Représentation par ondelettes de processus définis via des intégrales de Wiener-Itô multiples

Séminaire de Vannes du LMBA

Laurent Loosveldt

2nd February 2024

Let $\{B(t)\}_{t\in\mathbb{R}}$ be a Brownian motion defined on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{B(t)\}_{t \in \mathbb{R}}$ be a Brownian motion defined on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. If $d \in \mathbb{N}^*$, we first consider simple symmetric function of the form

$$f = \sum_{j_1, \dots, j_d=1}^n a_{j_1, \dots, j_d} \mathbb{1}_{[s_{j_1}, t_{j_1})} \otimes \dots \otimes \mathbb{1}_{[s_{j_d}, t_{j_d})},$$
 (1)

where, \otimes stands for the tensor product, a_{j_1,\ldots,j_d} are such that, for all permutation σ , $a_{\sigma(j_1),\ldots,\sigma(j_d)} = a_{j_1,\ldots,j_d}$ and $a_{j_1,\ldots,j_d} = 0$ as soon as two indices j_1,\ldots,j_d are equal and, for all $1 \le \ell \ne \ell' \le d$, $[s_{j_\ell}, t_{j_\ell}) \cap [s_{j_{\ell'}}, t_{j_{\ell'}}) = \emptyset$.

Let $\{B(t)\}_{t \in \mathbb{R}}$ be a Brownian motion defined on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. If $d \in \mathbb{N}^*$, we first consider simple symmetric function of the form

$$f = \sum_{j_1,\dots,j_d=1}^n a_{j_1,\dots,j_d} \mathbb{1}_{[s_{j_1},t_{j_1})} \otimes \dots \otimes \mathbb{1}_{[s_{j_d},t_{j_d})},$$
(1)

where, \otimes stands for the tensor product, $a_{j_1,...,j_d}$ are such that, for all permutation σ , $a_{\sigma(j_1),...,\sigma_l(j_d)} = a_{j_1,...,j_d}$ and $a_{j_1,...,j_d} = 0$ as soon as two indices $j_1,...,j_d$ are equal and, for all $1 \le \ell \ne \ell' \le d$, $[s_{j_\ell}, t_{j_\ell}) \cap [s_{j_{\ell'}}, t_{j_{\ell'}}] = \emptyset$. For such a function f, we define the d-multiple Wiener-Itô integral w.r.t $\{B(t)\}_{t \in \mathbb{R}}$ by

$$I_d(f) := \sum_{j_1,\dots,j_d=1}^n a_{j_1,\dots,j_d} (B(t_{j_1}) - B(s_{j_1})) \times \dots (B(t_{j_d}) - B(s_{j_d})).$$
(2)

Let $\{B(t)\}_{t \in \mathbb{R}}$ be a Brownian motion defined on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. If $d \in \mathbb{N}^*$, we first consider simple symmetric function of the form

$$f = \sum_{j_1,\dots,j_d=1}^n a_{j_1,\dots,j_d} \mathbb{1}_{[s_{j_1},t_{j_1})} \otimes \dots \otimes \mathbb{1}_{[s_{j_d},t_{j_d})},$$
(1)

where, \otimes stands for the tensor product, $a_{j_1,...,j_d}$ are such that, for all permutation σ , $a_{\sigma(j_1),...,\sigma_l(j_d)} = a_{j_1,...,j_d}$ and $a_{j_1,...,j_d} = 0$ as soon as two indices $j_1,...,j_d$ are equal and, for all $1 \le \ell \ne \ell' \le d$, $[s_{j_\ell}, t_{j_\ell}) \cap [s_{j_{\ell'}}, t_{j_{\ell'}}] = \emptyset$. For such a function f, we define the d-multiple Wiener-Itô integral w.r.t $\{B(t)\}_{t \in \mathbb{R}}$ by

$$I_d(f) := \sum_{j_1,\dots,j_d=1}^n a_{j_1,\dots,j_d} (B(t_{j_1}) - B(s_{j_1})) \times \dots (B(t_{j_d}) - B(s_{j_d})).$$
(2)

It is a random variable in $L^2(\Omega)$.

2nd February 2024

L. Loosveldt

For a general symmetric $f \in L^2(\mathbb{R}^d)$:

For a general symmetric $f \in L^2(\mathbb{R}^d)$:

The set of simple symmetric function of the form (1) is dense in the set of symmetric square integrable function: there exists a sequence (f_j)_j of simple symmetric function which converges to f in L²(R^d);

For a general symmetric $f \in L^2(\mathbb{R}^d)$:

The set of simple symmetric function of the form (1) is dense in the set of symmetric square integrable function: there exists a sequence (f_j)_j of simple symmetric function which converges to f in L²(R^d);

• $(I_d(f_j))_j$ is a Cauchy sequence in $L^2(\Omega)$;

For a general symmetric $f \in L^2(\mathbb{R}^d)$:

The set of simple symmetric function of the form (1) is dense in the set of symmetric square integrable function: there exists a sequence (f_j)_j of simple symmetric function which converges to f in L²(R^d);

•
$$(I_d(f_j))_j$$
 is a Cauchy sequence in $L^2(\Omega)$;

• $I_d(f) := \lim_{j \to +\infty} I_d(f_j)$ (in $L^2(\Omega)$).

For a general $f \in L^2(\mathbb{R}^d)$:

For a general $f \in L^2(\mathbb{R}^d)$: We use the canonical symmetrization \tilde{f} of f defined, for all $(x_1, \ldots, x_d) \in \mathbb{R}^d$, as:

$$\widetilde{f}(x_1,\ldots,x_d) := \frac{1}{d!} \sum_{\sigma \in \mathfrak{S}_d} f(x_{\sigma(1)},\ldots,x_{\sigma(d)}).$$
(3)

4

For a general $f \in L^2(\mathbb{R}^d)$: We use the canonical symmetrization \tilde{f} of f defined, for all $(x_1, \ldots, x_d) \in \mathbb{R}^d$, as:

$$\widetilde{f}(x_1,\ldots,x_d) := \frac{1}{d!} \sum_{\sigma \in \mathfrak{S}_d} f(x_{\sigma(1)},\ldots,x_{\sigma(d)}).$$
(3)

$$I_d(f) := I_d(\widetilde{f}).$$

L. Loosveldt

For a general $f \in L^2(\mathbb{R}^d)$: We use the canonical symmetrization \tilde{f} of f defined, for all $(x_1, \ldots, x_d) \in \mathbb{R}^d$, as:

$$\widetilde{f}(x_1,\ldots,x_d) := \frac{1}{d!} \sum_{\sigma \in \mathfrak{S}_d} f(x_{\sigma(1)},\ldots,x_{\sigma(d)}).$$
(3)

$$I_d(f) := I_d(\tilde{f}).$$

The *d*th Wiener chaos is defined as the closed linear subspace of $L^2(\Omega)$ generated by the random variables of the form $I_d(f)$

Important facts

Wiener isometry

If $f \in L^2(\mathbb{R}^d)$ and $g \in L^2(\mathbb{R}^{d'})$, we have

$$\mathbb{E}\left[I_d(f)I_{d'}(g)\right] = \begin{cases} d!\langle f,g\rangle & \text{if } d = d'\\ 0 & \text{otherwise,} \end{cases}$$

(4)

where $\langle \cdot, \cdot \rangle$ stands for the canonical scalar product in $L^2(\mathbb{R}^d)$.

Important facts

Wiener isometry

If $f \in L^2(\mathbb{R}^d)$ and $g \in L^2(\mathbb{R}^{d'})$, we have

$$\mathbb{E}\left[I_d(f)I_{d'}(g)\right] = \begin{cases} d!\langle f,g\rangle & \text{if } d = d'\\ 0 & \text{otherwise,} \end{cases}$$

(4)

where $\langle\cdot,\cdot\rangle$ stands for the canonical scalar product in $L^2(\mathbb{R}^d).$

Connection with Hermite polynomials

if $f \in L^2(\mathbb{R})$ is such that $||f||_{L^2(\mathbb{R})} = 1$, then

 $H_d(I_1(f)) = I_d(f^{\otimes_d}),$

where H_d is the *d*th Hermite polynomial $H_d(x) = (-1)^d e^{x^2/2} D^d e^{-x^2/2}$.

L. Loosveldt

2nd February 2024

Important facts

Product formula

If $f \in L^2(\mathbb{R}^m)$ and $g \in L^2(\mathbb{R}^n)$, we have

$$I_{m}(f)I_{n}(g) = \sum_{r=0}^{m \wedge n} r! \binom{m}{r} \binom{n}{r} I_{m+n-2r}(f \otimes_{r} g),$$
(5)

where, for all $0 \le r \le m \land n$, $f \otimes_r g$ is the $L^2(\mathbb{R}^{m+n-2r})$ function defined, for all $(x_1, \ldots, x_{m+n-2r}) \in \mathbb{R}^{m+n-2r}$, through the Lebesgue integral

$$(f \otimes_r g)(x_1, \dots, x_{m+n-2r}) \\ := \int_{\mathbb{R}^r} f(x_1, \dots, x_{m-r}, s_1, \dots, s_r) g(x_{m-r+1}, \dots, x_{m+n-2r}, s_1, \dots, s_r) \, ds_1 \dots ds_r \, ,$$

Multiresolution analysis

Definition

A multiresolution analysis of the Hilbert space $L^2(\mathbb{R}^d)$ is given by a sequence $(V_j)_{j\in\mathbb{Z}}$ of closed linear subspaces of $L^2(\mathbb{R}^d)$ such that

(a) for all
$$j \in \mathbb{Z}$$
, $V_j \subseteq V_{j+1}$;

(b)
$$\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$$
 and $\bigcup_{j \in \mathbb{Z}} V_j$ is dense in $L^2(\mathbb{R}^d)$;

(c) for all
$$j \in \mathbb{Z}$$
, $V_j = \{f(2^j \cdot) : f \in V_0\};$

(d) there exists a scaling function $\phi^d \in V_0$ such that the sequence $(\phi^d(\cdot - k))_{k \in \mathbb{Z}^d}$ is an orthogonal basis of V_0 .

A base for the details spaces

In dimension 1 (Meyer)

There exists a function ψ , called mother wavelet, belonging to W_0^1 and such that, for all $j \in \mathbb{Z}$, the sequence $(2^{j/2}\psi(2^j \cdot -k))_{k \in \mathbb{Z}}$ is an orthonormal basis in W_j^1 . Moreover, for all $J \in \mathbb{Z}$, the family

$$\{2^{J/2}\phi^1(2^Jx-k): k \in \mathbb{Z}\} \cup \{2^{j/2}\psi(2^jx-k): k \in \mathbb{Z}, j \ge J\}$$

is a base in $L^2(\mathbb{R})$, called wavelet base.

A base for the details spaces

In dimension 1 (Meyer)

There exists a function ψ , called mother wavelet, belonging to W_0^1 and such that, for all $j \in \mathbb{Z}$, the sequence $(2^{j/2}\psi(2^j \cdot -k))_{k \in \mathbb{Z}}$ is an orthonormal basis in W_j^1 . Moreover, for all $J \in \mathbb{Z}$, the family

$$\{2^{J/2}\phi^1(2^Jx-k): k \in \mathbb{Z}\} \cup \{2^{j/2}\psi(2^jx-k): k \in \mathbb{Z}, j \ge J\}$$

is a base in $L^2(\mathbb{R})$, called wavelet base.

In higher dimension: tensor products

Usually, we use, for $J \in \mathbb{Z}$,

$$\{\bigotimes_{\ell=1}^{d} \phi_{J,k_{\ell}} : k_{\ell} \in \mathbb{Z}\} \cup \{\bigotimes_{\ell=1}^{d} \psi_{j,k_{\ell}}^{(\ell)} : k_{\ell} \in \mathbb{Z}, j \geq J, \exists \ell \text{ s.t.} \psi^{(\ell)} = \psi\}$$

A base for the details spaces

In dimension 1 (Meyer)

There exists a function ψ , called mother wavelet, belonging to W_0^1 and such that, for all $j \in \mathbb{Z}$, the sequence $(2^{j/2}\psi(2^j \cdot -k))_{k \in \mathbb{Z}}$ is an orthonormal basis in W_j^1 . Moreover, for all $J \in \mathbb{Z}$, the family

$$\{2^{J/2}\phi^1(2^Jx-k): k \in \mathbb{Z}\} \cup \{2^{j/2}\psi(2^jx-k): k \in \mathbb{Z}, j \ge J\}$$

is a base in $L^2(\mathbb{R})$, called wavelet base.

Better in our context

$$\{\bigotimes_{\ell=1}^d \phi_{J,k_\ell} : k_\ell \in \mathbb{Z}\} \cup \{\bigotimes_{\ell=1}^d \psi_{j_\ell,k_\ell} : k_\ell \in \mathbb{Z}, \max_{1 \le \ell \le d} j_\ell \ge J\}$$

Processes in the *d*th Wiener chaos

General definition

 $\{I_d(K(t, \bullet))\}_{t \geq 0}$

where, for all $t \ge 0$, the function $K(t, \bullet) \in L^2(\mathbb{R}^d)$.

Processes in the *d*th Wiener chaos

General definition

 $\{I_d(K(t, \bullet))\}_{t \geq 0}$

where, for all $t \ge 0$, the function $K(t, \bullet) \in L^2(\mathbb{R}^d)$.

Hermite process

$$K(t, x_1, \dots, x_d) = c(h, d) \int_0^t \prod_{\ell=1}^d (s - x_\ell)_+^{\frac{h-1}{d} - \frac{1}{2}} ds$$

whith $h \in \left(\frac{1}{2}, 1\right)$.

Processes in the *d*th Wiener chaos

General definition

 $\{I_d(K(t, \bullet))\}_{t \geq 0}$

where, for all $t \ge 0$, the function $K(t, \bullet) \in L^2(\mathbb{R}^d)$.

Generalized Hermite processes (Bai, Taqqu)

$$K(t, x_1, \dots, x_d) = \frac{1}{\prod_{\ell=1}^d \Gamma(h_\ell - 1/2)} \int_0^t \prod_{j=1}^d (s - x_\ell)_+^{h_\ell - 3/2} ds$$

with $h_1, \ldots, h_d \in \left(\frac{1}{2}, 1\right)$ such that $\sum_{\ell=1}^d h_\ell > d - \frac{1}{2}$.

1. First appeared in non-central limit theorems (Breuer, Dobrushin, Major,...).

- 1. First appeared in non-central limit theorems (Breuer, Dobrushin, Major,...).
- 2. For d = 1 (resp. d = 2), it corresponds to the Fractional Brownian Motion (resp. Rosenblatt process).

- 1. First appeared in non-central limit theorems (Breuer, Dobrushin, Major,...).
- 2. For d = 1 (resp. d = 2), it corresponds to the Fractional Brownian Motion (resp. Rosenblatt process).
- 3. As soon as $d \ge 2$, it is a non Gaussian process.

- 1. First appeared in non-central limit theorems (Breuer, Dobrushin, Major,...).
- 2. For d = 1 (resp. d = 2), it corresponds to the Fractional Brownian Motion (resp. Rosenblatt process).
- 3. As soon as $d \ge 2$, it is a non Gaussian process.
- 4. Enjoyable properties: self-similarity, stationnarity of increments, Hölder regularity,...

Expansion strategy

167	23 Jeudi 7 décembre											🗢 🖪 100 % 🛲						
Q	Ordinateur portable de Laurent	Accueil	Accueil Insertion De		ssin Affichage			Bloc-notes pour la classe								₫	£ĝ3	я ^к
	9 🤍 🗍 T Mode Texte	💭 Sélection par lasso	🕆 Insérer un	espace		A	\square	\mathbb{A}	\mathbb{A}	4	1	\mathbb{A}	$+ \cdot$	ŝ		2		
<	$\times (t_1 = Id(K(t, \cdot))$																	

Expansion strategy

ر

Expansion strategy

ر

ر

Expansion strategy

Expansion strategy

ر

ر

Expansion strategy

Expansion strategy

.

.

Expansion strategy

(avelet analysis in $L^2(\mathbb{R}^d)$

Application to generalized Hermite processes

We want more!

Application to generalized Hermite processes

We want more!

More explicit expressions, both for the approximation and details processes

Application to generalized Hermite processes

We want more!

- More explicit expressions, both for the approximation and details processes
- Uniform convergence on compact set for the approximation process, with rate of convergence.

We want more!

- More explicit expressions, both for the approximation and details processes
- Uniform convergence on compact set for the approximation process, with rate of convergence.
- Simulation ?

Meyer-Sellan-Taqqu (1999)

Wavelet-type expansion of Fractional Brownian motion.

Meyer-Sellan-Taqqu (1999)

Wavelet-type expansion of Fractional Brownian motion.

Pipiras (2004)

1. Wavelet-type expansion of Rosenblatt process.

Meyer-Sellan-Taqqu (1999)

Wavelet-type expansion of Fractional Brownian motion.

Pipiras (2004)

- 1. Wavelet-type expansion of Rosenblatt process.
- 2. Raised the problem to know whether such an expansion can be obtained for a Hermite process of any order.

Meyer-Sellan-Taqqu (1999)

Wavelet-type expansion of Fractional Brownian motion.

Pipiras (2004)

- 1. Wavelet-type expansion of Rosenblatt process.
- 2. Raised the problem to know whether such an expansion can be obtained for a Hermite process of any order.

Meyer-Sellan-Taqqu (1999)

Wavelet-type expansion of Fractional Brownian motion.

Pipiras (2004)

1. Wavelet-type expansion of Rosenblatt process.

2. Raised the problem to know whether such an expansion can be obtained for a Hermite process of any order.

Ayache-Esmili (2020)

Alternative wavelet-type expansion of (generalized) Rosenblatt process.

L. Loosveldt

1. For practical reasons, we would like to approximate the process using so-called FARIMA sequences and fractional scaling functions.

Where was the difficulty in the general case?

1. For practical reasons, we would like to approximate the process using so-called FARIMA sequences and fractional scaling functions. Until now it was unclear how such quantities could appear in the approximation procedure.

- 1. For practical reasons, we would like to approximate the process using so-called FARIMA sequences and fractional scaling functions. Until now it was unclear how such quantities could appear in the approximation procedure.
- 2. Even in the case of the Rosenblatt process, the rate of convergence for the approximation was unknown before Ayache-Esmili (2020).

Game changer

for all
$$t \ge 0$$
 $K_J^{\perp}(t, \bullet) = \sum_{\substack{(\mathbf{j}, \mathbf{k}) \in (\mathbb{Z}^d)^2 \\ \max_{\ell \in [[1,d]]} j_\ell \ge J}} \langle K(t, \bullet), \bigotimes_{\ell=1}^d \psi_{j_\ell, k_\ell} \rangle \bigotimes_{\ell=1}^d \psi_{j_\ell, k_\ell}$

Game changer

for all
$$t \ge 0$$
 $K_J^{\perp}(t, \bullet) = \sum_{\substack{(\mathbf{j}, \mathbf{k}) \in (\mathbb{Z}^d)^2 \\ \max_{\ell \in [[1, d]]} j_{\ell} \ge J}} \langle K(t, \bullet), \bigotimes_{\ell=1}^d \psi_{j_{\ell}, k_{\ell}} \rangle \bigotimes_{\ell=1}^d \psi_{j_{\ell}, k_{\ell}}$

for all
$$t \ge 0$$
 $X_J^{\perp}(t) = \sum_{\substack{(\mathbf{j},\mathbf{k}) \in (\mathbb{Z}^d)^2 \\ \max_{\ell \in [[1,d]]} j_\ell \ge J}} \langle K(t, \bullet), \bigotimes_{\ell=1}^d \psi_{j_\ell,k_\ell} \rangle I_d\left(\bigotimes_{\ell=1}^d \psi_{j_\ell,k_\ell}\right) \text{ in } L^2(\Omega).$

Explicit expression of the details process

$$\langle K(t,\bullet), \bigotimes_{\ell=1}^{d} \psi_{j_{\ell},k_{\ell}} \rangle = 2^{j_1(1-h_1)+\dots+j_d(1-h_d)} \int_0^t \prod_{\ell=1}^{d} \psi_{h_{\ell}}(2^{j_{\ell}}s-k_{\ell}) \, ds$$

Explicit expression of the details process

$$\langle K(t, \bullet), \bigotimes_{\ell=1}^{d} \psi_{j_{\ell}, k_{\ell}} \rangle = 2^{j_1(1-h_1)+\dots+j_d(1-h_d)} \int_0^t \prod_{\ell=1}^{d} \psi_{h_{\ell}}(2^{j_{\ell}}s - k_{\ell}) \, ds$$

A.Ayache, J.Hamonier, L.L.

$$I_d\left(\bigotimes_{\ell=1}^d \psi_{j_\ell,k_\ell}\right) = \prod_{\ell=1}^p H_{n_\ell}\left(I_1\left(2^{j_\ell/2}\psi(2^{j_\ell}\cdot -k_\ell)\right)\right)$$

where n_{ℓ} is the multiplicity of (j_{ℓ}, k_{ℓ}) in (\mathbf{j}, \mathbf{k}) .

Rate of convergence

A.Ayache, J.Hamonier, L.L.

For any compact interval $I \subset \mathbb{R}_+$, there exists an almost surely finite random variable C (depending on I) for which one has, almost surely, for each $J \in \mathbb{N}$,

$$\|X - X_J\|_{I,\infty} = \|X_{\mathbf{h},J}^{(d,\perp)}\|_{I,\infty} \le CJ^{\frac{d}{2}} 2^{-J(h_1 + \dots + h_d - d + 1/2)}.$$
(6)

Tools for the approximation process

Fractional scaling function

$$\widehat{\Phi}_{\Delta}^{(\delta)}(\xi) = \left(\frac{1 - e^{-i\xi}}{i\xi}\right)^{\delta} \widehat{\phi}(\xi) \ \forall \, \xi \neq 0 \text{ and } \widehat{\Phi}_{\Delta}^{(\delta)}(0) = 1$$

Tools for the approximation process

Fractional scaling function

$$\widehat{\Phi}_{\Delta}^{(\delta)}(\xi) = \left(\frac{1 - e^{-i\xi}}{i\xi}\right)^{\delta} \widehat{\phi}(\xi) \ \forall \, \xi \neq 0 \text{ and } \widehat{\Phi}_{\Delta}^{(\delta)}(0) = 1$$

With a bit of Fourier analysis tools and tricks, we get to

$$K_{\mathbf{h},J}^{(d)}(t,\bullet) = 2^{-J(h_1 + \dots + h_d - d)} \sum_{\mathbf{k} \in \mathbb{Z}^d} \beta_{\mathbf{k}}^{(\mathbf{h})} 2^{J\frac{d}{2}} \bigotimes_{\ell=1}^d \Phi_{J,k_{\ell}}^{-(h_{\ell} - 1/2)}$$

where

$$\beta_{\mathbf{k}}^{(\mathbf{h})} := \int_0^t \prod_{\ell=1}^d \Phi_{\Delta}^{(h_\ell - 1/2)} (2^J s - k_\ell) \, ds \text{ and } \widehat{\Phi}^{-(\delta)}(\xi) = (1 - e^{i\xi})^{-\delta} \widehat{\phi}(\xi)$$

19

We need to compute

$$\sigma_{J,\mathbf{k}}^{(\mathbf{h})} := 2^{J^{\frac{d}{2}}} I_d \left(\bigotimes_{\ell=1}^d \Phi_{J,k_\ell}^{-(h_\ell - 1/2)} \right)$$

A "new" random part

We need to compute

$$\sigma_{J,\mathbf{k}}^{(\mathbf{h})} := 2^{J\frac{d}{2}} I_d \left(\bigotimes_{\ell=1}^d \Phi_{J,k_\ell}^{-(h_\ell - 1/2)} \right)$$

Lemma (A. Ayache, J. Hamonier, L.L.)

For all $\delta \in (0, \frac{1}{2})$, we have

$$\Phi^{-(\delta)} = \sum_{p=0}^{+\infty} \gamma_p^{(\delta)} \phi(\cdot + p)$$

(7)

with convergence in $L^2(\mathbb{R})$, where

$$\gamma_p^{(\delta)} := \frac{\delta \Gamma(p+\delta)}{\Gamma(p+1)\Gamma(\delta+1)}$$

L. Loosveldt

2nd February 2024

A "new" random part

We need to compute

$$\sigma_{J,\mathbf{k}}^{(\mathbf{h})} := 2^{J\frac{d}{2}} I_d \left(\bigotimes_{\ell=1}^d \Phi_{J,k_\ell}^{-(h_\ell - 1/2)} \right)$$

$$= \sum_{\mathbf{p}\in\mathbb{N}_{0}^{d}} \left(\prod_{\ell=1}^{d} \gamma_{p_{\ell}}^{(h_{\ell}-1/2)} \right) \left(2^{J\frac{d}{2}} I_{d} \left(\bigotimes_{\ell=1}^{d} \phi_{J,p_{\ell}-k_{\ell}} \right) \right)$$
$$= \sum_{\mathbf{p}\in\mathbb{N}_{0}^{d}} \left(\prod_{\ell=1}^{d} \gamma_{p_{\ell}}^{(h_{\ell}-1/2)} \right) \left(\prod_{\ell=1}^{n} H_{n_{\ell}} \left(I_{1} \left(\bigotimes_{\ell=1}^{d} \phi_{J,\overline{p_{\ell}-k_{\ell}}} \right) \right) \right)$$

A "new" random part

We need to compute

$$\sigma_{J,\mathbf{k}}^{(\mathbf{h})} := 2^{J\frac{d}{2}} I_d \left(\bigotimes_{\ell=1}^d \Phi_{J,k_\ell}^{-(h_\ell - 1/2)} \right)$$

FARIMA (autogressive fractionally integrated moving average)

Let $\{Z_i\}_{i\in\mathbb{Z}}$ be a sequence of i.i.d. centred Gaussian random variables and $\delta \in (-\frac{1}{2}, \frac{1}{2})$. The Gaussian FARIMA (0, δ , 0), denoted by $\{Z_i^{(\delta)}\}_{j \in \mathbb{Z}}$, is defined, for all $j \in \mathbb{Z}$ as

$$Z_{j}^{(\delta)} := \sum_{p=0}^{+\infty} \gamma_{p}^{(\delta)} Z_{j-p}$$
⁽⁷⁾

Random part with FARIMA

Hermite polynomials and partitions

The *d*th Hermite polynomials can be written as

$$H_d(x) = \sum_{m=0}^{\lfloor d/2 \rfloor} (-1)^m a_m^{(d)} x^{d-2m},$$

where $a_m^{(d)}$ is the number of partitions of $\{1, ..., d\}$ with m (non ordered) pairs and d-2m singletons.

 $\mathscr{P}_m^{(d)}$ is the set of partitions of $\{1, \ldots, d\}$ with m (non ordered) pairs and d-2m singletons.

(A. Ayache, J. Hamonier, L.L.)

For all $J \in \mathbb{Z}$ and $\mathbf{k} \in \mathbb{Z}^d$, we have

$$2^{J\frac{d}{2}}I_d\left(\bigotimes_{\ell=1}^{d}\phi_{J,k_{\ell}}\right) = \sum_{m=0}^{\lfloor d/2 \rfloor} (-1)^m \sum_{P \in \mathscr{P}_m^{(d)}} \prod_{r=1}^m \mathbb{E}[I_1(\phi_{J,k_{l_r}})I_1(\phi_{J,k_{l_r'}})] \prod_{s=m+1}^{d-m} I_1(\phi_{J,k_{l_s'}})$$

Explicit expression for the approximation process

In total, we have

$$\sigma_{J,\mathbf{k}}^{(\mathbf{h})} = \sum_{m=0}^{\lfloor d/2 \rfloor} (-1)^m \sum_{P \in \mathscr{P}_m^{(d)}} \prod_{r=1}^m \mathbb{E}[\epsilon_{J,k_{l_r}}^{(h_{l_r}-1/2)} \epsilon_{J,k_{l_r'}}^{(h_{l_r'}-1/2)}] \prod_{s=m+1}^{d-m} \epsilon_{J,k_{l_r''}}^{(h_{l_r''}-1/2)}.$$

where $\epsilon_{J,k}^{(\delta)} := \sum_{p=0}^{+\infty} \gamma_p^{(\delta)} I_1(\phi_{J,p-k})$ is the FARIMA sequence associated to $(I_1(\phi_{J,k}))_k$.

Explicit expression for the approximation process

A.Ayache, J.Hamonier, L.L.

The approximation process can be expressed, for all $t \in \mathbb{R}_+$, as:

$$X_{J}(t) = 2^{-J(h_{1}+...+h_{d}-d)} \sum_{\mathbf{k}\in\mathbb{Z}^{d}} \left(\int_{0}^{t} \prod_{\ell=1}^{d} \Phi_{\Delta}^{(h_{\ell}-1/2)}(2^{J}s - k_{\ell}) \, ds \right) \sigma_{J,\mathbf{k}}^{(\mathbf{h})},\tag{8}$$

where the series is convergent in $L^2(\Omega)$. Moreover this series is also almost surely uniformly convergent in t on each compact interval of \mathbb{R}_+ .

Towards numerical simulation

In the proof of the last Theorem, we notice that the rate of convergence is mainly governed by the terms

$$2^{j_1(1-h_1)+\dots+j_d(1-h_d)} I_d\left(\bigotimes_{\ell=1}^d \psi_{j_\ell,k_\ell}\right) \int_0^t \prod_{\ell=1}^d \psi_{h_\ell}(2^{j_\ell}s-k_\ell) \, ds$$

for which there is $\ell \in [[1, d]]$ and

$$k_\ell \in D^1_j(t) := \{k \in \mathbb{Z}: [k2^{-j}-2^{-ja},k2^{-j}+2^{-ja}] \subseteq [0,t]\},$$
 $\frac{1}{2} < a < 1.$

with

Towards numerical simulation

Definition

$$\mathcal{J}_{J}^{1}(t) := \{ \mathbf{k} \in (D_{J}^{1}(t))^{d} : \max_{\ell, \ell' \in [[1,d]]} |k_{\ell} - k_{\ell'}| \le 2^{\varepsilon J} \},\$$

Towards numerical simulation

Definition

$$\mathcal{J}_J^1(t) := \{ \mathbf{k} \in (D_J^1(t))^d : \max_{\ell, \ell' \in [[1,d]]} |k_\ell - k_{\ell'}| \le 2^{\varepsilon J} \},$$

The simulation process at scale J

$$S_{J}(t) = 2^{-J(h_{1}+\ldots+h_{d}-d+1)} \sum_{\mathbf{k} \in \mathscr{J}_{J}^{1}(t)} \sigma_{J,\mathbf{k}}^{(\mathbf{h})} \int_{\mathbb{R}} \prod_{\ell=1}^{d} \Phi_{\Delta}^{(h_{\ell}-1/2)}(s-k_{\ell}) \, ds.$$

Towards numerical simulation

A.Ayache, J.Hamonier, L.L.

For any compact interval $I \subset \mathbb{R}_+$, there exists an almost surely finite random variable C (depending on I) for which one has, almost surely, for each $J \in \mathbb{N}$,

$$\|X - S_J\|_{I,\infty} \le CJ^{\frac{d}{2}} 2^{-J(h_1 + \dots + h_d - d + 1/2)}.$$
(9)

