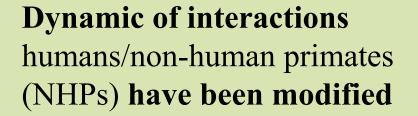
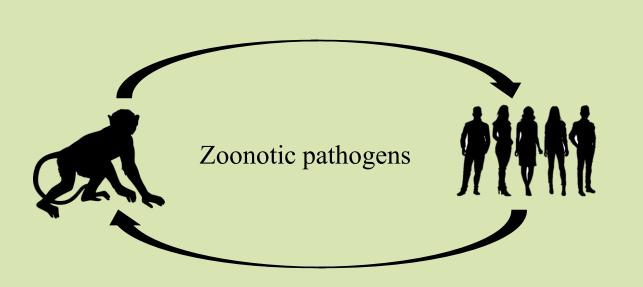
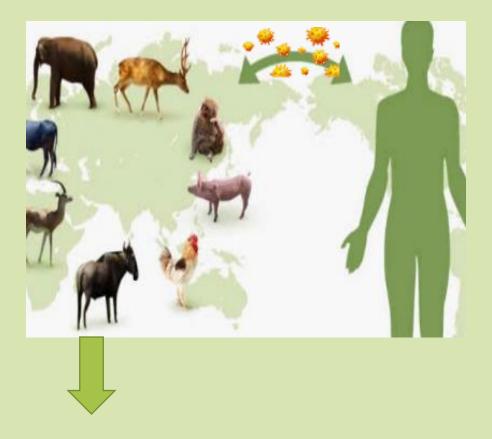
Zoonotic pathogens of wild Asian primates in different habitats: A systematic review

Laurie Patouillat, Alain Hambuckers, I Nengah Wandia, Mutien-Marie Garigliany, Fany Brotcorne






Habitats overlap → increase conflicts and contacts (direct or indirect)

Zoonotic pathogens

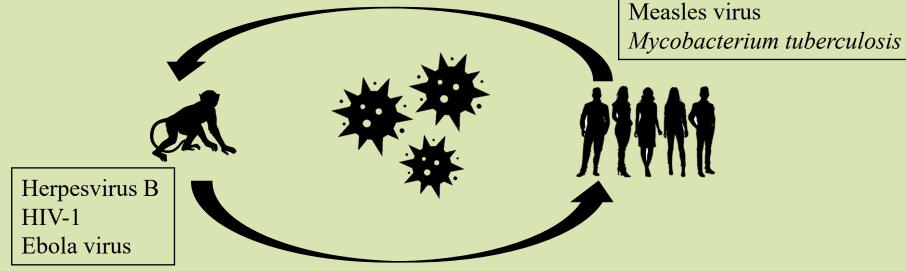
- Zoonotic pathogens spread by international travel and commerce \rightarrow new naïve hosts
- Alteration of pathogens distribution patterns + ↑ geographical proximity

 → emergence of new infectious zoonotic diseases

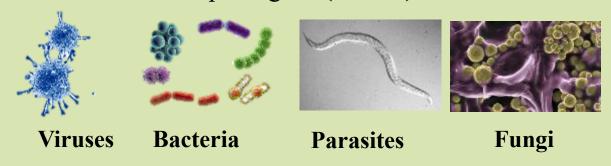
Emerging infectious disease (EIDs) = 75% animal origin

Recent epidemics/pandemics

e.g.: SARS-CoV-2, Severe acute respiratory syndrome (SARS)



Necessity to understand, prevent and control the emergence of zoonotic diseases


Context

NHPs → Genetic proximity to humans, sensitive to identical pathogens

Shared zoonotic pathogens (27.5%)

Different routes of transmission:

- Respiratory
- Body fluid contact
- Faecal/oral
- Vector borne

Human/ NHPs interfaces \rightarrow different degrees of landscape anthropisation

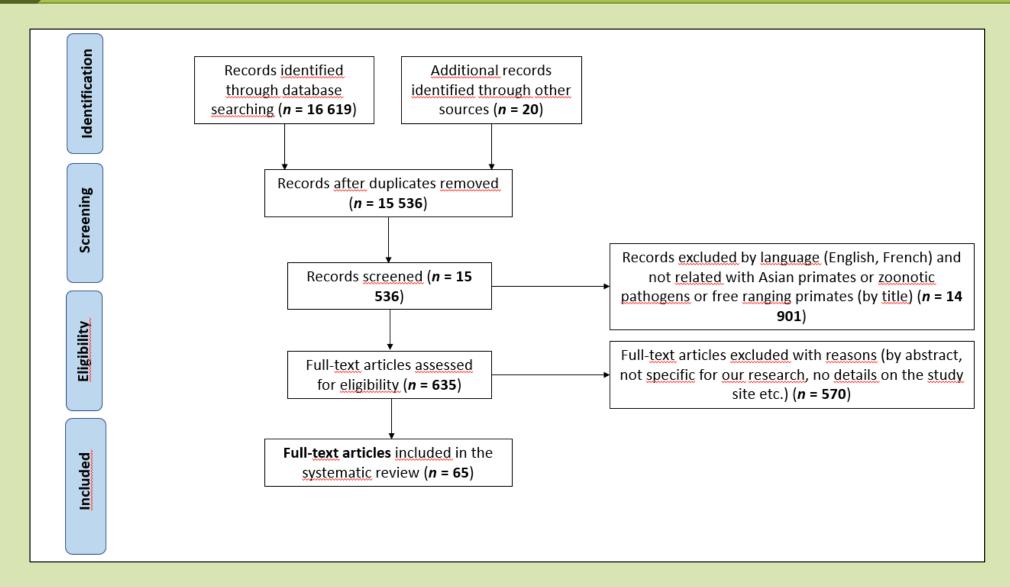
Forested Rural Urban

Multiple social and environmental factors

→ likelihood of interspecies transmission of zoonotic pathogens

Context

Current gaps in knowledge:


- Limited zoonotic pathogens inventory in NHPs living in Asia
 - Zoonotic infection risks influenced by the type of habitat?

Objective

- Inventory of zoonotic pathogens and their transmission routes in wild Asian NHPs
- Assessing the zoonotic pathogens frequency in different types of habitats

Data compilation

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method

Data compilation

<u>Informations collected from each study:</u>

- Host primate species
- Zoonotic pathogen species
- Pathogen transmission route
- Country of the study
- Type of habitat
- Diagnostic method

5 groups of zoonotic pathogens

Viruses

Bacteria

Protozoa

Fungi

Gastrointestinal parasite

Classification:

Forested

Rural

Urban

Low

High

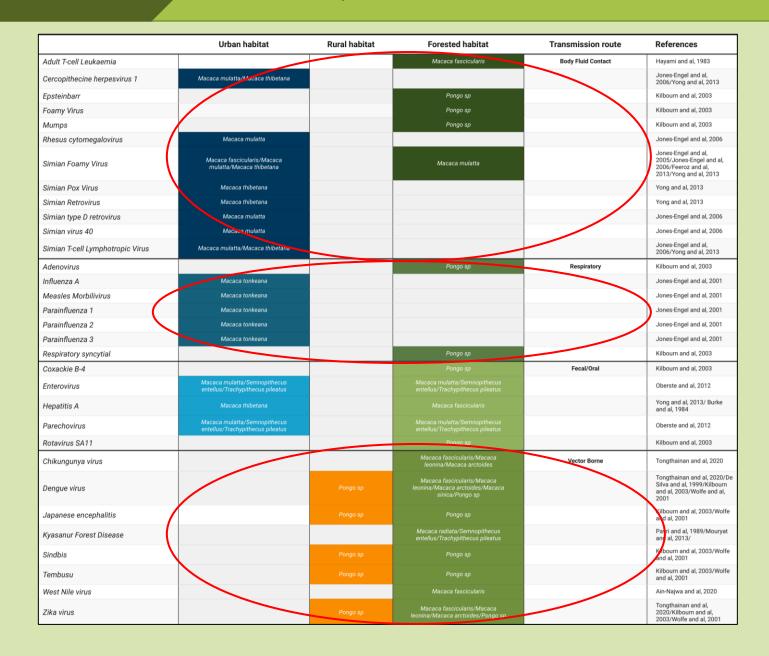
Zoonotic pathogens diversity between habitat types:

- Control of potential biases due to effort sampling
 - → weighted % of species occurrence

Method of extrapolation and accumulation curves of species richness*

65 articles selected from 1965 to 2021 (35 urban, 18 rural, 48 forested)

12 Asian countries


9 genus asian primate host25 asian primate host species

131 zoonotic pathogen species identified

Results

Inventory

Viruses:

Respiratory route and contact with body fluids

→ mainly urban habitat

Vector-borne transmission

→ mostly rural and forested habitats

Other types of pathogens

→ no qualitative differences between habitats

Zoonotic pathogens occurrence comparison between habitats

Bacteria				
Interface	Number of studies	% of species founded	% of species founded corrected	
Urban	7	49	38	
Rural	2	9	25	
Forested	6	42	38	

100

Gastrointestinal Parasite

Interface	Number of studies	% of species founded	% of species founded corrected
Urban	16	26	31
Rural	14	26	35
Forested	26	47	34
Total	56	100	100

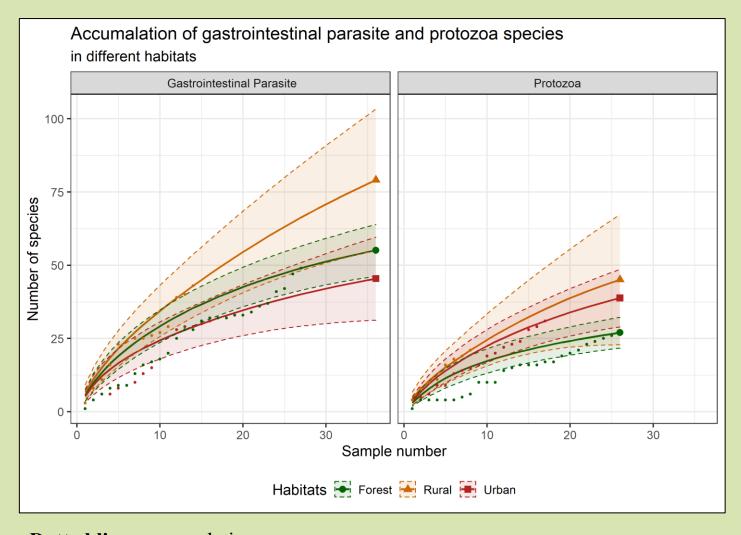
Protozoa

Interface	Number of studies	% of species founded	% of species founded corrected
Urban	17.	32	30
Rural	8	19	38
Forested	25	49	31
Total	50	190	100

Virus

Interface	Number of studies	% of species founded	% of species founded corrected
Urban	6	35	29
Rural	1	9	46
Forested	11	56	26
Total	18	100	100

Weighted % of species occurrence:


Bacteria → urban and forest habitats

Viruses → rural habitats

Gastrointestinal parasites and protozoa

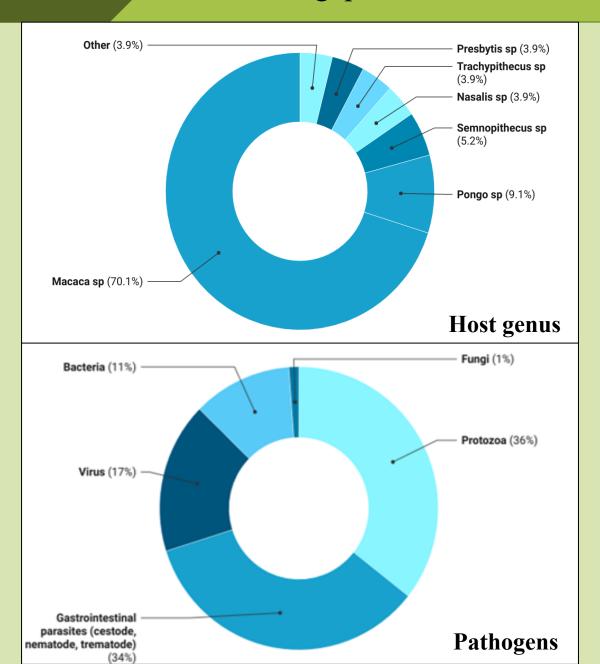
→ similar in the 3 types of habitats

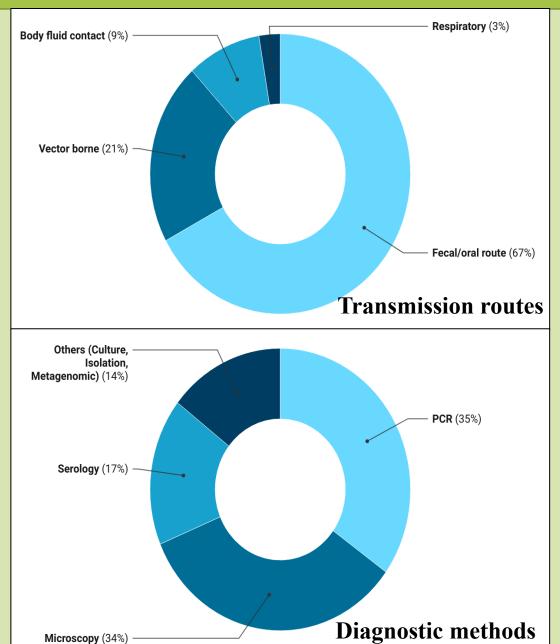
Zoonotic pathogens occurrence comparaison between habitats

Extrapolation and accumulation curves of species richness

Comparison of habitats

- → Overlap of confidence intervals
- → No difference between habitats


Impossible to conclude

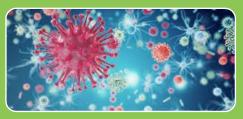

- → Threshold not reached
- → Need to continue sampling

Gaps?

Dotted line: accumulation curve **Solid line**: rarefaction curve

Research gaps

Discussion


Several gaps identified & biases in studies

→ Inventory of zoonotic pathogens and diversity representation in different habitats influenced

NHPs host

- Asian NHPs less study compare to African NHPs
- Geographic and distribution range

Zoonotic pathogens

- Types of samples
- Link with the transmission route

Diagnostic methods

- Specific vs Generic
- Generic = discovery zoonotic pathogens BUT expensive

Take home message:

- Zoonotic pathogens & transmission routes
 - → common in some habitats BUT some are also specific
- BUT gaps in studies on zoonotic pathogens
 - → need for additional studies

International and multidisciplinary collaborations

→ preventives or reactionary measures

Thank you for your attention!

Data analysis

Zoonotic pathogens diversity comparison between habitats:

• Control potential biases due to effort sampling → weighted % of species occurence

Sampling effort on the group of pathogens/transmission routes studied :

For each group of pathogens/transmission routes \rightarrow weighting factor = (total number of studies carried out on all the groups of pathogens/all transmission routes / total number of studies carried out on a specific pathogen group/a specific transmission route)

Sampling effort on the **habitat type**:

For each group of pathogens \rightarrow weighting factor = (total number of studies carried out on the group of pathogen in all habitats combined / total number of studies carried out on the pathogen group in a specific habitat)

• <u>Method of extrapolation and accumulation curves of species richness (Gotelli and Colwell, 2001)</u>

Quantify and statistically measure the differences in diversity of zoonotic agent species between habitat types, EstimateS software

Zoonotic pathogens occurrence comparaison between habitats

Pathogens	Number of studies	% of species found	% of species found corrected
Gastrointestinal parasite	56	54.3	36.1
Bacteria	15	7.0	17.3
Protozoa	50	29.7	22.2
Virus	18	8.9	18.4
Fungi	1	0.2	6.0
Total	140	100.0	100.0

Transmission Route	Number of studies	% of species found	% of species found corrected
Fecal/oral	80	83.9	42.0
Respiratory	2	1.0	19.1
Vector borne	20	11.6	23.3
Body fluid	9	3.5	15.6
Total	111	100.0	100.0

Weighted % of species occurrence:

Across all the studies, **gastrointestinal parasites** is the type of pathogen **the most detected** in studies

Across all the studies, **Fecal/oral route** is the transmission route **the most detected** in studies