattle. It has started 
more than three decades ago in Scandinavian countries 
and is nowadays common in many countries around 
the globe (Philipsson & Lindhé,  2003; Zavadilová 
et  al.,  2021). In Austria, a genetic evaluation of direct 
health traits, based on diagnoses of veterinarians, was 
implemented for the breed Fleckvieh (dual purpose 
Simmental) in 2010 (Egger- Danner et al., 2012). Among 
health traits, mastitis is highly relevant as it is one of the 
most common diseases in dairy production. However, 
direct data on mastitis cases or diagnoses are often not 
available in large numbers or disease recording systems 
are not yet implemented. Therefore, a selection for udder 
health is in many countries based on genetically cor-
related or auxiliary traits, most commonly somatic cell 
count (SCC) or the corresponding logarithmic somatic 
cell score (SCS) (Interbull, 2022). SCC is the number of 
immune cells, mainly lymphocytes, polymorphonuclear 
neutrophils and macrophages, present in the milk. A 
higher SCC indicates an inflammatory response in the 
mammary gland (Schukken et al., 2003).

Besides data availability, the low heritability (0.001 
to 0.06) of mastitis disease is another challenging aspect 
in the genetic evaluation of the trait (Fürst et  al.,  2021; 
Heringstad et  al.,  2000; Koeck et  al.,  2012; Koeck, 
Heringstad, Egger- Danner, Fuerst, & Fuerst- Waltl,  2010; 
Suntinger et al., 2022). Hence, the selection for auxiliary 
traits with a much higher heritability, such as SCC or the 
corresponding SCS (usually larger than 0.1), has a positive 
effect on selection response (Mrode & Swanson, 1998). The 
joint breeding value estimation program between Germany 
and Austria defined a ‘udder health index’ as follows: 30% 
clinical mastitis diagnoses +70% SCS + three auxiliary 
traits from linear udder scoring (Fürst et al., 2021).

An additional phenotype for genetic evaluation of 
udder health could potentially be provided by mid- infrared 
(MIR) spectral analyses of milk. MIR spectroscopy is the 

standard method in routine milk recording schemes to 
determine major milk components like fat, protein, urea, 
and lactose (Grelet et al., 2016), and has been applied to 
predict fine milk composition (Gengler et al., 2016). Since 
MIR spectroscopy is a fast, cheap, and high- throughput 
method, it has an involving role in the prediction of var-
ious traits relevant for herd management and animal 
breeding (Grelet et al., 2021; Tiplady et al., 2020).

For the purpose of udder health, diverse approaches 
using MIR spectral analyses have been applied (Dale & 
Werner, 2017; Rienesl, Khayatzdadeh, et al., 2022; Rienesl, 
Marginter, et al., 2022; Soyeurt et al., 2012). For instance, 
milk MIR spectra were used to estimate the content of the 
glycoprotein lactoferrin, which is known to be positively 
associated with immune response and hence a potential 
indicator for mastitis (Cheng et al., 2008; Li et al., 2004; 
Sordillo & Streicher, 2002). Reported heritability estimates 
of MIR- predicted lactoferrin (LF) were between 0.20 and 
0.34 (Arnould et  al.,  2009; Nayeri et  al.,  2020; Soyeurt 
et al., 2007). Another approach was to use the MIR spec-
tral information directly; models to predict clinical masti-
tis diagnoses were developed based on MIR spectra alone 
and in combination with SCS (Rienesl, Khayatzdadeh, 
et al., 2022), or combining MIR, SCS and differential so-
matic cell count (Rienesl, Marginter, et al., 2022). Those 
models classifying test- records of cows in “healthy” and 
“mastitis”, reported balanced accuracies (mean of sensi-
tivity and specificity) of 0.65 to 0.71. A probability of mas-
titis derived from the prediction models was available for 
each cow at every test- day.

To our knowledge, genetic parameters estimates have 
not been published yet for MIR- predicted mastitis prob-
abilities. However, there are several studies on genetic 
parameter estimation of other phenotypes predicted 
from MIR spectra, such as blood β- hydroxybutyrate 
(Belay et  al.,  2017), energy intake and body energy sta-
tus (McParland et  al.,  2015), and fertility (van den Berg 
et al., 2021), to name but a few.

The aim of the present study was to estimate heritabili-
ties and genetic correlations for clinical mastitis diagnosis 

for MIRprob and LF from 0.15 to 0.17. CM was highly correlated with SCS and 
MIRSCSprob (ra = 0.85 to 0.88). Genetic correlations of CM were moderate with 
MIRprob (ra = 0.26 and 0.37) during 150 and 305 days in milk, respectively and 
low with LF (h2 = 0.10 and 0.11). However, basic selection index calculations 
indicate that the added value of the new MIR- predicted phenotypes is limited 
for genetic evaluation of udder health.

K E Y W O R D S

genetic correlation, heritability, lactoferrin, mastitis, mid- infrared spectroscopy, somatic cell 
count
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(CM), SCS, MIR- predicted mastitis probability (MIRprob), 
MIR + SCS- predicted mastitis probability (MIRSCSprob) 
and lactoferrin estimates (LF). The results of the study 
will indicate whether MIR- predicted phenotypes are po-
tentially useful for the genetic evaluation of udder health.

2  |  MATERIALS AND METHODS

2.1 | Data and data editing

Data used for this study were routinely collected within the 
Austrian milk recording system and the Austrian health 
monitoring system (GMON) (Egger- Danner et al.,  2012) 
between 2014 and 2021. Datasets, provided by ZuchtData 
GmbH, Vienna, Austria, consisted of comprehensive 
animal information, test- day milk records, MIR spectral 
data of milk, clinical mastitis diagnoses (acute and chronic) 
recorded by veterinarians, and pedigree information of 
approximately 54,000 dairy cows of the breed Fleckvieh 
(dual purpose Simmental). Only data of validated GMON 
farms with a minimum of 20 cows with records, where 
diagnoses were reported electronically by the herd 
veterinarian, were included (Egger- Danner et  al.,  2012; 
Suntinger et  al.,  2022). Data were further restricted to 
sires with at least 20 daughters to ensure an adequate data 
structure for variance component estimation.

Within the Austrian milk recording system, milk test-
ing is done 9 to 11 times a year, which results in test- day 
performance information every 30–40 days. Each test- day 
record included the following information: encrypted 
animal and herd ID, date of test- day, parity, days in milk 
(DIM), milk yield, fat, protein, urea, lactose, SCC and MIR 
spectral data. To obtain MIR spectra of milk, samples are 
routinely analysed by laboratories of the Austrian milk 
recording system with spectrometers FT6000, FT+ and 
FT7 (FOSS® Instruments, Hillerød, Denmark). Resulting 
MIR spectral data express the absorbance of infrared light 
at 1060 wavenumbers from 926 to 5010 cm−1 and are rou-
tinely standardized to ensure comparability across time 
and laboratories (Grelet et al., 2015, 2017).

For analyses, two sets of data were created. Dataset 
1 included test- day records from 5 to 150 days after calv-
ing, whereas mastitis diagnoses from −10 to 150 days 
from calving were considered, which is comparable 
with the data used for joint genetic evaluation of Austria 
and Germany (Fürst et al., 2021). Dataset 1 consisted of 
399,961 test- day records. Dataset 2, which counted 772,069 
records, included test- day records from 5 to 305 days after 
calving, in accordance with milk recording guidelines of 
ICAR (2022), were 305- days are defined as standard lac-
tation. Records of cows with five or more lactations were 
grouped into one category, resulting into five parity classes 

(1, 2, 3, 4, 5+). The pedigree file included 190,864 animals 
and was generated by tracing the pedigrees of cows 5 gen-
erations back.

Data cleaning, merging and editing was done with the 
software SAS version 9.4 (SAS Institute Inc., Cary, NC, 
USA). Table 1 displays the characteristics of the datasets 
used for analyses.

2.2 | Trait definition

Investigations were carried out for five traits, clinical 
mastitis as reference trait and 4 additional continuous 
traits related to mastitis and udder health.

2.2.1 | Clinical mastitis (CM)

CM was defined as binary trait, 0 or 1 (healthy/diseased). 
Cows that had at least one clinical mastitis diagnosis (acute 
or chronic) by a veterinarian in the observation period were 
considered as ‘diseased’ in the respective lactation. The obser-
vation period was defined as −10 to 150 DIM for dataset 1, ac-
cording to routine genetic evaluation in Austria and Germany 
(Fuerst et al., 2011), and − 10 to 305 DIM for dataset 2. Cows 
without CM diagnosis were considered as ‘healthy’. There 
was no distinction between acute and chronic diagnoses.

2.2.2 | Somatic cell score (SCS)

Measures of SCC were available continuously for every 
test- day. Records of SCC were logarithmically trans-
formed into SCS by the formula

according to Ali and Shook (1980), to achieve an approxi-
mately normal distribution of SCC.

��� = ���� (���∕���,���) + �

T A B L E  1  Characteristics of datasets (dataset 1: 5–150 DIM; and 
dataset 2: 5–305 DIM) used for analysis.

Unit

Records (n)

Dataset 1 Dataset 2

Animals (Pedigree) 189,800 190,864

Farms 1601 1610

Cows 53,639 53,910

Lactations total 117,952 118,754

With mastitis diagnosis 6384 12,933

Test- day records 399,961 772,069

Abbreviation: DIM, days in milk.
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2.2.3 | MIR- predicted mastitis probability 
(MIRprob)

A calibration model to predict clinical mastitis diagnosis 
based on MIR spectral data, developed in a previous study 
(Rienesl, Khayatzdadeh, et al., 2022), was used to obtain a 
probability of mastitis, ranging from 0.0 to 1.0, for every cow's 
single test- day record. According to Rienesl, Khayatzdadeh, 
et al. (2022), prediction was done with partial least squares 
discriminant analysis (PLS- DA). Only selected parts of the 
MIR spectra, corrected for DIM, were used for modelling, 
and test- day records ±21 days from diagnosis were consid-
ered as ‘mastitis cases’. Data, dataset 1 and dataset 2 respec-
tively, were each randomly split into half by farm:

1. Model calibration was performed on the first half of 
data and validation on the second half of the data.

2. Datasets were exchanged; the second half of the data 
was used for model calibration and the first half of the 
data for validation.

The applied PLS- DA models classified records based 
on their prediction probability in ‘healthy’ (p < 0.5) or 
‘mastitis’ (p ≥ 0.5). Standard class statistics were used to 
describe accuracy of the models: sensitivity (proportion 
of records correctly classified as ‘mastitis’), specificity 
(proportion records correctly classified as ‘healthy’), 
and balanced accuracy (balanced mean of sensitivity 
and specificity).

Prediction probabilities, defined as MIR- predicted mas-
titis probabilities, of the validation datasets were finally 
used for further analyses and genetic parameter estimation.

2.2.4 | MIR + SCS- predicted mastitis 
probability (MIRSCSprob)

Again, a previously developed PLS- DA model based on 
MIR spectra and SCS was applied to derive probabilities 

of mastitis. SCS and selected parts of the MIR spectra, 
corrected for DIM, were used for modelling, and test- day 
records ±21 days from diagnosis considered as mastitis 
cases (Rienesl, Khayatzdadeh, et al., 2022). The proce-
dure of prediction, including switching of calibration 
and validation datasets, was equal to the MIR model 
described above; MIR + SCS- predicted mastitis prob-
abilities of the validation datasets were used for further 
analyses.

2.2.5 | Lactoferrin estimates (LF)

A prediction equation to estimate contents of lactoferrin 
(mg/L) was developed by Soyeurt et al. (2012). A second 
version (V2) of the lactoferrin prediction equation 
was developed in 2017 by the Walloon Agricultural 
Research Center (CRA- W) as part of an internal project 
of the European Milk recording EEIG organization 
(EMR) (C. Grelet, 2022, CRA- W, Gembloux, personal 
communication); the dataset (n = 2189) which was used 
for calibration was described by Soyeurt et  al.  (2020) as 
the second dataset in the document. The V2 lactoferrin 
equation is already implemented in routine and currently 
used by the European Milk recording EEIG organization 
(EMR EEIG, 2022).

2.3 | Descriptive statistics

The mean was calculated for CM (proportion in %) and 
means plus standard deviations (SD) for the four other 
continuous traits, separately for dataset 1 (5–150 DIM) 
and dataset 2 (5–350 DIM) (Table 2). Incidences of CM (in 
%) were plotted for parity classes (Figure 1a). For the con-
tinuous traits SCS, MIRprob, MIRSCSprob and LF, daily 
trend of means and 95% confidence intervals were visual-
ized for each parity class in the lactation period from 5 to 
305 days in milk (Figures 2–5).

Trait Description of trait
Dataset 1 5–150 
DIM

Dataset 2 
5–305 DIM

CM, % Cows with at least 1 CM diagnosis 5.73 (n. a.) 10.89 (n. a.)

SCS Mean SCS in lactation 1.74 (1.79) 2.02 (1.73)

MIRprob Probability of mastitis from MIR 
prediction model

0.47 (0.08) 0.47 (0.07)

MIRSCSprob Probability of mastitis from 
MIR + SCS prediction model

0.44 (0.09) 0.45 (0.09)

LF, mg/L Estimates of lactoferrin predicted 
from MIR spectra

88.64 (98.94) 126.46 (113.24)

Abbreviations: CM, clinical mastitis diagnosis; DIM, days in milk; MIR, mid- infrared spectra; n. a., not 
available; SCS, somatic cell score; SD, standard deviation.

T A B L E  2  Descriptive statistics (mean 
and SD in parentheses) of analysed traits 
in dataset 1 (including records from 5 to 
150 DIM) and dataset 2 (including records 
from 5 to 305 DIM).
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2.4 | Statistical models for 
parameter estimation

Genetic parameters were estimated by applying the re-
stricted maximum likelihood (REML) method as imple-
mented in the software package VCE- 6 (version 6.0.2; 
Groeneveld et al., 2010). Bivariate linear animal models 
were fitted for pairwise combinations of all traits. A lac-
tation model was used for the binary trait CM:

where Y  is the observation of interest; � is a vector of system-
atic effects, including fixed effects of year- season of calving, 
and parity- age at calving; h is a vector of random herd- year 
effects; pe is a vector of random permanent environmental 
effects; a is a vector of random animal effects; e is a vector of 
random residuals; and X, Zh, Zpe, and Za are the correspond-
ing incidence matrices.

For the continuous traits SCS, MIRprob, MIRSCSprob, 
and LF, a test- day model was applied:

Y = X� + Zhh + Zpepe + Zaa + e Y = X� + Zhh + Zpepe + Zaa + e

F I G U R E  1  Total number of 
lactations per parity class (a) and 
percentage share of lactations with a 
clinical mastitis diagnosis (CM) per parity 
class (b), in dataset 2, considering test- day 
records from 5 to 305 days in milk and 
clinical mastitis diagnoses from −10 to 
305 days in milk.

F I G U R E  2  Trend of daily means and 95% confidence intervals of somatic cell score (SCS) in the lactation period from 5 to 305 days in 
milk (dataset 2), separately plotted for each parity class (1, 2, 3, 4, 5+).
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where Y  is the observation of interest; � is a vector of sys-
tematic effects, including fixed effects of year- season of 
calving, parity- age at calving, and DIM (linear and qua-
dratic); h is a vector of random herd- test- day effects; pe is 
a vector of random permanent environmental effects; a is 
a vector of random animal effects; e is a vector of random 

residuals; and X, Zh, Zpe, andZa are the corresponding inci-
dence matrices.

Statistical model for CM was similar with the model 
used for routine genetic evaluation in Austria (Fürst 
et  al.,  2021). For cows of first parity, eight calving- age 
classes were created. Parity- age of first lactating cows 

F I G U R E  3  Trend of daily means and 95% confidence intervals of MIR- predicted mastitis probabilities (MIRprob) in the lactation period 
from 5 to 305 days in milk (dataset 2), separately plotted for each parity class (1, 2, 3, 4, 5+).

F I G U R E  4  Trend of daily means and 95% confidence intervals of MIR + SCS- predicted mastitis probabilities (MIRSCSprob) in the 
lactation period from 5 to 305 days in milk (dataset 2), separately plotted for each parity class (1, 2, 3, 4, 5+).
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was grouped based on months: <23, 23–26, 27–29, 30–32, 
33–35, 36–38, 39–41 and >41. For cows with more than 
one calving, parity- age classes were 2, 3, 4, and 5+. So, in 
total there were 12 classes of the effect parity- age at calv-
ing. The fixed effect year- season of calving expressed 32 
levels in both datasets and the random herd- year effect ex-
pressed 65,458 levels in dataset 1 and 70,221 in dataset 2.

2.5 | Selection index calculations

For basic selection index calculations, a multi- trait selec-
tion index program (MTINDEX; Van der Werf, 2018) was 
used. Based on the estimated genetic parameters, accuracy 
of single trait EBV (estimated breeding value) was esti-
mated for each trait (CM, SCS, MIRprob, MIRSCSprob and 
LF) and accuracy for multiple trait EBV was estimated for 
CM, considering different combinations of auxiliary traits. 
For the prediction of the accuracy of EBVs, only the pres-
ence of progeny information was considered, assuming 
individuals having 20 daughters with phenotype records.

3  |  RESULTS

3.1 | MIR and MIR + SCS prediction 
models

The PLS- DA model to predict clinical mastitis diagnoses 
based on MIR spectra was evaluated with a sensitivity of 

0.62, a specificity of 0.68, and a balanced accuracy of 0.65 
in dataset 1 (5–150 DIM). The respective values for dataset 
2 (5–305 DIM) were: 0.60, 0.68, and 0.64. The prediction 
model, combining MIR spectra and SCS, showed a sensi-
tivity of 0.67, a specificity of 0.77; and a balanced accuracy 
of 0.72 in dataset 1 and corresponding values of 0.64, 0.75, 
and 0.69 in dataset 2.

3.2 | Descriptive statistics

Figure  1a shows the distribution of the total number of 
lactations among parity classes (1, 2, 3, 4, 5+); with the 
majority belonging to parity class 1 (n = 50,732) and the 
minority to parity class 5+ (n = 4646). The frequency of 
lactations with at least one CM diagnosis in dataset 1, 
where only diagnoses within −10 to 150 DIM were con-
sidered, was 5.73%. In dataset 2, considering diagnoses 
within −10 to 350 DIM, the frequency was 10.9% among 
all parity classes (Table  2); it was lowest for first parity 
cows with 9.29% and increased to 17.13% for cows with 
parities of 5 or more (Figure 1b).

Mean SCS (SCC) of all test- day records was 1.74 
(123,527 cells/mL) in dataset 1 and 2.02 (131,111 cells/
mL) in dataset 2 (Table  1). For the traits MIRprob and 
MIRSCSprob, the following mean probabilities were 
found in dataset 1 and dataset 2 respectively: 0.47/0.47 
and 0.44/0.45. SDs for MIRprob and MIRSCSprob were 
low in both datasets, ranging from 0.07 and 0.09. Mean LF 
was 88.64 in dataset 1 and 126.46 mg/L in dataset 2.

F I G U R E  5  Trend of daily means and 95% confidence intervals of MIR- predicted lactoferrin estimates (LF) in the lactation period from 5 
to 305 days in milk (dataset 2), separately plotted for each parity class (1, 2, 3, 4, 5+).
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The curve, from 5 to 305 days in milk, of SCS (SCC) was 
on average high shortly after calving with values above 
2.8 (250,000 cells/mL), decreased to a minimum of 1.4 
(>100,000 cells/mL) around DIM 40 and increased slowly up 
to 2.6 (>150,000 cells/mL) at the end of the observed lactation 
period (Figure S1). Figure 2 displays SCS curves separately for 
each parity class; similar patterns but different levels, namely 
mostly higher SCS with increased parity, could be observed. 
Only in the first 50 days of lactation, mean SCS was slightly 
higher for parity class 1 compared to parity class 2.

The trend across lactation of MIRprob are visualized in 
Figure  3, showing higher MIR- predicted mastitis proba-
bilities for cows of higher parity. Among all parity classes, 
MIRprob was highest (0.58) at the beginning of the lac-
tation period, slowly decreased to a minimum of 0.46 
around DIM 170, and increased again towards DIM 305 to 
0.52 (Figure S2).

Figure  4 displays the curves of probabilities derived 
from the MIR + SCS model (MIRSCSprob). Probabilities 
were higher for multiparous cows on each DIM, simi-
lar to MIRprob, whereas levels were generally lower for 
MIRSCSprob compared to MIRprob. Mean probability of 
all parity classes together was 0.54 at DIM 5, decreased 
to a minimum of 0.43 around DIM 170, and further in-
creased until DIM 305 to 0.51 (Figure S3).

The trend of daily mean LF on DIM 5–305 is shown 
in Figure 5, separately for each parity class (1, 2, 3, 4, 5+). 
Estimates of lactoferrin were lowest for first parity cows 
on each DIM. Highest values were found for parity class 
5+, whereas differences to parity classes 2–4 were small, 
especially until DIM 150. Mean LF among all parity classes 
was 120 mg/L on DIM 5, decreased very steeply to 50 mg/L 
around DIM 10, and increased almost linearly towards the 
end of the lactation period up to 215 mg/L (Figure S4).

3.3 | Genetic parameters

Heritabilities and genetic and phenotypic correlations for 
clinical mastitis (CM), MIR- predicted mastitis probabil-
ity (MIRprob), MIR + SCS- predicted mastitis probability 
(MIRSCSprob), and lactoferrin estimates (LF) are given in 
Table 3 for dataset 1 (5–150 DIM) and in Table 4 for data-
set 2 (5–305 DIM). Heritabilities displayed on the diagonal 
are means of the heritability estimates from all respective 
bivariate analyses.

In dataset 1 mean heritability estimates were 0.02, 0.25, 
0.17, 0.26, and 0.17 for CM, SCS, MIRprob, MIRSCSprob, 
and LF. SE for heritability estimates showed a low varia-
tion among traits. CM was strongly genetically correlated 

Dataset 1: 5–150 DIM

Trait CM SCS MIRprob MIRSCSprob LF

CM 0.02 
(0.002)

0.85 (0.042) 0.26 
(0.067)

0.85 (0.045) 0.10 (0.067)

SCS 0.16 0.25 (0.009) 0.41 
(0.020)

0.97 (0.001) 0.27 (0.022)

MIRprob 0.08 0.33 0.17 
(0.005)

0.50 (0.019) 0.60 (0.014)

MIRSCSprob 0.15 0.96 0.43 0.26 (0.009) 0.31 (0.021)

LF 0.05 0.29 0.56 0.35 0.17 (0.005)

Abbreviations: DIM, days in milk; MIR, mid- infrared spectra; SE, standard error.

T A B L E  3  Mean heritabilities (in bold 
on diagonal, with mean SE in parentheses), 
genetic correlations (above diagonal, 
with SE in parentheses), and phenotypic 
correlations (below diagonal, SE not 
available) for clinical mastitis (CM), somatic 
cell score (SCS), MIR- predicted mastitis 
probability (MIRprob), MIR + SCS- predicted 
mastitis probability (MIRSCSprob), and 
lactoferrin estimates (LF) from bivariate 
linear animal models in dataset 1 (including 
records from 5 to 150 DIM).

Trait

Dataset 2: 5–305 DIM

CM SCS MIRprob MIRSCSprob LF

CM 0.02 
(0.002)

0.86 (0.038) 0.31 
(0.067)

0.87 (0.034) 0.11 (0.067)

SCS 0.16 0.23 (0.003) 0.38 
(0.004)

0.97 (0.001) 0.25 (0.003)

MIRprob 0.07 0.31 0.15 
(0.002)

0.42 (0.004) 0.58 (0.003)

MIRSCSprob 0.15 0.90 0.49 0.20 (0.003) 0.31 (0.004)

LF 0.06 0.30 0.52 0.32 0.15 (0.002)

Abbreviations: DIM, days in milk; MIR, mid- infrared spectra; SE, standard error.

T A B L E  4  Mean heritabilities (in bold 
on diagonal, with mean SE in parentheses), 
genetic correlations (above diagonal, 
with SE in parentheses), and phenotypic 
correlations (below diagonal, SE not 
available) for clinical mastitis (CM), somatic 
cell score (SCS), MIR- predicted mastitis 
probability (MIRprob), MIR + SCS- predicted 
mastitis probability (MIRSCSprob), and 
lactoferrin estimates (LF) from bivariate 
linear animal models in dataset 2 (including 
records from 5 to 305 DIM).
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   | 9RIENESL et al.

to SCS and MIRSCSprob (0.85). The genetic correla-
tion between SCS and MIRSCSprob was also very high 
(0.97). The genetic correlation of CM was moderate with 
MIRprob (0.26) and low with LF (0.10). Moderate genetic 
correlations were also found between SCS and MIRprob 
(0.41), MIRprob and MIRSCSprob (0.50), SCS and LF 
(0.27), and MIRSCSprob and LF (0.31). A strong genetic 
correlation was also estimated between LF and MIRprob 
(0.60).

Estimates of heritabilities and genetic correlations 
were very similar in dataset 2 (5–305 DIM) compared 
to dataset 1 (5–150 DIM). Mean heritability was identi-
cal for CM (0.02) and slightly lower for SCS, MIRprob, 
MIRSCSprob, and LF (0.23, 0.15, 0.20, and 0.15). Genetic 
correlation of CM was again strongest with SCS (0.86) 
and MIRSCSprob (0.87). Compared to dataset 1, the ge-
netic correlation between CM and MIRprob was some-
what higher with 0.31, and between SCS and MIRprob 
somewhat lower with 0.38. The biggest difference be-
tween the two datasets was found for the genetic cor-
relation between MIRprob and MIRSCSprob, which was 
lower in dataset 2 (0.42 vs. 0.50). The genetic correla-
tions between all other traits in dataset 2 differed only 
slightly from those in dataset 1.

Phenotypic correlations among all traits are displayed 
below the diagonal of Tables  3 and 4 respectively. The 
strongest phenotypic correlation was found between 
SCS and MIRSCSprob (>0.90). Rather high phenotypic 
correlations were also found between LF and MIRprob 
(>0.50) and between SCSMIRprob and MIRprob (>0.43). 
The phenotypic correlation of CM was moderate with 

SCS (0.16) and SCSMIRprob (0.15) in both datasets, and 
relatively low with MIRprob (0.08/0.07) and with LF 
(0.05/0.06). Moderate phenotypic correlations (approxi-
mately 0.30) were also found between SCS and MIRprob, 
SCS and LF, and SCSMIRprob and LF.

3.4 | Comparison of EBV accuracies 
for CM

The results of the estimation of EBV accuracies showed 
that the accuracy of single trait EBV for CM was 0.30 in 
both datasets (Tables 5 and 6). The multiple trait selec-
tion approach, combining CM + SCS resulted in an accu-
racy of multiple trait (MT) EBV of CM of approximately 
0.65 in dataset 1 and 2. For the index CM + SCSMIRprob 
the accuracy of MT EBV of CM was 0.66 in dataset 1 
and 0.64 in dataset 2. The corresponding values for 
CM + MIRprob were 0.34 and for CM + LF 0.31 in both 
datasets respectively. Indices of various trait combina-
tions resulted in accuracies of MT EBV of CM between 
0.66 and 0.68 in dataset 1 and between 0.65 and 0.66 in 
dataset 2.

4  |  DISCUSSION

The aim of the present study was to estimate genetic pa-
rameters for MIR- predicted phenotypes associated with 
mastitis and udder health in a large dataset, collected 
during routine milk recording in Austria. The balanced 

Dataset 1: 5–150 DIM

Trait (with 20 
progeny records each)

Single trait EBV
Multi 
trait EBV 
CMCM SCS

MIR 
prob

MIRSCS 
prob LF

CM + SCS 0.302 0.756 - - - 0.654

CM + MIRprob 0.302 - 0.686 - - 0.336

CM + MIRSCSprob 0.302 - - 0.763 - 0.660

CM + LF 0.302 - - - 0.686 0.307

CM + SCS + MIRprob 0.302 0.756 0.686 - - 0.657

CM + SCS + MIRprob 
+ LF

0.302 0.756 0.686 - 0.686 0.664

CM + SCSMIRprob + LF 0.302 - - 0.763 0.686 0.676

CM + SCS + LF 0.302 0.756 - - - 0.676

CM + SCS + MIRprob + 
MIRSCSprob

0.302 0.756 0.686 0.763 - 0.674

CM + SCS + MIRprob + 
MIRSCSprob + LF

0.302 0.756 0.686 0.763 0.686 0.680

Abbreviations: DIM, days in milk; EBV, estimated breeding value; MIR, mid- infrared spectra.

T A B L E  5  Estimated accuracies 
of single trait estimated breeding 
values (EBV) for clinical mastitis 
(CM), somatic cell score (SCS), MIR- 
predicted mastitis probability (MIRprob), 
MIR + SCS- predicted mastitis probability 
(MIRSCSprob), and lactoferrin estimates 
(LF) and estimated accuracies of multiple 
trait EBV for CM using different auxiliary 
traits. Estimates are based on previously 
derived genetic parameters of dataset 1 
(including records from 5 to 305 DIM), 
assuming information of 20 progeny.
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10 |   RIENESL et al.

accuracy of the model to predict clinical mastitis based on 
MIR was 0.65 and for the model based on MIR + SCS it 
was 0.71. The MIR- based prediction equation applied to 
estimate contents of lactoferrin was evaluated with R2cv 
of 0.66. Hence, such MIR- based prediction models and 
equations do not allow precise determination of lactofer-
rin content and accurate classification of cows with or 
without mastitis infection. However, they can be used for 
monitoring and screening purpose on individual cow and 
herd level (Rienesl, Khayatzdadeh, et  al.,  2022; Rienesl, 
Marginter, et al., 2022; Soyeurt et al., 2020). Further, sev-
eral other MIR- predicted phenotypes were evaluated as 
being useful for genetic investigations at population level 
(Belay et al., 2017; Benedet et al., 2020).

The definition of the trait CM was applied according to 
routine genetic evaluation in Austria and Germany (Fuerst 
et  al.,  2011) to make results comparable and applicable. 
However, this definition implies that a cow that had one 
diagnosis of mastitis is equivalent to a cow that had mul-
tiple positive diagnoses in the defined period, whereas the 
traits SCS, MIRprob, MIRSCSprob, and LF are referred to 
test- days.

The frequency of lactations with at least one CM diag-
nosis in dataset 1 was lower compared to dataset 2 (5.7% 
vs. 10.9%), because in dataset 1 only diagnoses within −10 
to 150 DIM were considered, whereas in dataset 2 diag-
noses until DIM 305 were included. These frequencies 
are comparable to other studies on clinical mastitis in 
Austrian Fleckvieh cows, that reported frequencies of CM 
in the range of 7.7% to 9.6% (Koeck, Heringstad, Egger- 
Danner, Fuerst, Winter, & Fuerst- Waltl,  2010; Suntinger 

et al., 2022). An increase of mastitis incidence with par-
ity was recently also reported by Lean et al. (2022), were 
mastitis incidence was 2.5 times greater in parity ≥5 than 
in parity 1. The patterns of the trends across lactation of 
SCS were consistent with findings reported by several 
other studies (De Haas et al., 2002; Græsbøll et al., 2016; 
Kirkeby et  al.,  2020; Suntinger et  al.,  2022; Wiggans & 
Shook, 1987).

Patterns of curves of MIR-  and MIR + SCS- predicted 
mastitis probabilities (Figures 3 and 4) were very similar 
but deviated from the curves of SCS and LF (Figures 2 and 
5). We did not find trends across lactation of similar MIR- 
predicted traits in literature.

Regarding MIR- predicted contents of lactoferrin, a 
large difference was found between the two datasets, 
88.64 ± 98.94 in dataset 1 (5–150 DIM) and 126.46 ± 113.24 
in dataset 2 (5–305 DIM). Soyeurt et  al.  (2007) and 
Arnould et  al.  (2009) used similar MIR- based equations 
to estimate contents of lactoferrin; the observed mean LF 
were 189.08 ± 155.88 and 137.80 ± 176.74, in datasets in-
cluding different breeds and test- day records from 5 to 365 
DIM. Hence, higher mean LF were found compared to the 
current study, and variation of LF contents was large in 
all three studies. According to Soyeurt et  al.  (2007), the 
large deviation in LF content could reflect the high vari-
ation during the lactation period or could be explained 
by the mix of breeds. The change of MIR- predicted LF 
contents during the lactation period, for each parity class, 
are displayed in Figure 5. Following a high concentration 
and a drop in the very first days of lactation, LF increased 
as lactation progressed. LF contents also increased with 

Dataset 2: 5–305 DIM

Trait (with 20 progeny 
records each)

Single trait EBV Multi 
trait 
EBV 
CMCM SCS

MIR 
prob

MIRSCS 
prob LF

CM + SCS 0.302 0.741 - - - 0.649

CM + MIRprob 0.302 - 0.662 - - 0.348

CM + MIRSCSprob 0.302 - - 0.716 - 0.637

CM + LF 0.302 - - - 0.662 0.307

CM + SCS + MIRprob 0.302 0.741 0.662 - - 0.650

CM + SCS + MIRprob 
+ LF

0.302 0.741 0.662 - 0.662 0.659

CM + SCSMIRprob + LF 0.302 - - 0.716 0.662 0.649

CM + SCS + LF 0.302 0.741 - - - 0.658

CM + SCS + MIRprob + 
MIRSCSprob

0.302 0.741 0.662 0.716 - 0.655

CM + SCS + MIRprob + 
MIRSCSprob + LF

0.302 0.741 0.662 0.716 0.662 0.664

Abbreviations: DIM, days in milk; EBV, estimated breeding value; MIR, mid- infrared spectra.

T A B L E  6  Estimated accuracies 
of single trait estimated breeding 
values (EBV) for clinical mastitis 
(CM), somatic cell score (SCS), MIR- 
predicted mastitis probability (MIRprob), 
MIR + SCS- predicted mastitis probability 
(MIRSCSprob), and lactoferrin estimates 
(LF) and estimated accuracies of multiple 
trait EBV for CM using different auxiliary 
traits. Estimates are based on previously 
derived genetic parameters of dataset 2 
(including records from 5 to 150 DIM), 
assuming information of 20 progeny.
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parity number. Similar patterns were described by Soyeurt 
et al. (2007) and by Fleming et al. (2019).

The linear model estimates of heritability of CM 
(0.02) was in agreement with the heritability of clinical 
mastitis reported from the joint Austrian and German 
genetic evaluation (Fürst et al., 2021). Other studies on 
Austrian Fleckvieh cattle (Koeck, Heringstad, Egger- 
Danner, Fuerst, Winter, & Fuerst- Waltl, 2010; Suntinger 
et al.,  2022) also found heritabilities in a similar range. 
Results were also in accordance with a literature review 
of Heringstad et  al.  (2000), that found heritability esti-
mates in the range from 0.001 to 0.06 for mastitis, with 
most values ranging from 0.02 to 0.03. Heritability es-
timates of SCS, 0.25 in dataset 1 and 0.23 in dataset 2, 
were higher compared to other Austrian studies (Fürst 
et  al.,  2021; Koeck, Heringstad, Egger- Danner, Fuerst, 
Winter, & Fuerst- Waltl,  2010), where they were around 
0.12. The Finnish Animal Breeding Association reported 
heritabilities of SCS in the range of 0.14 to 0.23, depend-
ing on the breed (Luttinen & Juga,  1997). Whereas a 
Swiss study (Dal Zotto et  al.,  2007) estimated a herita-
bility of 0.06 for SCS. From these studies it is apparent 
that the heritability estimates of SCS and SCC show a 
large variability across countries and breeds. Heritability 
estimates for MIRSCSprob (0.26 and 0.20) were in the 
range of estimates for SCS, while estimated heritabilities 
of MIRprob were lower (0.17 and 0.15), indicating the 
large effect of SCS in the MIR + SCS prediction model. 
For MIR- predicted LF contents, heritability estimates 
(0.17 and 0.15) were equal to the trait MIRprob, similar 
and comparable with findings of Soyeurt et  al.  (2007), 
Arnould et al. (2009), and Lopez- Villalobos et al. (2009), 
who reported heritability estimates for MIR- predicted 
lactoferrin ranging from 0.16 to 0.22.

Estimated genetic correlations between CM and SCS 
were bit stronger (0.85 and 0.86) in the present study 
compared to values reported by Koeck, Heringstad, 
Egger- Danner, Fuerst, Winter, and Fuerst- Waltl  (2010) 
and (Fürst et  al.,  2021), that were in the range of 0.64 
to 0.71. Suntinger et al.  (2022) found genetic correlation 
of 0.53 between SCS and acute CM, and genetic correla-
tion of 0.61 between SCS and chronic CM. MIRSCSprob 
showed an equally strong genetic correlation to CM (0.85 
and 0.87) as SCS did, underlining the large impact of SCS 
in the PLS- DA model based on MIR + SCS. Moreover, the 
genetic correlation between SCS and MIRSCSprob was 
0.97, indicating that both traits provide largely the same 
information. The genetic correlations between CM and 
MIRprob were much lower compared to CM and SCS, 
but still at a moderate level. Further, the genetic correla-
tions between SCS and MIRprob were also at a moderate 
level. These findings might indicate that MIR spectra of 
milk potentially provide additional information related to 

mastitis besides SCS. As stated before, the udder health 
index of the Austrian and German joint genetic evalua-
tion, currently contains relative weights of 30% clinical 
mastitis diagnoses and 70% SCS and additionally considers 
auxiliary traits from linear udder scoring. Those auxiliary 
traits hold the following genetic parameters: h2 = 0.21 and 
ra to CM = 0.38 (fore udder attachment), h2 = 0.33 and ra to 
CM = 0.64 (udder depth), and h2 = 0.28 and ra to CM = 0.28 
(teat placement front) (Fürst et al., 2021). Hence, the trait 
MIRprob showed a similar genetic correlation to CM as 
the traits fore udder attachment and teat placement front.

Regarding MIR- predicted contents of lactoferrin (LF), 
the genetic correlations with CM were very low (0.10 and 
0.11). This result was not necessarily expected, since lac-
toferrin is known to contribute positively to resistance 
to mastitis infections (Cheng et al., 2008; Li et al., 2004; 
Sordillo & Streicher,  2002). However, infection of the 
mammary gland also leads to an increase in lactoferrin 
(Shimazaki & Kawai, 2017). Thus, in both cases, lactoferrin 
content in milk is high, but the udder health phenotype is 
opposite, which may explain the low genetic correlation of 
CM and LF. Another reason for the low correlation of CM 
and LF could be the fact that the applied prediction equa-
tion for LF was calibrated on an external dataset (Soyeurt 
et al., 2020), where it was evaluated with an R2 cv of 0.66. 
Hence, in the current study R2 between true and predicted 
contents of lactoferrin might be even lower.

The genetic correlations estimated between LF and SCS 
(0.27 and 0.25) were very similar to Arnould et al. (2009), 
who reported a value of 0.24. Soyeurt et  al.  (2007) and 
Nayeri et al. (2020) found low genetic correlations of 0.04 
and 0.06 between SCS and MIR- predicted lactoferrin. 
Cheng et  al.  (2008) also found a stronger correlation of 
0.38, but between ELISA- measured lactoferrin concentra-
tion and SCC. So, there is a large variation in estimates of 
genetic correlations between (MIR)- predicted lactoferrin 
and SCS/SCC. Further research is required to find expla-
nations and influencing factors.

Results of the selection index calculation showed that 
adding MIRprob or LF could not increase accuracy of EBV 
for CM compared to the single trait EBV of CM. An index 
of CM + MIRSCSprob resulted in a similar accuracy of 
MT EBV for CM compared to CM + SCS, approximating 
the current udder health index. Indices combining various 
traits, e.g. CM + SCSMIRprob + LF, CM + SCS + LF, or CM 
+ SCS + MIRprob + MIRSCSprob + LF, led to an increased 
accuracy of the MT EBV for CM in dataset 1, in dataset 
2 there were hardly any differences. The index CM + SC
S + MIRprob + MIRSCSprob + LF showed the highest ac-
curacy (0.68), but also contains repeated information. 
Consequently, the performed basic selection index calcu-
lation indicate that MIR- predicted phenotypes evaluated 
in the present study may not considerably help to improve 
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accuracy of breeding values for clinical mastitis compared 
to the current index (70% SCS + 30% CM).

5  |  CONCLUSIONS

Our study confirmed the good capability of SCS as auxiliary 
trait for genetic evaluation of udder health. Probabilities 
of mastitis derived from a MIR- spectra based prediction 
model showed a moderate heritability and a moder-
ate positive genetic correlation to CM, which indicates 
a potential use as an additional auxiliary trait. Mastitis 
probabilities predicted by a model based on MIR + SCS re-
sulted in similar genetic parameters as somatic cell score, 
suggesting that large part of the information in the joint 
model comes from SCS. However, basic selection index 
calculations indicate that the additional benefit of using 
the new MIR- predicted phenotypes is very limited for ge-
netic improvement of udder health.
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