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Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 2

Definition - Step 1
Let {B(t )}t∈R be a Brownian motion defined on a probability space (Ω,F ,P).

If d ∈N∗,
we first consider simple symmetric function of the form

f =
n∑

j1,..., jd=1
a j1,..., jd1[s j1 ,t j1 ) ⊗·· ·⊗1[s jd

,t jd
), (1)

where, ⊗ stands for the tensor product, a j1,..., jd are such that, for all permutation σ,
aσ( j1),...,σ( jd ) = a j1,..., jd and a j1,..., jd = 0 as soon as two indices j1, . . . , jd are equal and, for
all 1 ≤ ` 6= `′ ≤ d , [s j` , t j`)∩ [s j`′ , t j`′ ) =;. For such a function f , we define the
d-multiple Wiener-Itô integral w.r.t {B(t )}t∈R by

Id ( f ) :=
n∑

j1,..., jd=1
a j1,..., jd (B(t j1 )−B(s j1 ))× . . . (B(t jd )−B(s jd )). (2)

It is a random variable in L2(Ω).

L. Loosveldt 20th December 2023



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 2

Definition - Step 1
Let {B(t )}t∈R be a Brownian motion defined on a probability space (Ω,F ,P). If d ∈N∗,
we first consider simple symmetric function of the form

f =
n∑

j1,..., jd=1
a j1,..., jd1[s j1 ,t j1 ) ⊗·· ·⊗1[s jd

,t jd
), (1)

where, ⊗ stands for the tensor product, a j1,..., jd are such that, for all permutation σ,
aσ( j1),...,σ( jd ) = a j1,..., jd and a j1,..., jd = 0 as soon as two indices j1, . . . , jd are equal and, for
all 1 ≤ ` 6= `′ ≤ d , [s j` , t j`)∩ [s j`′ , t j`′ ) =;.

For such a function f , we define the
d-multiple Wiener-Itô integral w.r.t {B(t )}t∈R by

Id ( f ) :=
n∑

j1,..., jd=1
a j1,..., jd (B(t j1 )−B(s j1 ))× . . . (B(t jd )−B(s jd )). (2)

It is a random variable in L2(Ω).

L. Loosveldt 20th December 2023



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 2

Definition - Step 1
Let {B(t )}t∈R be a Brownian motion defined on a probability space (Ω,F ,P). If d ∈N∗,
we first consider simple symmetric function of the form

f =
n∑

j1,..., jd=1
a j1,..., jd1[s j1 ,t j1 ) ⊗·· ·⊗1[s jd

,t jd
), (1)

where, ⊗ stands for the tensor product, a j1,..., jd are such that, for all permutation σ,
aσ( j1),...,σ( jd ) = a j1,..., jd and a j1,..., jd = 0 as soon as two indices j1, . . . , jd are equal and, for
all 1 ≤ ` 6= `′ ≤ d , [s j` , t j`)∩ [s j`′ , t j`′ ) =;. For such a function f , we define the
d-multiple Wiener-Itô integral w.r.t {B(t )}t∈R by

Id ( f ) :=
n∑

j1,..., jd=1
a j1,..., jd (B(t j1 )−B(s j1 ))× . . . (B(t jd )−B(s jd )). (2)

It is a random variable in L2(Ω).

L. Loosveldt 20th December 2023



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 2

Definition - Step 1
Let {B(t )}t∈R be a Brownian motion defined on a probability space (Ω,F ,P). If d ∈N∗,
we first consider simple symmetric function of the form

f =
n∑

j1,..., jd=1
a j1,..., jd1[s j1 ,t j1 ) ⊗·· ·⊗1[s jd

,t jd
), (1)

where, ⊗ stands for the tensor product, a j1,..., jd are such that, for all permutation σ,
aσ( j1),...,σ( jd ) = a j1,..., jd and a j1,..., jd = 0 as soon as two indices j1, . . . , jd are equal and, for
all 1 ≤ ` 6= `′ ≤ d , [s j` , t j`)∩ [s j`′ , t j`′ ) =;. For such a function f , we define the
d-multiple Wiener-Itô integral w.r.t {B(t )}t∈R by

Id ( f ) :=
n∑

j1,..., jd=1
a j1,..., jd (B(t j1 )−B(s j1 ))× . . . (B(t jd )−B(s jd )). (2)

It is a random variable in L2(Ω).
L. Loosveldt 20th December 2023



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 3

Definition - Step 2

For a general symmetric f ∈ L2(Rd ):

Ï The set of simple symmetric function of the form (1) is dense in the set of
symmetric square integrable function: there exists a sequence ( f j ) j of simple
symmetric function which converges to f in L2(Rd );

Ï (Id ( f j )) j is a Cauchy sequence in L2(Ω);
Ï Id ( f ) := lim j→+∞ Id ( f j ) (in L2(Ω)).
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Definition - Step 3

For a general f ∈ L2(Rd ):

We use the canonical symmetrization f̃ of f defined, for all (x1, . . . , xd ) ∈Rd , as:

f̃ (x1, . . . , xd ) := 1

d !

∑
σ∈Sd

f (xσ(1), . . . , xσ(d)). (3)

Id ( f ) := Id ( f̃ ).

The dth Wiener chaos is defined as the closed linear subspace of L2(Ω) generated by
the random variables of the form Id ( f )
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Important facts
Wiener isometry
If f ∈ L2(Rd ) and g ∈ L2(Rd ′

), we have

E
[
Id ( f )Id ′ (g )

]={
d !〈 f , g 〉 if d = d ′

0 otherwise,
(4)

where 〈·, ·〉 stands for the canonical scalar product in L2(Rd ).

Connection with Hermite polynomials
if f ∈ L2(R) is such that ‖ f ‖L2(R) = 1, then

Hd
(
I1( f )

)= Id ( f ⊗d ),

where Hd is the dth Hermite polynomialHd (x) = (−1)d ex2/2Dd e−x2/2.

L. Loosveldt 20th December 2023



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 5

Important facts
Wiener isometry
If f ∈ L2(Rd ) and g ∈ L2(Rd ′

), we have

E
[
Id ( f )Id ′ (g )

]={
d !〈 f , g 〉 if d = d ′

0 otherwise,
(4)

where 〈·, ·〉 stands for the canonical scalar product in L2(Rd ).

Connection with Hermite polynomials
if f ∈ L2(R) is such that ‖ f ‖L2(R) = 1, then

Hd
(
I1( f )

)= Id ( f ⊗d ),

where Hd is the dth Hermite polynomialHd (x) = (−1)d ex2/2Dd e−x2/2.
L. Loosveldt 20th December 2023



Multiple Wiener-Itô integral Wavelet analysis in L2(Rd ) Back to stochastic 6

Important facts

Product formula
If f ∈ L2(Rm) and g ∈ L2(Rn), we have

Im( f )In(g ) =
m∧n∑
r=0

r !

(
m

r

)(
n

r

)
Im+n−2r ( f ⊗r g ), (5)

where, for all 0 ≤ r ≤ m ∧n, f ⊗r g is the L2(Rm+n−2r ) function defined, for all
(x1, . . . , xm+n−2r ) ∈Rm+n−2r , through the Lebesgue integral

( f ⊗r g )(x1, . . . , xm+n−2r )

:=
∫
Rr

f (x1, . . . , xm−r , s1, . . . , sr )g (xm−r+1, . . . , xm+n−2r , s1, . . . , sr )d s1 . . .d sr ,
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Multiresolution analysis

Definition
A multiresolution analysis of the Hilbert space L2(Rd ) is given by a sequence (V j ) j∈Z of
closed linear subspaces of L2(Rd ) such that
(a) for all j ∈Z, V j ⊆V j+1;
(b)

⋂
j∈ZV j = {0} and

⋃
j∈ZV j is dense in L2(Rd );

(c) for all j ∈Z, V j = { f (2 j ·) : f ∈V0};
(d) there exists a scaling function φd ∈V0 such that the sequence (φd (·−k))k∈Zd is an

orthogonal basis of V0.
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Approximation strategy
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A base for the details spaces

In dimension 1 (Meyer)

There exists a function ψ, called mother wavelet, belonging to W 1
0 and such that, for all j ∈Z,

the sequence (2 j /2ψ(2 j ·−k))k∈Z is an orthonormal basis in W 1
j . Moreover, for all J ∈Z, the

family
{2J/2φ1(2J x −k) : k ∈Z}∪ {2 j /2ψ(2 j x −k) : k ∈Z, j ≥ J }

is a base in L2(R), called wavelet base.
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{2J/2φ1(2J x −k) : k ∈Z}∪ {2 j /2ψ(2 j x −k) : k ∈Z, j ≥ J }

is a base in L2(R), called wavelet base.

In higher dimension: tensor products
Usually, we use {2J d

2 Φd (2J x −k) : k ∈Zd }∪ {2 j d
2 Ψ(2 j x −k) : k ∈Zd , j ≥ J } with Φd , d-tensor

products of φ with itself and Ψ, d-tensor products of φ and ψ where at least one term is ψ.
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the sequence (2 j /2ψ(2 j ·−k))k∈Z is an orthonormal basis in W 1
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family
{2J/2φ1(2J x −k) : k ∈Z}∪ {2 j /2ψ(2 j x −k) : k ∈Z, j ≥ J }

is a base in L2(R), called wavelet base.

Better in our context

{2J d
2 Φd (2J x −k) : k ∈Zd }∪ {

d∏
`=1

2
j`
2 ψ(2 j`x`−k`) : k ∈Zd , max

1≤`≤d
j` ≥ J }
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Processes in the dth Wiener chaos

General definition

{Id (K (t ,•))}t≥0

where, for all t ≥ 0, the function K (t ,•) ∈ L2(Rd ).
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Processes in the dth Wiener chaos

General definition

{Id (K (t ,•))}t≥0

where, for all t ≥ 0, the function K (t ,•) ∈ L2(Rd ).

Hermite process

K (t , x1, . . . , xd ) = c(h,d)
∫ t

0

d∏
`=1

(s −x`)
h−1

d − 1
2+ d s
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Processes in the dth Wiener chaos

General definition

{Id (K (t ,•))}t≥0

where, for all t ≥ 0, the function K (t ,•) ∈ L2(Rd ).

Generalized Hermite processes (Bai, Taqqu)

K (t , x1, . . . , xd ) = 1∏d
`=1Γ(h`−1/2)

∫ t

0

d∏
j=1

(s −x`)h`−3/2
+ d s
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Expansion strategy
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Application to generalized Hermite processes
We want more!

Ï More explicit expression
Ï Uniform convergence on compact set for the approximation process, with rate of

convergence.

for all t ≥ 0 K ⊥
J (t ,•) = ∑

(j,k)∈(Zd )2

max
`∈[[1,d ]]

j` ≥ J

〈K (t ,•),
d⊗
`=1

ψ j`,k`〉
d⊗
`=1

ψ j`,k`

for all t ≥ 0 X ⊥
J (t ) = ∑

(j,k)∈(Zd )2

max
`∈[[1,d ]]

j` ≥ J

〈K (t ,•),
d⊗
`=1

ψ j`,k`〉Id

(
d⊗
`=1

ψ j`,k`

)
in L2(Ω).
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Explicit expression of the details process

〈K (t ,•),
d⊗
`=1

ψ j`,k`〉 = 2 j1(1−h1)+···+ jd (1−hd )
∫ t

0

d∏
`=1

ψh`
(2 j` s −k`)d s

A.Ayache, J.Hamonier, L.L.

Id

(
d⊗
`=1

ψ j`,k`

)
=

p∏
`=1

Hn`

(
I1

(
2 j`/2ψ(2 j` ·−k`)

))
where n` is the multiplicity of ( j`,k`) in (j,k).
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Application to generalized Hermite processes

Tools for the approximation process

Ï fractional scaling function :

Φ̂(δ)
∆ (ξ) =

(
1−e−iξ

iξ

)δ
φ̂(ξ) ∀ξ 6= 0 and Φ̂(δ)

∆ (0) = 1

Ï

µJ ,k =
bd/2c∑
m=0

(−1)m
∑

P∈P (d)
m

m∏
r=1

E[g J ,klr
g J ,kl ′r

]
d−m∏

s=m+1
g J ,kl ′′s

with g J ,k = I1(2J/2φ(2J · · ·−k))
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Tools for the approximation process

A.Ayache, J.Hamonier, L.L.

The approximation process can be expressed, for all t ∈R+, as:

X J (t ) = 2−J (h1+...+hd−d)
∑

k∈Zd

(∫ t

0

d∏
`=1
Φ

(h`−1/2)
∆ (2J s −k`)d s

)
σ(h)

J ,k, (6)

where the series is convergent in L2(Ω). Moreover this series is also almost surely
uniformly convergent in t on each compact interval of R+.
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Rate of convergence

A.Ayache, J.Hamonier, L.L.

For any compact interval I ⊂R+, there exists an almost surely finite random variable C
(depending on I) for which one has, almost surely, for each J ∈N,

‖X −X J‖I ,∞ = ‖X (d ,⊥)
h,J ‖I ,∞ ≤C J

d
2 2−J (h1+···+hd−d+1/2). (7)
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Towards numerical simulation

In the proof of the last Theorem, we notice that the rate of convergence is mainly
governed by the terms

2 j1(1−h1)+···+ jd (1−hd )Id

(
d⊗
`=1

ψ j`,k`

)∫ t

0

d∏
`=1

ψh`
(2 j` s −k`)d s

for which there is ` ∈ [[1,d ]] and

k` ∈ D1
j (t ) := {k ∈Z : [k2− j −2− j a ,k2− j +2− j a] ⊆ [0, t ]},

with 1
2 < a < 1.
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Towards numerical simulation

Definition

J 1
J (t ) := {k ∈ (D1

J (t ))d : max
`,`′∈[[1,d ]]

|k`−k`′ | ≤ 2εJ },

The simulation process at scale J

S J (t ) = 2−J (h1+...+hd−d+1)
∑

k∈J 1
J (t )

σ(h)
J ,k

∫
R

d∏
`=1
Φ

(h`−1/2)
∆ (s −k`)d s.
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Towards numerical simulation

Definition

J 1
J (t ) := {k ∈ (D1

J (t ))d : max
`,`′∈[[1,d ]]

|k`−k`′ | ≤ 2εJ },

The simulation process at scale J

S J (t ) = 2−J (h1+...+hd−d+1)
∑

k∈J 1
J (t )

σ(h)
J ,k

∫
R

d∏
`=1
Φ

(h`−1/2)
∆ (s −k`)d s.
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Towards numerical simulation

A.Ayache, J.Hamonier, L.L.

For any compact interval I ⊂R+, there exists an almost surely finite random variable C
(depending on I) for which one has, almost surely, for each J ∈N,

‖X −S J‖I ,∞ ≤C J
d
2 2−J (h1+···+hd−d+1/2). (8)
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