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1. First appeared in non-central limit theorems (Breuer, Dobrushin, Major,...).

2. Given a probability space (Q, F, P) with a Brownian motion {B(z)}.er
well-defined onit, d e N* and A € (% 1), the stochastic process
{X"(t)}¢>0 defined, for all ¢ > 0, by

o
27 T4

is the Hermite process of order d and Hurst index h.

3. For d =1 (resp. d = 2), it corresponds to the Fractional Brownian Motion
(resp. Rosenblatt process).

4. As soon as d > 2, it is a non Gaussian process.

5. Enjoyable properties: self-similarity, stationnarity of increments, Holder
regularity,...

dB(z) -« - dB(z4)
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Fix d e N*,and h = (hq,-- -, hy) satisfying

1

d
hi, - hg € (1/2,1) and th a3
=1

The stochastic process led)(t) defined, for all ¢ > 0, by

: l T he—3/2
— 4 d
172, T(he = 1/2) /Rd (‘/0 Lll(s )+ s

is a generalized Hermite process.
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Fix d e N*,and h = (hq,-- -, hy) satisfying

d
1
hi, - hg € (1/2,1) and th a3
=1

The stochastic process X(d)(t) defined, for all ¢ > 0, by

he—3/2
IT7 1F(he -1/2) /Rd (/ I_I(S ze)y " ds

is a generalized Hermite process.
We want to give an explicit wavelet-type expansion of such processes with
two first objectives in mind :

1. Numerical simulation;

2. Study precisely the pointwise regularity.

dB(z1) - -+ dB(z4)
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Meyer-Sellan-Taqqu (1999)
Wavelet-type expansion of Fractional Brownian motion.

Pipiras (2004)
1. Wavelet-type expansion of Rosenblatt process.

2. Raised the problem to know whether such an expansion can be obtained
for a Hermite process of any order.

Ayache-Esmili (2020)
Alternative wavelet-type expansion of (generalized) Rosenblatt process.
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1. For practical reasons, we would like to approximate the process using
so-called FARIMA sequences and fractional scaling functions. Until now
it was unclear how such quantities could appear in the approximation
procedure.

2. We would like to judge the rate of convergence for the approximation.
For the Rosenblatt process, it was unknown before Ayache-Esmili (2020).
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Given a multiresolution analysis

eV D oy

of L2(R%), we set, forall j € Z

(d) _ 1 (d) X 117(d)
Vi =V e w;

and write, forall J € Z
400
2 mdy _ 1(d) X (d)
r®RY=v" e P w,

j=J
and we can apply the following approximation procedure.
f
/ N
fr+ Iy
m m
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If ( Vj“))jez is a multiresolution of L2(R),

VD= v .o V)

d times

is a multiresolution analysis of L2(R%). Thus, if ¢ is the scaling function associated
with (Vj(l))jez, forallJ eZ

d
{(xl,...,xd) — 1_[2‘]%¢(2ng —ke) i k=(ki,....kq) € zd}
(=1

is an orthonormal basis in VJ(d).
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all j € Z, the sequence (27/2y(27 - —k))ycz is an orthonormal basis in le. Moreover,
for all J € Z, the family
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(Meyer)

There exists a function y, called mother wavelet, belonging to W03L and such that, for
all j € Z, the sequence (27/2y(27 - —k))ycz is an orthonormal basis in le. Moreover,
for all J € Z, the family

(272272 - k) : keZyU {2y (Pz-k) : keZ j>J}

is a base in L?(R), called wavelet base.
Combining these facts, one can show that, for all J,

d d )
1_[ 2J%¢(2J.Tg —ke) 1 kez}b U l_[ 2%¢(2jfxg —ke) :keZ% max jp>J
£l i1 l<t<d

is an orthonormal base in L?(R%).
Remark: this basis is “unusual” in the literature.
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X (1) :=/ KD (tm,. .. 2q)dB(2y) - dB(ag)
R4

with, in this case,

1 t 4 B
K(d)(t,l‘l,...,l‘d) = / (S—I[)hl 3/2 ds.
" H?:l I'(he = 1/2) Jo g ’

For all ¢, the function (z1,...,24) — kad)(t, z1,...,5q) isin L2(RY)
Forallt > 0and J € Z,

d
K (t,0)
d d
K\ (t,e) + Ky (t,0)
m m

(d) (d)
v (VD)
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X (1) :=/ KD (tm,. .. 2q)dB(2y) - dB(ag)
R4

For all ¢, the function (zy,...,z4) — Kh(d)(t, T1,...,2q) isin L2(RY)
Forallt >0and J € Z,

foa Kyt wa)dB(a) -+ dB(za)
< »:
X () + 5540

approximation details

with X' (1) = [/, K\ (t,21,...,24)dB(21) - dB(s4) and
XD = [ KO (. wa)dB(a) -+ dB(xq)
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Thanks to the Wiener isometry, we know that, if 7;(f) stands for the d-uple
stochastic integral of the L2(R¢) function,

E[La(/)?] = dUFI2. ) < U122 -

where [ is the symmetrization of f.
It means that the convergence in L?(R?) of a sequence of functions implies the
convergence in L?(Q) for the corresponding sequence of stochastic integrals.
Also, if f € L?(R%), we have
fr= Y2000l 20 —p)2lied2) k),
kezd

where ®; = ¢! ® --- ® ¢!, and thus

Lu(fn) = Y (278007 —k)2/i 1 (027 - —),
kezd

with convergence in L?(Q).
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We apply this fact to
X\ (1) = /Rd K\ (t o, 20)dB(z) - dB(zq)

and, using Fubini Theorem, for all ¢t € R,, in L?(Q), we have
X0 = > Ko x(t)

kezd
with
pra=2't [ 6@ 0~ k)02 5= ki) dB(@) . dB(za)
and
Ky alt) = ———— zJ%/t/ ﬁ(s-xg)ff—i”/zqs(yxg—kd) doy . ..
[T7-, T(he —1/2) 0 Jré g
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By Wiener isometry,

(gJ,k =272 /R (2 — k) dB(x)

keZ

is a family of i.i.d. N'(0, 1) random variables, since the function (27/2¢(27 - —k)),, are
orthogonal.
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prx=2"% /d ¢(27 2 — k) -+ (27 24 — ka) dB(m1) ... dB(q)
R
By Wiener isometry,

(gJ,k =272 /R 6272~ k) dB(a:))

keZ

is a family of i.i.d. N'(0, 1) random variables, since the function (27/2¢(27 - —k)),, are
orthogonal.Thus,

p
Mk = l_[ Hn, (9,73,
=1

where n, is the multiplicity of % in k and H,, is the nth Hermite polynomial

H,(z) = ()" 2 Dme@"/2,
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~ 074 he=3/2 , 1o
Kix(t) = ]'[gll“(hg—l/Z) ‘//Rdn(s )y &(27xp — kq) day ..
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1 s [ ‘ he=3/2 4 0]
Krx(t) = 272 / / (s —m¢)," (27 xp — kg) dxy ... dxg.
TR 0 R

h-3/2

1
¢h(8) = m ‘/Rj(s - 93)+ ¢(9§') d.’I)

is the fractional antiderivative of ¢.
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Kyx(t) = e F(h 72 %/ /Rd H(S 20) 2927w — k) day . dzg.
=1+~

h-3/2
00(5) = iy 5= 00 do

is the fractional antiderivative of ¢.

t d
Ky x(t) = 277 (hteshi=d) / l—l bn (275 = ke) ds
0 =1
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Kx(t) = e 1F(hg—1/2) 5/ /Rd H(S 20227 1 - k) day ..

h-3/2
00(5) = iy 5= 00 do

is the fractional antiderivative of ¢.

t d
Ky x(t) = 277 (hteshi=d) / 1—1 bn (275 = ke) ds
0 =1

BAD NEWS
The function ¢y, is not well-adapted for approximation purposes (badly localized, not
in the Schwartz class,...).
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GOOD NEWS
The fractional scaling function of order 6 € (0,1/2) of the Meyer scaling function de-
fined through its Fourier transform by

1—e i
3

3
ONG) =( ) 8&)vE#0and B7(0) =1

is much better!
With a bit of Fourier analysis tools and tricks, we get to

d
K\ (1,%) = 27 (nshamd) 3 gWo 5 [T (he=1/2) (97 4, — )
kezd =1
where

t d
B = / [Tl @75 ~ ke) ds and @) (&) = (1 - )2 5()
0 =1
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, d
QJ%/ [To 2@ 0 ~ k) dB(x) ... dB(zg)
R

4=t

Lemma (A. Ayache, L.L., J. Hamonier)
Forall 5 € (0, 1), we have

(0= 3590z +p) (2)
p=0

with convergence in L?(R), where

(6) ._ (5F(p+6)
P r(p+ DS +1)
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>, (]_[ 7,()’;“/2)) (QJ% /Rd [ 162”2 +pe ~ ke)dB(a) ... dB(za)
(=1

d =
pENO (=1
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d
Z (l_[ Tor P 1k

d =
pENO =1

where we recall that, for all k € Z¢,

p
HJIk = 1_[ Hng(gjjgl,)
‘=1
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d
Z (l_[ 7;(;?_1/2)) KT k-p

pend \£=1
where we recall that, for all k € Z¢,

p
MHJik = 1_[ Hng(gJ’Ee)
=1

FARIMA (autogressive fractionally integrated moving average)
Let{Z;};<z be a sequence of i.i.d. centred Gaussian random variables and 6 € (—%, %).

The Gaussian FARIMA (0, 6, 0), denoted by {Zj(‘s) }jez, is defined, for all j € Z as

+00
2 =3 7" 2, 2)
p=0
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Tthe dth Hermite polynomials can be written as

Ld/2]
Hy(2) = ) (~D)™ap'a"™",
m=0

where af,fl) is the number of partitions of {1,..., d} with m (non ordered) pairs and

d — 2m singletons.
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Ld/2]
Hy(2) = ) (~D)™ap'a"™",
m=0

where ¢'? is the number of partitions of {1, ..., d} with m (non ordered) pairs and

™m

d — 2m singletons.

I P is the set of partitions of {1, ..., d} with m (non ordered) pairs and d — 2m single-
tons.
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Hermite polynomials and partitions
Tthe dth Hermite polynomials can be written as

Ld/2]
Hy(2) = ) (~D)™ap'a"™",
m=0

where a,(,f) is the number of partitions of {1,..., d} with m (non ordered) pairs and
d — 2m singletons.

I P is the set of partitions of {1, ..., d} with m (non ordered) pairs and d — 2m single-
tons.

(A. Ayache, L.L., J. Hamonier)
Forall J € Zand k € Z%, we have

Ld/2]

m d-m
prk= > 0™ > [ |Blosw, gm0 ] 978y

m=0 PE‘P;?) r=1 s=m+1
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d Ld/2 m d-m
Z ( (hf 1/2)) ( Z Z l_[ E[ngklr_Plr gJ,kl’T_pl;] l_[ gJ,klg/—pl;,
=1 m=l

peNd pepld r=1 s=m+l
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Forall (J,k) € Z x Z%, we define the random variable

Ld/2] d—-m
(h) (hlr—1/2) (hy -1/2) (hyr=1/2)
DICIPY [[Rer ey T] e,
Pe‘P(d) r=1 s=m+1

) .

where 8(6 Zp 0 yp gJ —p is the FARIMA sequence associated to (g 1) -
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Forall (J,k) € Z x Z%, we define the random variable
Ld/2]

d-m
(h) (hlr—1/2) (hyy =1/2) (hyy=1/2)
2‘(1)771 2‘ ||E[Jkl Jkl/ ] || Jk,u :

PGP(d) r=1 s=m+1
where &) := 517%) y” g 1, is the FARIMA sequence associated to (g;.)x.

Theorem (A. Ayache, L.L., J. Hamonier)
The approximation process can be expressed, for all ¢ € R, as:

X8 () = g7 tarthemd) N7 5O / ]‘[@W V2 (275 — k) ds. (3)

kezd

Moreover, the series (3) is almost surely uniformly convergent in t on compact inter-
vals.
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We recall that {ngl 2%1//(?'—’:5{ —ke) : ke€Z? maxi<,<qj, > J}is a base of Vy.
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We recall that {ngl Q%W(ijxg — k) : keZ? maxi<s<qje > J} is a base of Vj.
This time, the fractional antiderivative

_ L _\h=3/2
U (s) = Fh-1/2) ‘/R(s ), U (z) dx

belongs to the Schwartz class!
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For each fixed t € R,, we write

t d
X(d)’l(t) — P k2j1(1—h1)+"'+jd(1—hd) / W (Qjes —ke)ds, (4)

(k) ez?)?
(maxi<r<d je) = J

with convergence in L?(Q) and where

p
e = [ [ Ho (2”/2 [oe@s-n dB(:z))
=1 R

and n, is the multiplicity of (jz, k) in (j, k).
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Theorem (A. Ayache, L.L., J. Hamonier)
For any compact interval I c R,, there exists an almost surely finite random variable
C (depending on I) for which one has, almost surely, for each J € N,

d d d), 4. _ ceth—
”Xh( ) _Xh(”])”I,oo — ”Xh(y‘]) J_”I,oo < CJ22 J(hi+-+hg—d+1/2) (5)
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Theorem (A. Ayache, L.L., J. Hamonier)
For any compact interval I c R,, there exists an almost surely finite random variable
C (depending on I) for which one has, almost surely, for each J € N,

15 = X N0 = 16l < QI e rhemdnif (®)
Basic ideas:

1. There exist an event Q" of probability 1 and C; a positive random variable of
finite moment of any order, such that on Q* one has, for all (j, k) € (Z?)¢,

d
lesxl < €3 | | ViogB+ il + [knl).-

m=1
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Theorem (A. Ayache, L.L., J. Hamonier)
For any compact interval I c R,, there exists an almost surely finite random variable
C (depending on I) for which one has, almost surely, for each J € N,

15 = X N0 = 16l < QI e rhemdnif (®)
Basic ideas:

1. There exist an event Q" of probability 1 and C; a positive random variable of
finite moment of any order, such that on Q* one has, for all (j, k) € (Z?)¢,

d
lesxl < €3 | | ViogB+ il + [knl).-

m=1

2. Therandom variables ¢ x and ¢, s are correlated if and only if (j, k) is a
permutation of (r,s).
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