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Abstract Digital Twins (DTs) for cities represent a new trend for city planning
and management, enhancing three-dimensional modeling and simulation of cities.
While progress has been made in this research field, the current scientific literature
mainly focuses on the use of semantically segmented point clouds to develop 3D city
models forDTs.However, this study discusses a new reflection that argues on directly
integrating the results of semantic segmentation to create the skeleton of the DTs and
uses enriched semantically segmented point clouds to perform targeted simulations
without generating 3Dmodels. The paper discusses to what extent enriched semantic
3D point clouds can replace semantic 3D city models in the DTs scope. Ultimately,
this research aims to reduce the cost and complexity of 3D modeling to fit some DTs
requirements and address its specific needs. New perspectives are set to tackle the
challenges of using semantic 3D point clouds to implement DTs for cities.
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1 Introduction

3D city models (3DCMs) and Digital Twins (DTs) for cities have gained significant
interest in the urban and geospatial fields (Ellul et al. 2022; Ferré-Bigorra et al.
2022; Mylonas et al. 2021). Both approaches are created based on the combination
of various datasets and techniques, i.e., basically 3D reality capture and surveying
technologies (Deng et al. 2021b; Ledoux et al. 2021; Lehner and Dorffner 2020).
3D point cloud data from laser scanning has proven its potential as an input layer to
create 3D semantic citymodels and geospatial Digital Twins (Bacher 2022; Beil et al.
2021; Lehner and Dorffner 2020; Lehtola 2022; Lu 2019; Nys et al. 2020; Scalas
et al. 2022; Xue et al. 2020). Indeed, point clouds have a simple and easy-to-handle
structure that replicates all the physical city features based on point geometries. They
are considered a point-based model, where entities are represented as a set of points.
Furthermore, their discrete representation, as well as the lack of structure, topology,
and connectivity, make them easy to handle, but at the same time, they require
costly processing, especially to enrich them with semantic information by applying,
for example effective knowledge-based approaches (i.e., Machine Learning (ML)
and Deep Learning (DL) approaches) (Döllner 2020; Richter 2018). The current
emergence of Artificial Intelligence (AI) is revolutionizing the field of 3D semantic
segmentation and yielding highly satisfactory results (Su et al. 2022; Wilk et al.
2022). Nevertheless, the success of newly developed DL approaches relies heavily
on the semantic richness of training data.

In the context of implementing semantic 3D city models, most recent works were
carried out to optimize the automatic reconstruction of 3D city models. They essen-
tially combine elevation data coming from LiDAR (airborne, terrestrial or mobile)
or photogrammetry along with 2D building footprints to generate the city model
(Dukai et al. 2019; Ledoux et al. 2021; Nys et al. 2020; Ortega et al. 2021; Pa -den
2022; Peters 2022). For instance, 3dfier is an automatic framework that allows the
reconstruction of a LoD1.2 model with respect to some specific set of rules (Ledoux
et al. 2021). Another related work develops an automatic workflow that segments
roof surfaces from point cloud data and generates buildings at LoD2.1 (Nys et al.
2020). Although various methods are in practice to generate accurate semantic 3D
city models to perform various spatial and thematic analyses, the city modeling
process is still tedious and time consuming (Girindran et al. 2020; Naserentin and
Logg 2022).

Following the classicmodeling pipeline to automatically generate a 3D citymodel
from LiDAR point clouds, two phases are crucial (Ballouch and Hajji 2021). The
first step requires a semantic segmentation of the point cloud to extract the semantic
classes that will be used in the second phase (i.e., automatic modeling). However, it
will be interesting to investigate if the initial phase in the processing pipeline already
has something to offer toDTs for cities insteadof going through themodelingprocess.
In fact, an enriched 3D semantic point cloud would help to better manipulate and
interpret the 3D data as well as fulfill the DT’s needs (Lehtola 2022). First, the
initial geometrical accuracy is maintained, which certainly opens new opportunities
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to perform simulations directly on point clouds instead of creating surface models.
Second, point cloud data should be seen as a preliminary level of DTs as they fulfill
their minimum conditions (i.e., replicating all city entities such as buildings, roads,
vegetations, terrain, etc.). Finally, it is important to highlight that point clouds can
be easily updated over time to reflect changes in the urban environment, whereas
updating a 3D city model can be more complicated due to its hierarchical structure.

In this paper, reflections about the useof semantic 3Dpoint clouddata in urbanDTs
are presented. The questions that are raised here are: how DTs for cities can benefit
from enriched semantically 3D point cloud data while meeting the requirements
of urban simulations and analysis that goes beyond visual interpretations? And is
semantic point cloud data sufficient to fit the DTs analysis instead of a semantic 3D
city model?

The paper structure is as follows: Sect. 2 briefly introduces the mainstream uses
of semantic point clouds in urban applications. Section 3 discusses to what extent
the point cloud may be an alternative to the 3D city model in the context of creating
DTs for cities. The same section reflects the requirements of DTs and compares them
with the potentialities of semantic point clouds. The advantages and the limitations
of both 3D city model and point cloud are highlighted. Then, we conclude the section
by giving an overview of the main findings and introducing the future perspectives.
Section 4 concludes this work.

2 Mainstream Uses of Point Clouds in Urban Applications

The use of 3D LiDAR point clouds is becoming increasingly relevant in various
emerging urban applications, including urban simulations, Virtual and Augmented
Reality (VR and AR), Building Information Modeling (BIM), 3D urban mapping,
Smart Cities (SCs), Urban Digital Twins (UDTs), and many others. Point clouds can
be collected faster than other surveyed data, so enabling regular updates for specific
urban applications. They provide a detailed digital representation of urban settings
with accurate spatial information and large-scale coverage, especially when acquired
through airborne sensors. Besides, the rapid development of LiDAR acquisition tech-
niques hasmade it possible to create high-precision 3D point cloud representations of
urban environments at an affordable cost. These point clouds are capable of depicting
objects of varying sizes, providing remarkably lifelike depictions of cities and other
landscapes. Moreover, with the increased capacity of GPUs, high density 3D point
clouds can be efficiently rendered and displayed instantaneously.

Oneof themainstreamuses of point clouds in urban applications is for autonomous
driving. The recent advancements in DL techniques have enabled the reliable navi-
gation and decision-making required in autonomous driving through the use of
dense, geo-referenced, and accurate 3D point cloud data provided by LiDAR.
This data provides real-time environment perception and allows for the creation
of high-definition maps and urban models, making it an indispensable technology
for autonomous vehicles (Li et al. 2021). Another application of point clouds in urban
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environments is 3D change detection, which is made possible through the implemen-
tation of point clouds (Kharroubi et al. 2022). Recent advancements in computer
vision and machine learning have further enhanced the automatic and intelligent
detection of changes in urban settings. Moreover, point clouds are suitable for use
in virtual and augmented reality applications due to their ability to provide a more
immersive way of perceiving 3D digital objects (Alexiou et al. 2017). Furthermore,
3D point cloud data has been used as reference data for city modeling (Badenko et al.
2019; Huang et al. 2022; Nurunnabi et al. 2022; Nys et al. 2020; Wang et al. 2019;
Yan et al. 2019). For example, 3D BAG1 has multiple Level of Details (LoDs) of 3D
buildings as an up-to-date data set for the whole city of the Netherlands. The datasets
are generated based on the building footprints from the BAG and the height data from
AHN acquired by airborne laser scanning (ALS) (Dukai et al. 2019, 2021; Dukai
2020; León-Sánchez et al. 2021). Additionally, several cities around the world have
acquired 3D point cloud data to model their buildings. For instance, Helsinki used
classifiedALSpoint clouddata to determine the elevation position and the roof shapes
of the buildings (Hämäläinen 2021). The city has also used classified point clouds to
map, update, andmaintain the City InformationModel. Another deployment of point
cloud data is in the context of creating UDTs for city-state Singapore called “Virtual
Singapore”. The authors proposed an automatic tree modeling framework at multiple
LoDs combining airborne andmobile LiDAR scanning datasetswith different remote
sensing data to address the limitations of each acquisition technique (Gobeawan et al.
2018). In addition, to create a CityGMLmodel for the city, 3D building models were
created using aerial images and airborne point cloud data (Soon and Khoo 2017).

In recent years, consideringBIMmodels as one of the input layers to implement an
UDTs (Deng et al. 2021a; Lehtola 2022; Stojanovic et al. 2018), many approaches
in the Architecture Engineering Construction (AEC) field have been discussed to
automate and support the process of creating a BIM model from a point cloud for
several applications known as the Scan-to-BIM workflow (Hellmuth 2022). The use
of Scan-to-BIM practices has led to highly accurate data and faster project delivery
in the construction industry (Perez-Perez et al. 2021; Soilán et al. 2020). To further
improve this process, the industry and academia are exploring ways to automate the
segmentation of point clouds into individual building components and model them
using continuous surfaces of solid geometries (Perez-Perez et al. 2021). However,
the process is still facing challenges that are partially solved, and the approaches
still require some manual modeling and are based on proprietary modeling software
(Deng et al. 2021a). The LiDAR point clouds were used also to generate derived
products such as DTM, DSM or mesh models which will be used in turn for 3D
city modelling and visualizations purposes (Biljecki et al. 2015; Guth et al. 2021).
Thus, several improvements were made to effectively render massive point cloud
data through the web allowing seamless data access (Oosterom 2015; Richter 2018).
In addition, some tools are in common use that directly work with point cloud data,
bypassing the complex and expensive approaches of deriving 3D city models from
point cloud. More and more point cloud data are available and relevant. However,

1 https://3dbag.nl/en/viewer.

https://3dbag.nl/en/viewer
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working with point cloud data in the 3D city modeling and UDTs scopes remain
challenging. Although the new improvement of CityGML 3.0 allows the use of point
cloud data to mimic the city objects, the semantic information is not handled, and
some approaches are proposed to extend the semantic capabilities of 3D point cloud
data (Kutzner et al. 2020).

The raw point clouds are widely used, their usefulness can be limited due to their
unstructured nature. Semantic point clouds, on the other hand, provide a semantic
label associated with each point, which allows for a better understanding of the
scanned urban scene and opens new possibilities for a range of urban applications
(Ballouch et al. 2022; Ballouch and Barramou 2022). Semantic point cloud plays
a crucial role in creating 3D urban models that form the primary basis of DTs. It
offers an accurate basis for the creation of semantic models in different formats
such as CityGML and its encoding CityJSON, or (IFC) Industry Foundation Classes
(Beil et al. 2021). The use of semantic point clouds enables precise extraction of
urban objects, which is an essential step in the 3D modeling process of cities. With a
semantic point cloud, automated object modeling is simplified. For instance, build-
ings can be extracted and matched with the corresponding building footprints to
generate the corresponding 3D models (Kong et al. 2022). Furthermore, an enriched
semantic point cloud enhances the enrichment of 3D models by providing richer
and more detailed information about the urban environment. Besides, the semantic
richness of semantic point clouds can be useful to quickly identify objects relevant
to a specific task or application in the context of urban applications. Recent advances
in 3D semantic segmentation allow for the extraction of maximum semantic infor-
mation that comprises the urban environment, such as vegetation, roads, railways,
etc. This semantic information can be used to create the basis for the DT of a given
city, i.e., the geometric model onto which other data can be integrated. In addition,
it is important to regularly update the digital model to accurately reflect real-time
changes in the urban environment and keep urban applications up to date. Besides,
the use of semantic point clouds is an interesting source of data for training DL
models for semantic segmentation tasks. By using semantically segmented point
clouds, precise datasets can be formed to achieve high performing pretrained models
in different urban contexts to meet the requirements of plenty of urban applications.
Additionally, semantic point clouds can be used to extract building footprints, which
is crucial for the 3D modeling of buildings. Similarly, airborne sematic point clouds
can be used to extract roofs, enabling the creation of accurate models of building
roofs that can be used tomeet the specific requirements of urban applications. In addi-
tion, incorporating structured knowledge and semantics into 3D point cloud (beyond
semantic segmentation) are beneficial in meeting the needs of urban applications
(Poux and Billen 2019).

To conclude, 3D LiDAR point clouds in urban applications have grown increas-
ingly important due to their rapid and cost-effective means of gathering accurate
spatial information of urban settings. These point clouds capture the real-time state
of the city for almost all spatial entities at various scales, depending on the laser scan-
ning surveymethods employed, whether airborne, terrestrial, or mobile. Enriched 3D
semantic point clouds play a crucial role in creating 3D urban models, automating
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object modeling, extracting maximum semantic information, and updating urban
application models.

Up to date, there are no initiatives that rely on enriched semantic 3D point cloud
data tomeet the DT requirements since they are primarily used as input data for urban
modeling. Thus, deployed in the generation of semantic 3D city models. Indeed,
using semantic point clouds as a fundamental input layer to build DTs deserves
consideration. To better understand this, we must first identify the requirements of
DTs for cities, the performance of semantic point clouds to address the limitations
of 3D city models, and the possibilities of studying semantic point clouds as an
alternative to perform simulations directly on point clouds without going to 3D
models.

3 Is a Semantic 3D Point Cloud an Alternative to 3D City
Model for DT Applications?

To address this key research question, we will split it into two sub-questions. Firstly,
does the point cloud meet the DTs’ requirements? (Sect. 3.1); Secondly, is the point
cloud a good alternative to 3D citymodels? (Sect. 3.2).We finally give some research
guidelines related to extending the use of semantic point clouds in DTs for cities
(Sect. 3.3).

3.1 Semantic Point Cloud: An Input Layer to DTs for Cities

The presence discourse in the urban and geospatial context is predominantly about
the relevance and the potentiality of considering semantic 3D city models as an input
layer to create DTs for cities (Alva et al. 2022; DImitrov and Petrova-Antonova
2021; Ketzler et al. 2020; Würstle et al. 2022). However, it is worth considering
the potentialities and advantages of semantic point clouds to serve DTs needs as a
fundamental input layer without going through the 3D city modeling process.

To tackle this research question, it is interesting to identify the requirements of
DTs for cities. Indeed, DTs for cities are conceptualized as a risk-free, living virtual
ecosystem that mimics all the city elements to generate knowledge, assist urban
decision-making through the city lifecycle, and provide outcomes at the city level
(Hristov et al. 2022;Nguyen andKolbe 2022;Würstle et al. 2022). Furthermore, from
technical perspective,most of the research led to a tacit agreement onwhat constitutes
a DT for cities in the geospatial domain and the Smart Cities initiatives previously
announced by Stoter et al. (2021). Thus, DTs for cities are based on (1) 3D city
models enriched with geometrical and semantic information, (2) often incorporate
heterogenous data namely coupled with historical and sensor data in near or real time
(at an appropriate rate of synchronization), thus enabling (3) a link (e.g., data flow



Enriched Semantic 3D Point Clouds: An Alternative to 3D City Models … 413

between the real counterpart and the virtual twin and vice versa), (4) allowing updates
and analysis through a set of simulations, predictions, and visualization tools, and
(5) providing an integrated view of the multiple datasets and models through their
life cycle, enabling to manage and adapt cities’ current and future states.

Ifwe intend to unpack theDTdefinition,wewill first start from the assumption that
the DT for cities is a digital realistic city replica that incorporates all its city features.
Thus, we can clearly validate this characteristic since a point cloud by nature is a
high geometrically 3D representation of urban environments such as cities and other
landscapes. However, back to definition, a DT must have semantic and geometrical
information. This is completely accurate fromgeometrical dimension of a point cloud
but is not applicable for semantics. In this regard, various approaches are proposed
to enrich the point cloud and extend its semantic capabilities, whether through 3D
semantic segmentation (Hu et al. 2021), or a conceptual data model called “Smart
Point Cloud Infrastructure” (Poux 2019), or data integration (GIS data, 3D city
models) (Beil et al. 2021).

Although possibilities exist to tackle the lack of semantics in point cloud data,
the enrichment of such data remains critical and challenging. Indeed, the current
advancement in the scope of building DTs for cities is more focused on data integra-
tion approaches, including the association and integration of both point cloud data
and semantic 3D city models using for example the new “PointCloud” module of
CityGML3.0 (Beil et al. 2021). Thismodule provides a new concept to bridge the gap
between the geometrically detailed point cloud data and the enriched 3D semantic
model. The integration of both datasets intuitively assigns sets of points to the corre-
sponding objects. The existing approach in CityGML 3.0 provides an alternative for
extending point cloud data to cover more semantic information beyond classifica-
tion using various methods. Thus, integration of point cloud data with different data
sets from GIS, BIM, and 3D city models helps to overcome the limitations of each
approach and meet the DT requirements.

At the same time, a widespread algorithm and approaches have emerged to
extract 3D objects automatically and effectively by semantically segmenting LiDAR
point clouds using supervised learning methods, including Machine Learning-based
segmentation, as well as Deep Learning-based segmentation such as multi-view-
based methods, voxel-based methods, and direct methods that consume point clouds
directly. Recent advances in semantic segmentation allow the extraction of the main
urban features, such as buildings, vegetation, roads, railways (Zhou et al. 2023),
and many more that are relevant for DT’s applications (Döllner 2020; Lehtola 2022;
Masoumi et al. 2023).

In another hand, 3D semantic segmentation is relevant to update DTs for cities
and track the changes at city-scale. That said that 3D semantic point cloud data
enable the identification of the changes as they appear in the real world and updating
corresponding information. For example, point cloud data allows to have a realistic
and big picture of the status of an urban object under construction, especially if the
current project does not have the necessary elements to generate a 3D model (i.e.,
lack of definitive footprint that is mandatory to generate accurate model). This says
that the semantic point cloud can help in urban planning and management which is
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one of the common use cases of DTs for cities. In addition, the advantage of enriched
semantic point cloud data is that almost all urban classes are extracted (i.e., static,
and dynamic objects) and for specific applications, classes that are required or need
to be updated are simply retained. Nevertheless, the classes that are not crucial are
neglected. It is worth mentioning as well that for different use cases, different classes
are deployed, which is completely in line with the DT’s requirements that replicate
all the city objects as one snapshot, and for each use case, the data will be derived.
Hence, semantic 3D point cloud enables us to precisely define the urban classes,
thus augmenting the performance of the semantic extendibility, improving modeling
capabilities, giving new interpretability of the data from different perspectives, and
opening new doors for various simulations and urban analysis.

Turning to one of the promising characteristics of a DT (i.e., the simulation
feature), yet the available processes and simulation tools that involve the direct use
of 3D point clouds are still limited. Few studies are conducted to explore the poten-
tial of this type of data. For example, the authors of Peters et al. (2015) introduced
a new approach based on the medial axis transform to performing visibility anal-
ysis. The approach could be used for any typical airborne LiDAR data, which gives
more realistic results and effectively handles the missing parts of the point cloud
(e.g., walls and roofs). Furthermore, performing visibility analysis is more insightful
when working with point cloud data, as vegetation is considered. Another study case
on an urban scale performs the visibility analysis for both surface model and point
cloud data and puts them together for in-depth analysis according to their efficiency
and accuracy. To ensure intervisibility between the reference points (i.e., the observer
and target points), the authors of Zhang et al. (2017) generate cubes for each point
to block the sight lines. The study concludes that consistent input data (i.e., dense
and classified point clouds) will certainly improve the findings.

On the other hand, solar radiation is a relevant use case in 3D urban modeling.
Historically, solar irradiance was measured using DSM. However, 3D city models
gained a significant amount of interest to improve the sun exposition estimations.
In addition, the authors have developed a tool that uses point cloud data to model
illumination and solar radiation (Pružinec and Ďuračiová 2022). The algorithm is
based on voxels and has shown its capabilities for green areas as well as urban
environments.

Figure 1 depicts an illustrative example from our research works, demonstrating
the simulation of solar radiation performed on semantic point clouds. The point cloud
data utilized in the study was acquired in the Flanders region of Belgium. The pre-
trained RandLA-Net model (Hu et al. 2020) on the Semantic3d dataset (Hackel et al.
2017) was used for semantic segmentation of point clouds. The relevant semantic
classes that have the potential to impact solar radiation were extracted, including
high vegetation, low vegetation, buildings, and scanning artifacts. To perform the
simulation, the "pcsrt" function proposed by Pružinec and Ďuračiová (2022) was
used. The source code for this tool was adapted from its publicly available version
on GitHub as an open-access resource (https://github.com/hblyp/pcsrt, accessed on
August 2, 2022).

https://github.com/hblyp/pcsrt
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Fig. 1 Example of solar radiation performed on semantic point cloud

A further characteristic of DTs that is undoubtedly satisfied, is the visualization
and the interactivity aspects. Point cloud data is supported through various visual-
ization tools (i.e., web applications and game engines platforms). Additionally, point
clouds are considered as a form of natural communication used as an input data to
enhance immersivity and interactivity of Virtual Reality or Augmented Reality expe-
riences.Moreover, for enhancing visualization, most of DT’s initiatives tend to foster
the ability to process, store, handle, and disseminate massive point clouds through
the web, namely using the CesiumJS WebGL virtual globe. For instance, the Digital
Twin of the City of Zurich sets a research agenda where further developments of the
DTs for city are required namely, how to benefit from the derived mobile mapping
point cloud data to improve the façades of the buildings as well as how to incorporate
vegetation acquired from point cloud into the DTs. It is worth pointing that some
visualization applications do not demand rich semantics, while others need specific
attributes to perform simulations (Schrotter and Hürzeler 2020).

While the state of the art is well developed regarding the applications of 3D city
models, some urban applications do not necessarily need a semantic 3D city model.
Hence, enriched 3D semantic point cloud will certainly give new opportunities to
perform some sophisticated analysis for DTs instead of creating surface models.

3.2 Semantic Point Cloud and Semantic 3D City Models:
Advantages and Limitations

While it is out of the scope of this article to compare 3D semantic model-based DTs
and enriched semantic point cloud-based DTs, we will nevertheless highlight certain
advantages and limitations of both semantic 3D city model and semantic 3D point
clouds.
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3D city models nowadays exhibit significant differences due to various factors
including data acquisition, processing, storage, dissemination, use, andmaintenance,
as well as technical, socio-economic, political, and cultural variations. Consequently,
it has become challenging to identify best practices, assess the quality of 3D city
models, foster their appropriateness for specific use cases, and integrate effectively
diverse datasets. Moreover, comparing multiple datasets present some difficulties,
creating ambiguity in selecting the most suitable one. These concerns have impli-
cations for urban DTs, which rely on 3D city models as a key component (Lei
et al. 2022). Despite the availability of advanced 3D representation techniques and
methods for creating 3D city models (Toth and Jóźków 2016), significant challenges
remain in achieving accurate and interactive 3D modeling of the urban environment.
It is not just a matter of representing the environment in 3D, but also ensuring that
the model is closer to the real world by attempting to represent as many urban objects
of the physical world as possible without being restricted to a specific feature (i.e.,
buildings as they represent the identity of the city).

Research has identified several problems associated with 3D modeling (Stoter
2020), including limited data collection capabilities (Ledoux et al. 2021), reduced
levels of automation (Park and Guldmann 2019), the lack of established modelling
standards and rules (Eriksson et al. 2020), and limited applications for visualizing
city models (Liamis andMimis 2022). There are three types of modeling techniques:
geometric modeling, mesh modeling, and hybrid modeling. Geometric modeling
uses simple geometric primitives (planes, cylinders, lines, etc.) to represent objects,
which reduces the volume of generated data and allows for semantic data to be
embedded in the model. However, this method is dependent on the algorithms used
and the resulting representation may lack fine details. Mesh modeling is useful for
representing fine surface details, but the generated data remains voluminous, making
interpretation andmanipulation laborious for the user. Furthermore, 3Dmeshmodels
have limited analytic capabilities. However, few studies are conducted to improve the
usability and applicability of mesh models by integrating semantic 3D city models
with 3D mesh models (Willenborg et al. 2018). Another related work enhances
semantic segmentation of urban mesh using a hybrid model and a feature-based
approach for semantic mesh segmentation in an urban scenario using real-world
training data (Tutzauer et al. 2019). While meshes alone do not inherently allow
semantic data to be embedded in the model since no shape or element recognition is
performed. Semantic information could be introduced by modifying them or storing
them using specialized data formats such as CityJSON that support semantics.

3D city modeling has different challenges that limit their full automation and
usage. Firstly, there is an inconsistency between models generated using heteroge-
nous dataset, reconstruction methods, and software, which affects geometry, appear-
ance, and semantics. Standardization is the second challenge. Up to date, there are no
common standards that are established to handle DTs for cities from a technical point
of view. However, we should take advantage of the existing standards by enabling
convergence between them in a meaningful way with respect to the discrepancies
(different geometries, semantics, structures and various spatial scales). Data quality
is a major obstacle to create 3D city models, with many existing models containing
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errors that prevent their use in other software and applications. Data interoperability
involves converting 3D models from one format to another. Language barriers may
hinder understanding and interoperability. Indeed, public administrations often do
not provide integrated and standardized 3Dcitymodels,making further analysis diffi-
cult. In addition, datasets may be managed in different standards and have different
sets of information, making them unqualified for particular use cases. There is a lack
of means to characterize data and their fit for purpose. In addition to the challenge
posed by the heterogeneous nature of 3D city models in terms of making compar-
isons, another issue arises from the data integration approaches (Lei et al. 2022).
Data maintenance/governance is also a challenge, with governmental organizations
lacking strategies for updating and maintaining different versions of the data. Lastly,
implementing 3D data in the real world requires more precise definitions of spec-
ifications, validation mechanisms, clear semantics to address knowledge and skills
gaps and integration of public and private sector models (Stoter et al. 2021).

It is well known that in the scientific literature and in practice, the point cloud is
considered a primary resource for reconstructing a semantic 3D city model. Indeed,
3D citymodels are by definition, a simplification of the real world (i.e., an abstraction
at a certain LoD). With this in mind, 3D city models do not aim to represent all
the features of the real world in the same detail as point cloud data. Thus, point
cloud allows to avoid the abstraction needed for 3D city models, and objects such as
trees are correctly rendered instead of being generalized according to city modeling
standards. Furthermore, for a given point cloud, different 3D semantic model could
be generated according to the use case, the standards and the quality of the acquired
data.Moreover, recent advances in semantic segmentation and point cloud processing
have made significant progress toward optimizing the algorithms and approaches.

Another particularity of point cloud data is the lack of a specific standard to
generate and process them. However, there may be variations in format and repre-
sentation (e.g., voxels). In contrast, for 3D city models, there are many standards
deployed to generate a semantically rich 3D model, namely CityGML and its JSON
encoding, CityJSON. These standards are recognized as the foundation of DTs for
cities. The existence of a range city modeling standards raises data interoperability
issues. This does not mean that the standardization efforts are irrelevant, but this
standard heterogeneity makes data integration challenging especially in the context
of creating DTs in practice. This is also justified by having several 3D city models for
the same urban scale from different stakeholders, but there is usually a single national
LiDAR acquisition. Of course, for some cities, we may find more than one acquisi-
tion, however they are captured at different timescale having overlapped regions. It is
also sometimes collected to fill some missing information for large scale aeras (i.e.,
urban land expansion). This extension of point cloud data to the temporal scale serves
in the context of DTs given a 4D point cloud. However, this point cloud requires a
high storage infrastructure, and detecting the changes is tricky since point-to-point
corresponding is problematic.

Regarding the point cloud, another challenge that hinders its full potentials
is the lack of topology, which can make simulating object behavior challenging.
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For instance, connections between different urban objects are difficult to repre-
sent without topology, which is why 3D models with a surface model are preferred
for such representations, which are relevant for simulations namely for Computa-
tional Fluid Dynamics (CFD). Furthermore, 3D city models offer the possibilities to
store attributes for objects (e.g., buildings) but also for surfaces, to build hierarchy
(Building+ Building Part) and to store the type of surfaces (namely used for energy
modelling). It is also worth mentioning that 3D city models are significantly taking
less space (compared to a raw point cloud, which is more than 10pts/m2 nowadays).

To conclude, semantic point clouds and semantic 3D city models are both great
inputs to build DTs for cities. Both bring new opportunities but still have some
weaknesses. However, all DT initiatives invest in hybrid models, enabling them to
bridge the gap between different approaches and compensate for the limitations of
the others.

3.3 Semantic Point Cloud: A New Research Field for DTs

The potential benefits of implementing this new research path include reducing the
cost of modeling, computation time, to take advantage of the semantic richness
of the semantic point cloud since frequently we make large-scale acquisitions and
heavy processing operations to end up exploiting only the buildings class in 3D
modeling without other details of the urban environment (i.e., vegetation, roads).
This approach also avoids the complexities of 3D modeling, particularly for other
urban objects than buildings like transportation infrastructure and vegetation. It’s
also advantageous for updating urban DTs and conducting specific simulations that
require accurate and detailed information about the urban environment. The proposed
reflection challenges the frequently used approach of relying solely on 3D modeling
for DTs applications and suggests that semantic point clouds can be a viable alterna-
tive, particularly for addressing the limitations of 3D models and meeting the needs
of DTs in an easy and effective way. However, it is important to note that while
semantic 3D point clouds may be a useful input layer for some DT applications,
they may not be a complete replacement for 3D city models in all cases. The choice
between using semantic 3D point clouds or 3D city models as an input layer for DT
applicationswill depend on the specific application purposes, the available resources,
and the required level of accuracy and detail.

Further research is needed to explore the potential of semantic point clouds and
develop new approaches for integrating them into DTs applications.

As a first step of our reflection, we investigated the feasibility of some simulations
that can be performed directly on point clouds. In the next steps, we will evaluate
and validate our approach by comparing it with 3D city models that utilize the same
data, in order to affirm its effectiveness and accuracy.

This work also suggests some perspectives to meet the requirements of DTs:
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• Future research should focus on exploring the potential of semantic point clouds
and developing integration methods for their use in DTs applications.

• It is important to consider the specific requirements of the application, avail-
able resources, and desired level of accuracy and detail when choosing between
semantic 3Dpoint clouds and 3Dcitymodels as an input layer forDT applications.

• Establishing standards forDTs couldbring several benefits. Firstly, itwould enable
increased interoperability among different systems applying this concept, thereby
facilitating collaboration and data exchange. Additionally, clearly defined stan-
dards could help ensure the security and protection of data, as well as the quality
of the created models.

• Defining a preliminary LoD for semantic point clouds can help ensure the quality
and usability of data for specific DTs applications.

• Developing new approaches and algorithms that enable the direct simulation of
urban environments using semantically rich point clouds instead of generating 3D
model, more precisely for sophisticated simulations such as computational fluid
dynamics.

• Studying change detection and updating of DTs with semantically rich point
clouds.

4 . Conclusions

In this paper, we have proposed a research reflection on the use of semantic 3D
point clouds as an alternative to 3D city models for DTs needs. We have introduced
the limitations and performance of both 3D city models and semantic point clouds.
Furthermore, we explain how semantic point clouds can overcome the limitations
of 3D city models to create a DTs. We then presented the initial guidelines of the
suggested reflection, which aims to answer the research question of whether a point
cloud can meet the requirements of DTs by going beyond considering a semantic
point cloud as input for modeling and performing simulations directly on it without
resorting to 3D modeling. This research direction should be further explored to
match point clouds to DTs’ requirements and extend their urban applications. In
short, semantic 3D point clouds appear as potential data that goes beyond the current
deployment of creating 3D city models, which puts them at the forefront of new
needs in urban simulations.
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