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Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 2

Definition - Step 1
Let {B(t )}t∈R be a Brownian motion defined on a probability space (Ω,F ,P).

If d ∈N∗,
we first consider simple symmetric function of the form

f =
n∑

j1,..., jd=1
a j1,..., jd1[s j1 ,t j1 ) ⊗·· ·⊗1[s jd

,t jd
), (1)

where, ⊗ stands for the tensor product, a j1,..., jd are such that, for all permutation σ,
aσ( j1),...,σ( jd ) = a j1,..., jd and a j1,..., jd = 0 as soon as two indices j1, . . . , jd are equal and, for
all 1 ≤ ` 6= `′ ≤ d , [s j` , t j`)∩ [s j`′ , t j`′ ) =;. For such a function f , we define the
d-multiple Wiener-Itô integral w.r.t {B(t )}t∈R by

Id ( f ) :=
n∑

j1,..., jd=1
a j1,..., jd (B(t j1 )−B(s j1 ))× . . . (B(t jd )−B(s jd )). (2)

It is a random variable in L2(Ω).
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Definition - Step 2

For a general symmetric f ∈ L2(Rd ):

Ï The set of simple symmetric function of the form (1) is dense in the set of
symmetric square integrable function: there exists a sequence ( f j ) j of simple
symmetric function which converges to f in L2(Rd );

Ï (Id ( f j )) j is a Cauchy sequence in L2(Ω);
Ï Id ( f ) := lim j→+∞ Id ( f j ) (in L2(Ω)).
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Definition - Step 3

For a general f ∈ L2(Rd ):

We use the canonical symmetrization f̃ of f defined, for all (x1, . . . , xd ) ∈Rd , as:

f̃ (x1, . . . , xd ) := 1

d !

∑
σ∈Sd

f (xσ(1), . . . , xσ(d)). (3)

Id ( f ) := Id ( f̃ ).

The dth Wiener chaos is defined as the closed linear subspace of L2(Ω) generated by
the random variables of the form Id ( f )

L. Loosveldt 2nd February 2024



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 4

Definition - Step 3

For a general f ∈ L2(Rd ):
We use the canonical symmetrization f̃ of f defined, for all (x1, . . . , xd ) ∈Rd , as:

f̃ (x1, . . . , xd ) := 1

d !

∑
σ∈Sd

f (xσ(1), . . . , xσ(d)). (3)

Id ( f ) := Id ( f̃ ).

The dth Wiener chaos is defined as the closed linear subspace of L2(Ω) generated by
the random variables of the form Id ( f )

L. Loosveldt 2nd February 2024



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 4

Definition - Step 3

For a general f ∈ L2(Rd ):
We use the canonical symmetrization f̃ of f defined, for all (x1, . . . , xd ) ∈Rd , as:

f̃ (x1, . . . , xd ) := 1

d !

∑
σ∈Sd

f (xσ(1), . . . , xσ(d)). (3)

Id ( f ) := Id ( f̃ ).

The dth Wiener chaos is defined as the closed linear subspace of L2(Ω) generated by
the random variables of the form Id ( f )

L. Loosveldt 2nd February 2024



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 4

Definition - Step 3

For a general f ∈ L2(Rd ):
We use the canonical symmetrization f̃ of f defined, for all (x1, . . . , xd ) ∈Rd , as:

f̃ (x1, . . . , xd ) := 1

d !

∑
σ∈Sd

f (xσ(1), . . . , xσ(d)). (3)

Id ( f ) := Id ( f̃ ).

The dth Wiener chaos is defined as the closed linear subspace of L2(Ω) generated by
the random variables of the form Id ( f )

L. Loosveldt 2nd February 2024



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 5

Important facts
Wiener isometry
If f ∈ L2(Rd ) and g ∈ L2(Rd ′

), we have

E
[
Id ( f )Id ′ (g )

]={
d !〈 f , g 〉 if d = d ′

0 otherwise,
(4)

where 〈·, ·〉 stands for the canonical scalar product in L2(Rd ).

Connection with Hermite polynomials
if f ∈ L2(R) is such that ‖ f ‖L2(R) = 1, then

Hd
(
I1( f )

)= Id ( f ⊗d ),

where Hd is the dth Hermite polynomialHd (x) = (−1)d ex2/2Dd e−x2/2.
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Important facts

Product formula
If f ∈ L2(Rm) and g ∈ L2(Rn), we have

Im( f )In(g ) =
m∧n∑
r=0

r !

(
m

r

)(
n

r

)
Im+n−2r ( f ⊗r g ), (5)

where, for all 0 ≤ r ≤ m ∧n, f ⊗r g is the L2(Rm+n−2r ) function defined, for all
(x1, . . . , xm+n−2r ) ∈Rm+n−2r , through the Lebesgue integral

( f ⊗r g )(x1, . . . , xm+n−2r )

:=
∫
Rr

f (x1, . . . , xm−r , s1, . . . , sr )g (xm−r+1, . . . , xm+n−2r , s1, . . . , sr )d s1 . . .d sr ,
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Multiresolution analysis

Definition
A multiresolution analysis of the Hilbert space L2(Rd ) is given by a sequence (V j ) j∈Z of
closed linear subspaces of L2(Rd ) such that
(a) for all j ∈Z, V j ⊆V j+1;
(b)

⋂
j∈ZV j = {0} and

⋃
j∈ZV j is dense in L2(Rd );

(c) for all j ∈Z, V j = { f (2 j ·) : f ∈V0};
(d) there exists a scaling function φd ∈V0 such that the sequence (φd (·−k))k∈Zd is an

orthogonal basis of V0.
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Approximation strategy
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Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 9

A base for the details spaces

In dimension 1 (Meyer)

There exists a function ψ, called mother wavelet, belonging to W 1
0 and such that, for all j ∈Z,

the sequence (2 j /2ψ(2 j ·−k))k∈Z is an orthonormal basis in W 1
j . Moreover, for all J ∈Z, the

family
{2J/2φ1(2J x −k) : k ∈Z}∪ {2 j /2ψ(2 j x −k) : k ∈Z, j ≥ J }

is a base in L2(R), called wavelet base.
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is a base in L2(R), called wavelet base.

In higher dimension: tensor products
Usually, we use, for J ∈Z,

{
d⊗
`=1

φJ ,k` : k` ∈Z}∪ {
d⊗
`=1

ψ(`)
j ,k`

: k` ∈Z, j ≥ J ,∃` s.t.ψ(`) =ψ}
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In dimension 1 (Meyer)

There exists a function ψ, called mother wavelet, belonging to W 1
0 and such that, for all j ∈Z,

the sequence (2 j /2ψ(2 j ·−k))k∈Z is an orthonormal basis in W 1
j . Moreover, for all J ∈Z, the

family
{2J/2φ1(2J x −k) : k ∈Z}∪ {2 j /2ψ(2 j x −k) : k ∈Z, j ≥ J }

is a base in L2(R), called wavelet base.

Better in our context

{
d⊗
`=1

φJ ,k` : k` ∈Z}∪ {
d⊗
`=1

ψ j`,k` : k` ∈Z, max
1≤`≤d

j` ≥ J }
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Processes in the dth Wiener chaos

General definition

{Id (K (t ,•))}t≥0

where, for all t ≥ 0, the function K (t ,•) ∈ L2(Rd ).
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Processes in the dth Wiener chaos

General definition

{Id (K (t ,•))}t≥0

where, for all t ≥ 0, the function K (t ,•) ∈ L2(Rd ).

Hermite process

K (t , x1, . . . , xd ) = c(h,d)
∫ t

0

d∏
`=1

(s −x`)
h−1

d − 1
2+ d s

whith h ∈ (1
2 ,1

)
.
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Processes in the dth Wiener chaos

General definition

{Id (K (t ,•))}t≥0

where, for all t ≥ 0, the function K (t ,•) ∈ L2(Rd ).

Generalized Hermite processes (Bai, Taqqu)

K (t , x1, . . . , xd ) = 1∏d
`=1Γ(h`−1/2)

∫ t

0

d∏
j=1

(s −x`)h`−3/2
+ d s

with h1, . . . ,hd ∈ (1
2 ,1

)
such that

∑d
`=1 h` > d − 1

2 .

L. Loosveldt 2nd February 2024
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Some insights

1. First appeared in non-central limit theorems (Breuer, Dobrushin, Major,...).

2. For d = 1 (resp. d = 2), it corresponds to the Fractional Brownian Motion (resp.
Rosenblatt process).

3. As soon as d ≥ 2, it is a non Gaussian process.
4. Enjoyable properties: self-similarity, stationnarity of increments, Hölder regularity,...
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Expansion strategy
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Application to generalized Hermite processes

We want more!

Ï More explicit expressions, both for the approximation and details processes
Ï Uniform convergence on compact set for the approximation process, with rate of

convergence.
Ï Simulation ?
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What was known up to now?

Meyer-Sellan-Taqqu (1999)

Wavelet-type expansion of Fractional Brownian motion.

Pipiras (2004)

1. Wavelet-type expansion of Rosenblatt process.
2. Raised the problem to know whether such an expansion can be obtained for a

Hermite process of any order.
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What was known up to now?

Meyer-Sellan-Taqqu (1999)

Wavelet-type expansion of Fractional Brownian motion.

Pipiras (2004)

1. Wavelet-type expansion of Rosenblatt process.
2. Raised the problem to know whether such an expansion can be obtained for a

Hermite process of any order.

Ayache-Esmili (2020)

Alternative wavelet-type expansion of (generalized) Rosenblatt process.
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Where was the difficulty in the general case?

1. For practical reasons, we would like to approximate the process using so-called
FARIMA sequences and fractional scaling functions.

Until now it was unclear how
such quantities could appear in the approximation procedure.

2. Even in the case of the Rosenblatt process, the rate of convergence for the
approximation was unknown before Ayache-Esmili (2020).
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Game changer

for all t ≥ 0 K ⊥
J (t ,•) = ∑

(j,k)∈(Zd )2

max
`∈[[1,d ]]

j` ≥ J

〈K (t ,•),
d⊗
`=1

ψ j`,k`〉
d⊗
`=1

ψ j`,k`

for all t ≥ 0 X ⊥
J (t ) = ∑

(j,k)∈(Zd )2

max
`∈[[1,d ]]

j` ≥ J

〈K (t ,•),
d⊗
`=1

ψ j`,k`〉Id

(
d⊗
`=1

ψ j`,k`

)
in L2(Ω).
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Game changer

for all t ≥ 0 K ⊥
J (t ,•) = ∑

(j,k)∈(Zd )2

max
`∈[[1,d ]]

j` ≥ J

〈K (t ,•),
d⊗
`=1

ψ j`,k`〉
d⊗
`=1

ψ j`,k`

for all t ≥ 0 X ⊥
J (t ) = ∑

(j,k)∈(Zd )2

max
`∈[[1,d ]]

j` ≥ J

〈K (t ,•),
d⊗
`=1

ψ j`,k`〉Id

(
d⊗
`=1

ψ j`,k`

)
in L2(Ω).
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Explicit expression of the details process

〈K (t ,•),
d⊗
`=1

ψ j`,k`〉 = 2 j1(1−h1)+···+ jd (1−hd )
∫ t

0

d∏
`=1

ψh`
(2 j` s −k`)d s

A.Ayache, J.Hamonier, L.L.

Id

(
d⊗
`=1

ψ j`,k`

)
=

p∏
`=1

Hn`

(
I1

(
2 j`/2ψ(2 j` ·−k`)

))
where n` is the multiplicity of ( j`,k`) in (j,k).
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Rate of convergence

A.Ayache, J.Hamonier, L.L.

For any compact interval I ⊂R+, there exists an almost surely finite random variable C
(depending on I) for which one has, almost surely, for each J ∈N,

‖X −X J‖I ,∞ = ‖X (d ,⊥)
h,J ‖I ,∞ ≤C J

d
2 2−J (h1+···+hd−d+1/2). (6)
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Tools for the approximation process

Fractional scaling function

Φ̂(δ)
∆ (ξ) =

(
1−e−iξ

iξ

)δ
φ̂(ξ) ∀ξ 6= 0 and Φ̂(δ)

∆ (0) = 1

With a bit of Fourier analysis tools and tricks, we get to

K (d)
h,J (t ,•) = 2−J (h1+···+hd−d)

∑
k∈Zd

β(h)
k 2J d

2

d⊗
`=1
Φ

−(h`−1/2)
J ,k`

where

β(h)
k :=

∫ t

0

d∏
`=1
Φ

(h`−1/2)
∆ (2J s −k`)d s and Φ̂−(δ)(ξ) = (1−e iξ)−δφ̂(ξ)
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A “new” random part

We need to compute

σ(h)
J ,k := 2J d

2 Id

(
d⊗
`=1
Φ

−(h`−1/2)
J ,k`

)
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A “new” random part
We need to compute

σ(h)
J ,k := 2J d

2 Id

(
d⊗
`=1
Φ

−(h`−1/2)
J ,k`

)

Lemma (A. Ayache, J. Hamonier, L.L.)

For all δ ∈ (0, 1
2 ), we have

Φ−(δ) =
+∞∑
p=0

γ(δ)
p φ(·+p) (7)

with convergence in L2(R), where

γ(δ)
p := δΓ(p +δ)

Γ(p +1)Γ(δ+1)
.
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A “new” random part

We need to compute

σ(h)
J ,k := 2J d

2 Id

(
d⊗
`=1
Φ

−(h`−1/2)
J ,k`

)

= ∑
p∈Nd

0

(
d∏
`=1

γ
(h`−1/2)
p`

)(
2J d

2 Id

(
d⊗
`=1

φJ ,p`−k`

))

= ∑
p∈Nd

0

(
d∏
`=1

γ
(h`−1/2)
p`

)(
n∏
`=1

Hn`

(
I1

(
d⊗
`=1

φJ ,âp`−k`

)))
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A “new” random part

We need to compute

σ(h)
J ,k := 2J d

2 Id

(
d⊗
`=1
Φ

−(h`−1/2)
J ,k`

)

FARIMA (autogressive fractionally integrated moving average)

Let {Z j } j∈Z be a sequence of i.i.d. centred Gaussian random variables and δ ∈ (−1
2 , 1

2 ).
The Gaussian FARIMA (0,δ,0), denoted by {Z (δ)

j } j∈Z, is defined, for all j ∈Z as

Z (δ)
j :=

+∞∑
p=0

γ(δ)
p Z j−p (7)
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Random part with FARIMA

Hermite polynomials and partitions

The dth Hermite polynomials can be written as

Hd (x) =
bd/2c∑
m=0

(−1)m a(d)
m xd−2m ,

where a(d)
m is the number of partitions of {1, . . . ,d} with m (non ordered) pairs and

d −2m singletons.
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Random part with FARIMA

P (d)
m is the set of partitions of {1, . . . ,d} with m (non ordered) pairs and d −2m

singletons.

(A. Ayache, J. Hamonier, L.L.)

For all J ∈Z and k ∈Zd , we have

2J d
2 Id

(
d⊗
`=1

φJ ,k`

)
=

bd/2c∑
m=0

(−1)m
∑

P∈P (d)
m

m∏
r=1

E[I1(φJ ,klr
)I1(φJ ,kl ′r

)]
d−m∏

s=m+1
I1(φJ ,kl ′′s

)
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Explicit expression for the approximation process

In total, we have

σ(h)
J ,k =

bd/2c∑
m=0

(−1)m
∑

P∈P (d)
m

m∏
r=1

E[ε
(hlr −1/2)
J ,klr

ε
(hl ′r −1/2)

J ,kl ′r
]

d−m∏
s=m+1

ε
(hl ′′r −1/2)

J ,kl ′′r
.

where ε(δ)
J ,k :=∑+∞

p=0γ
(δ)
p I1(φJ ,p−k ) is the FARIMA sequence associated to (I1(φJ ,k ))k .
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Explicit expression for the approximation process

A.Ayache, J.Hamonier, L.L.

The approximation process can be expressed, for all t ∈R+, as:

X J (t ) = 2−J (h1+...+hd−d)
∑

k∈Zd

(∫ t

0

d∏
`=1
Φ

(h`−1/2)
∆ (2J s −k`)d s

)
σ(h)

J ,k, (8)

where the series is convergent in L2(Ω). Moreover this series is also almost surely
uniformly convergent in t on each compact interval of R+.
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Towards numerical simulation

In the proof of the last Theorem, we notice that the rate of convergence is mainly
governed by the terms

2 j1(1−h1)+···+ jd (1−hd )Id

(
d⊗
`=1

ψ j`,k`

)∫ t

0

d∏
`=1

ψh`
(2 j` s −k`)d s

for which there is ` ∈ [[1,d ]] and

k` ∈ D1
j (t ) := {k ∈Z : [k2− j −2− j a ,k2− j +2− j a] ⊆ [0, t ]},

with 1
2 < a < 1.
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Towards numerical simulation

Definition

J 1
J (t ) := {k ∈ (D1

J (t ))d : max
`,`′∈[[1,d ]]

|k`−k`′ | ≤ 2εJ },

The simulation process at scale J

S J (t ) = 2−J (h1+...+hd−d+1)
∑

k∈J 1
J (t )

σ(h)
J ,k

∫
R

d∏
`=1
Φ

(h`−1/2)
∆ (s −k`)d s.
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Towards numerical simulation

A.Ayache, J.Hamonier, L.L.

For any compact interval I ⊂R+, there exists an almost surely finite random variable C
(depending on I) for which one has, almost surely, for each J ∈N,

‖X −S J‖I ,∞ ≤C J
d
2 2−J (h1+···+hd−d+1/2). (9)
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