
Implementing and Evaluating Ioam Integrity

Protection

Justin Iurman
Université de Liège, Montefiore Institute

Belgium
justin.iurman@uliege.be

Benoit Donnet
Université de Liège, Montefiore Institute

Belgium
benoit.donnet@uliege.be

ABSTRACT

In-Situ Operations, Administration, andMaintenance (Ioam)
gathers telemetry and operational information along a path,
within packets. Up to now, Ioam header and data are carried
in plain text without any protection against data-altering
nodes or middleboxes. However, deploying Ioam in an un-
trusted or semi-trusted environment requires at least in-
tegrity protection. This paper leverages and analyzes work
in progress about Ioam integrity protection and explains
why the currently proposed solution can be improved. Ac-
cordingly, several alternative solutions are discussed, imple-
mented in the Linux kernel, and evaluated. Based on the
results, guidance is provided for standardization. Our source
code is publicly available.
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1 INTRODUCTION

These last years, network telemetry [25] has emerged as
a mainstream technical term to refer to the newer network
data collection and consumption techniques. Telemetry can
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be defined as an automated process for remotely collecting
and processing network information. Network telemetry has
been widely considered as an ideal mean to gain sufficient
network visibility with better scalability, accuracy, cover-
age, and performance than traditional network measurement
technologies.
While, historically, telemetry relied on explicit measure-

ments [18] through, e.g., traditional BFD [14] or traceroute,
a new paradigm has emerged, considering that intermediate
hops can include telemetry data into regular packets, refer-
ring to in-band telemetry [23]. This has led to the definition of
several in-band telemetry protocols, such as In-band Network
Telemetry (Int) [15], In-situ Operation Administration and

Maintenance (Ioam) [2], Alternate Marking [10], and Active

Network Telemetry [19].
Those technologies require packet-level operations such

as encapsulation (i.e., adding space for telemetry data), data
insertion (i.e., inserting telemetry data), and decapsulation

(i.e., removing the additional space for telemetry data). Such
operations may threaten the confidentiality and security
of user information. Kong et al. [16] have discussed threat
models for Int. Firstly, Int can suffer from a control plane
saturation attack caused from a compromised host. Secondly,
nothing prevents attackers to launch a telemetry evading
attack. Thirdly, attackers can leverage Int queue occupancy
data collected by Int to conduct flooding attacks. Finally,
person-in-the-middle attackers can sniff Int packets to col-
lect data for preparing further attacks. In addition, Brockners
et al. [4] performed a threat analysis for Ioam, including tam-
pering of Ioam header and data, injection of fake Ioam header
and data, and potential replay or delay attacks.
This paper focuses on the integrity validation of Ioam

header and data. We leverage and analyze what is currently
specified in an ongoing Ietf draft [4]. In particular, we pro-
vide the following contributions:

• while the Ietf draft only specifies a single solution,
we introduce five additional potential ways to imple-
ment integrity validation for Ioam header and data,
and explain why the current solution can be improved.

• we discuss the advantages and drawbacks of each so-
lution, leading to a pre-selection of three candidates
for implementation.

https://orcid.org/0000-0001-9561-1856
https://orcid.org/0000-0002-0651-3398
https://doi.org/10.1145/3673422.3674886
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• we implement those three most promising solutions
in the Linux kernel.1

• we evaluate those three solutions through extensive
performance measurements, leading so to guidance
for standardization.

The remainder of this paper is organized as follows: Sec. 2
provides the required background for this paper; Sec. 3 intro-
duces several solutions to implement integrity validation for
Ioam header and data; Sec. 4 discusses performance results
of selected integrity solutions; Sec. 5 positions this paper
with respect to the state of the art; finally, Sec. 6 concludes
this paper by summarizing its main achievements.

2 BACKGROUND

Operations, Administration, and Maintenance (Oam) [18]
refers to a set of techniques and mechanisms for performing
fault detection and isolation, and for performance measure-
ments. Throughout the years, multiple Oam tools have been
developed for various layers in the protocol stack, going
from basic traceroute to Bidirectional Forwarding Detec-

tion (BFD) [14]. Recently, Oam has been pushed further with
In-Situ Oam (Ioam) [2]. The term “In-Situ” directly refers to
the fact that the Oam and telemetry data are carried within
packets rather than being sent through packets specifically
dedicated toOam. The Ioam traffic is embedded in data traffic,
but not part of the packet payload.
In a nutshell, Ioam gathers telemetry and operational in-

formation along a path, within packets (see Fig. 2 where
Ioam data is included between the Ipv6 header and payload),
as part of an existing (possibly additional) header. It is in-
cluded in Ipv6 packets as an Ipv6 Hop-by-Hop extension
header [5, 7]. Typically, Ioam is deployed in a given domain,
between the Ingress and the Egress or between selected
devices within the domain. Each node involved in Ioam may
insert (node𝐴 in Fig. 2), remove (node 𝐷 in Fig. 2), or update
the extension header (nodes 𝐵 and 𝐶 in Fig. 2). Ioam data is
added to a packet upon entering the domain and is removed
from the packet when exiting the domain.

RFC9197 [2] defines four Ioam Option-Types, for which
different Ioam-Data-Fields are specified: (𝑖) the Pre-allocated
Trace Option-Type, where space for Ioam data is pre-allocated
(see Fig. 2 where node 𝐴 has prepared three “slots” for Ioam
data), (𝑖𝑖) the Incremental Trace Option-Type, where nothing is
pre-allocated and each node adds Ioam data while expanding
the packet, (𝑖𝑖𝑖) the Proof of Transit (PoT) Option-Type to se-
curely prove that the traffic passed through said defined path,
and, (𝑖𝑣) the Edge-to-Edge (E2E) Option-Type. RFC9326 [22]
defines the Direct Export (DEX) Option-Type, which is used
as a trigger for Ioam data to be directly exported or locally

1The source code is publicly available: https://github.com/iurmanj/ioam-
integrity-linux-kernel

0 8 16 31

Suite-ID Nonce Length Reserved

Nonce

Integrity Check Value (Icv)

Figure 1: Ioam Integrity Protection Header.
2

aggregated without being pushed into in-flight data pack-
ets. Trace, PoT and DEX Option-Types are embedded in a
Hop-by-Hop extension header, i.e., they are processed by ev-
ery node on the path. On the contrary, the E2E Option-Type

is embedded in a Destination extension header, i.e., it is
only processed by the destination node. The aforementioned
Option-Types are the only ones defined in the associated IANA
registry [11] up to now.
Currently, Ioam header and Ioam-Data-Fields (i.e., Ioam

data), whatever the Option-Type, are carried in clear within
packets, without protection against data-altering nodes or
middleboxes. Deploying Ioam in an untrusted or semi-trusted
environment requires at least integrity protection. Brockn-
ers et al. [4] have extended Ioam in order to carry Ioam
header and data with integrity protection. Based on existing
Ioam Option-Types listed in the IANA registry, they define
new Ioam Option-Types (i.e., new code points in the registry)
specifically for integrity protection.

For example, a new Pre-allocated Trace Integrity Protected

Option-Type is defined and is the equivalent with integrity
protection of the Pre-allocated Trace Option-Type. For these
new Integrity Protected Option-Types, the equivalent Option-
Type header is followed by a new header called Integrity

Protection Header. In other words, the Integrity Protection

Header sits between (𝑖) the Ioam header and (𝑖𝑖) the Ioam
data.

The Integrity Protection Header is illustrated in Fig. 1. The
Suite-ID field defines the algorithm used for computing
the integrity. The Nonce Length field provides the length
of the nonce (provided in the Nonce field just below), in
octets. Finally, the Integrity Check Value (abbreviated as
Icv in the following) is the integrity value generated by the
algorithm specified in the Suite-ID field.

3 INTEGRITY COMPUTATION AND

VALIDATION

This section discusses different possibilities for computing
and validating the integrity of the Ioam header and data.
We compare those solutions (summarized in Table 1) and
rely on Fig. 2 to explain each of them. Ultimately, we want
a solution that works the same for all Ioam Option-Types.

2In this paper, both fields “Suite-ID” and “Integrity Check Value (ICV)” were
renamed this way for better semantics.
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Figure 2: Generic example of Ioam data insertion and integrity computation. “H” corresponds to the Ipv6 header,

while “P” is the Ipv6 payload. Node 𝐴 pre-allocates the space (i.e., Pre-allocated Trace) for Ioam data, adds its

own data, and initializes the Icv. Nodes 𝐵 and𝐶 are transit nodes adding Ioam data in the pre-allocated space and

updating the Icv. Finally, Node 𝐷 performs the decapsulation (i.e., removes Ioam data) and validates the integrity.

Solution

Header

Full Protection

GMAC

# Icv check? freeze # encap # transit # decap
1a 1 (✓) ✓ ✗ 1 𝑝 𝑛-1
1b 2 ✓ ✓ ✗ 2 2 𝑛

1c 2 ✓ ✓ ✗ 1 2 𝑛-1
2 1 (✗) (✗) ✓ 1 1 𝑛-1
3 1 ✓ ✗ ✗ 1 2 1
4 1 ✓ ✗ ✗ 1 2 1

Table 1: Integrity validation comparison. Solutions 1.𝑥

corresponds to a validation at the end (with header

check), solution 2 to a validation at the end (without

header check), solution 3 to the neighbor validation,

and solution 4 to IPSec.𝑛 refers to the number of nodes

in the Ioam domain (from the encapsulation node to

the decapsulation one; 𝑛=4 in Fig. 2), while 𝑝 is the

node position (0 ≤ 𝑝 < 𝑛) in the Ioam domain.

Therefore, we focus only on the integrity protection of the
Trace Option-Type, due to its uniqueness. Other Option-Types
work well with any solution presented in this section, which
is not necessarily true for the Trace Option-Type.

Fig. 2 illustrates the three main actions associated to Ioam
with integrity protection. Firstly, the encapsulating node
(node 𝐴) pre-allocates Ioam space, adds data, and initializes
the nonce and Icv. Secondly, the transit nodes (nodes 𝐵 and
𝐶) add data and update the Icv. Thirdly, the decapsulating
node (node 𝐷) validates the Icv and decapsulates Ioam data.
How each node along the path handles the Icv is dependent
on the way integrity is implemented. This is what we discuss
in the next subsections.
The Ietf draft authored by Brockners et al. [4] defines a

solution (see Sec. 3.1, Solution 1.a) that uses a symmetric key
based algorithm for integrity protection, i.e., the Galois Mes-

sage Authentication Code [8] (Gmac). That decision has been
made considering the space, performance, and operational
constraints related to Ioam. Indeed, an asymmetric key based
algorithm would not be suitable because of these constraints.
Gmac is probably the best choice in this integrity protection

context (e.g., it is used in IPsec [17]). Note that solutions
we propose in this section also rely on Gmac, for the same
reasons.

3.1 Solution 1: Validation at the End

(Header Check)

In this solution, the integrity validation is performed at
the end, by the decapsulating node, which is in charge of
verifying the integrity of the Ioam header added by the en-
capsulating node, as well as Ioam-Data-Fields (i.e., Ioam data)
added by each node on the path. Brockners et al. [4] define
the following solution:
Solution 1.𝑎: the encapsulating node (𝐴 on Fig. 2) picks a
nonce and computes the initial Icv as a Gmac over the Ioam
header and its Ioam data (i.e., Icv = Gmac (Ioam header ||
Ioam data)). Header fields that are mutable must be excluded
from the Gmac. Next, each transit node along the Ioam path
adds its own Ioam data and updates the Icv consequently,
based on the previous Icv and its Ioam data (i.e., Icv = Gmac
(Icv || Ioam data)). Finally, the decapsulating node checks the
entire integrity chain by recomputing all intermediate Icvs.
Thus, it requires as many computations as nodes present in
the Ioam data.
This solution has serious drawbacks that could prevent

its deployment. Table 1 highlights them, as for example: (𝑖)
in order to check the header, a transit node would have to
compute 𝑝 Gmacs, with 𝑝 being the number of previous Ioam
nodes which added Ioam data (encapsulating node included);
(𝑖𝑖) as a consequence, header check is made optional on tran-
sit nodes due to its complexity [4]. The only way to improve
this solution would be to have two Icvs in the Integrity Pro-

tection Header, one for the Ioam header and one for the Ioam
data, so that transit nodes could verify the integrity of the
header in one step without recomputing the whole chain
of Icvs up to themselves. This is what we propose with the
following solution:



ANRW 24, July 23, 2024, Vancouver, AA, Canada Iurman et al.

Solution 1.𝑏: the encapsulating node picks a nonce and com-
putes two Gmacs, one for the Ioam header (HIcv = Gmac
(Ioam header)) and another for the Ioam data (DIcv = Gmac
(Ioam data)). Header fields that are mutable must be excluded
from the Gmac. Next, each transit node along the Ioam path
checks the integrity of the header based on HIcv and, if suc-
cessful, adds its own Ioam data and updates the DIcv (DIcv
= Gmac (DIcv || Ioam data)). Finally, the decapsulating node
checks the entire integrity chain, i.e., both HIcv and DIcv.

As mentioned, the advantage of Solution 1.𝑏 over Solution
1.𝑎 is the ability for transit nodes to check the header integrity
in a single shot. Consequently, it can be made mandatory
instead of optional. However, as shown in Table 1, the en-
capsulating node has to perform two Gmacs, which is not
desirable. In order to improve it, we can simply modify the
semantics of the two Icvs, i.e., one for the encapsulating
node, and one for transit nodes. This is what we propose
with the following solution:
Solution 1.𝑐: the encapsulating node picks a nonce, initial-
izes to 0 the Icv of transit nodes (TIcv), and computes the Icv
of the encapsulating node (EIcv) as a Gmac over the Ioam
header and its Ioam data (i.e., EIcv = Gmac (Ioam header ||
Ioam data)). Header fields that are mutable must be excluded
from the Gmac. Next, each transit node along the Ioam path
checks the integrity of the header based on EIcv and, if suc-
cessful, adds its own Ioam data and updates the TIcv (TIcv
= Gmac (TIcv || Ioam data)). Finally, the decapsulating node
checks the entire integrity chain, i.e., both EIcv and TIcv.
The advantage of Solution 1.𝑐 over Solution 1.𝑏 is that

the encapsulating node only performs one Gmac, which is
however still far from perfect. Indeed, for each transit node
to check the integrity of the header, the Ioam data from
the encapsulating node has to be fetched and included in
the Gmac. Worse, this could seriously harm performance in
some corner cases, e.g., when the Opaque State Snapshot is
required in a Trace Option-Type.
Overall, those solutions bring too many trade-offs. As

summarized in Table 1, Solutions 1.𝑏 and 1.𝑐 require two
Icvs, leading to issues with Ioam space constraint. As for
Solution 1.𝑎, it is hardly deployable from a performance
point of view. Also, none of them can be considered as “full”
protection: it is not a zero trust scheme and, while non-Ioam
nodes are not trusted, Ioam nodes are forced to be trusted
(i.e., keys must be exchanged between Ioam nodes to validate
the integrity of the header). This can be a problem if an Ioam
node is compromised. Not to mention that these solutions
“freeze” the header structures since they specifywhich header
fields should be included or not in the Gmac, while future
fields or flags would be kept out by default, which is an issue
for interoperability. For all those reasons, our first advise
would be that Solution 1.𝑎 and its derived should not be
standardized.

3.2 Solution 2: Validation at the End (No

Header Check)

In this solution, the integrity validation is still performed
at the end, by the decapsulating node. However, there is no
header check performed on transit nodes. Some header fields
are still verified at the end by the decapsulating node. It works
as follows:
Solution 2: the encapsulating node picks a nonce and com-
putes the initial Icv as a Gmac over some selected Ioam
header fields (e.g., Namespace-ID) and its Ioam data (i.e., Icv
= Gmac (Ioam header-fields || Ioam data)). Next, each transit
node along the Ioam path adds its own Ioam data and up-
dates the Icv consequently, based on the previous Icv and
its Ioam data (i.e., Icv = Gmac (Icv || Ioam data)). Finally,
the decapsulating node checks the entire integrity chain by
recomputing all intermediate Icvs.

As shown in Table 1, this solution addresses the drawbacks
of Solutions 1.𝑥 . Here, transit nodes only perform one Gmac
each, considering they no longer check the Ioam header. The
trade-off of not checking the header on transit nodes actu-
ally makes a lot of sense: our primary objective is to provide
integrity protection for Ioam data, not necessarily the header.
Of course, some header fields are important and provide con-
text to Ioam data, e.g., the Namespace-ID header field, which
is common to all Ioam Option-Types. If altered, the Ioam data
collected becomes meaningless. On the other hand, some
header fields are only useful for processing. These two types
of header fields should be distinguished, and only those that
provide context to Ioam data should be protected by the en-
capsulating node. This also avoids any interoperability issues
by no longer “freezing” header structures, since the selection
of header fields is restrictive and sufficiently generic for cur-
rent and future Ioam Option-Types, without any modification
being required. Furthermore, this solution is the only one
that corresponds to the desired “full” protection scheme, i.e.,
no node has to be trusted (Ioam or non-Ioam ones), except
of course the decapsulating node which receives all the keys.
Overall, this solution is considered a strong candidate and
will be evaluated in Sec. 4.

3.3 Solution 3: Neighbor Validation

In this solution, the integrity validation is performed hop-
by-hop on each Ioam node, which makes it easy to include
the entire Ioam Option-Type (both the Ioam header and the
Ioam data) in the Gmac. It works as follows:
Solution 3: the encapsulating node picks a nonce and com-
putes the Icv as a Gmac over the entire Ioam Option-Type

(i.e., Icv = Gmac (Ioam header || all Ioam data)). Next, each
transit node along the Ioam path checks the integrity of the
entire Ioam Option-Type based on the Icv and, if successful,
adds its own Ioam data and updates the Icv consequently
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(i.e., Icv = Gmac (Ioam header || all Ioam data)). Finally, the
decapsulating node checks the integrity of the entire Ioam
Option-Type just like a transit node.

As shown in Table 1, the only drawback of this solution is
that it does not correspond to the desired “full” protection
scheme. Indeed, each Ioam node is responsible for verifying
the integrity of the Ioam Option-Type received from its Ioam
neighbor, which could be problematic in the case where
an Ioam node is compromised. However, this solution also
comes with a lot of advantages, such as: (𝑖) the entire header
can be checked, without the need to select certain fields; (𝑖𝑖)
the validation load is shared between Ioam nodes instead of
having a single node for validation; (𝑖𝑖𝑖) it is elegant, easy
and quick to implement. Overall, this solution is considered
a strong candidate as a lightweight alternative to Solution 2,
and will be evaluated in Sec. 4.

3.4 Solution 4: IPSec

As shown in Table 1, this solution is quite similar to what
Solution 3 proposes, except that it uses existing tools (i.e.,
IPSec [17]) without specifying new protocols. The drawbacks
are the same as Solution 3, with the additional issue that
IPSec tunnels must be configured between all nodes, not just
between Ioam nodes. Even if this solution seems overkill
compared to Solution 3, it is also considered a candidate and
will be evaluated in Sec. 4.

4 EVALUATION

4.1 Methodology

In order to evaluate selected solutions’ performance, we
rely on TRex [6], an open source, low cost, stateful and
stateless traffic generator fueled by DPDK. It has multiple
advantages, such as the ability to generate Layer3–7 traffic
and multiple streams, as well as the ability to easily craft
your own packets with the underlying Scapy [21] layer. TRex
can scale up to 200Gbps with only one server.
The testbed is straightforward: one machine for TRex,

and another one for the Device Under Test (DUT). Both are
equipped with an Intel XL710 2x40GB QSFP+ NIC, each con-
nected port to port on both ports in order to close the loop
(i.e., TRex client and server run on the same machine). This
kind of topology provides an easy way to evaluate Ioam and
its different roles on the DUT, i.e., the encapsulating, transit,
and decapsulating roles separately. The DUT has an Intel

Xeon CPU E5-2683 v4 at 2.10GHz, with 16 Cores, 32 Threads,
and has a 64GB RAM. During measurements, the DUT is
configured to maximize its performance (e.g., cpu in perfor-
mance mode, network settings). It is also configured to only
use one queue for all traffic received, and so only one core
responsible for that queue, in order to see the impact on a
single core, which is better to compare performance on a

common basis. Depending on the Ioam role and solution
evaluated, the DUT is configured differently and TRex sends
packets accordingly. Overall, each experiment (i.e., measure-
ment) lasts 30 seconds and is run 20 times. We determine
95% confidence intervals for the mean based on the Student 𝑡
distribution (they are too tight to be visible in the subsequent
plots). Solutions 2, 3, and 4 (see Sec. 3) were implemented
by leveraging the existing Ioam code [12, 13] in the Linux
kernel.

4.2 Results

Fig. 3 shows results per Ioam role, respectively for an
encapsulating node (Fig. 3a), a transit node (Fig. 3b), and a
decapsulating node (Fig. 3c), and so for each solution we
evaluated, i.e., Solution 2 (“Validation at the end – no header

check”, Sec. 3.2), Solution 3 (“Neighbor validation”, Sec. 3.3),
and Solution 4 (“IPSec”, Sec. 3.4). On each graph, the 𝑋 -axis
represents the Ioam injection percentage and the 𝑌 -axis rep-
resents the number of received packets per second. The base-
line represents vanilla Ioam, i.e., the current code in the
Linux kernel without any integrity protection.

First, let us focus on the encapsulating role. Fig. 3a shows
that Solution 2 (“Validation at the end – no header check”)
and Solution 3 (“Neighbor validation”) both share similar
performance, which is somehow expected since they perform
one Gmac for this role (i.e., equal to the offset from the
baseline). However, Solution 3 seems to perform a bit better,
especially when Ioam is injected in more than 10% of the
traffic. Such slight difference is explained by the simplicity
of Solution 3 and the way it is implemented, compared to
Solution 2 which is a bit more complex. Both solutions are
suitable for line-rate when Ioam is added up to 1% of the
traffic. After that, one notices increasing drops due to the
Gmac. Regarding Solution 4 (“IPSec”), it is only represented
for 100% (i.e., Ioam is added to all packets) due to the fact that
an IPSec tunnel usually takes care of all the traffic without
discrimination, even though some filters may be applied.
Obviously, its performance is not good at all, but this is also
the worst case (i.e., Ioam is applied to all packets). Overall,
the encapsulating role seems to be the bottleneck for both
Solutions 2 and 3.
Then, let us focus on the transit role. Fig. 3b shows that

Solution 2 (“Validation at the end – no header check”) and
Solution 3 (“Neighbor validation”) both have, again, similar
performance up to 10% of Ioam injection. After that, one
clearly sees that Solution 3 becomes a bit less efficient, which
is explained by the fact that Solution 2 performs one Gmac
while Solution 3 performs two Gmacs as a transit node. Both
solutions are suitable for line-rate when Ioam is added up to
1% of the traffic. Without any surprise, Solution 4 (“IPSec”)
is terrible for 100% (i.e., which means one Gmac, one Ipv6
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(a) Encapsulating node (𝐴 on Fig. 2).
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(b) Transit node (𝐵 or𝐶 on Fig. 2).
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(c) Decapsulating node (𝐷 on Fig. 2).

Figure 3: Performance of Ioam integrity protection. The line labeled Ioam corresponds to vanilla Ioam, without

any integrity protection, and serves as performance baseline for each role.
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Figure 4: Validation at the end (noheader check), zoom

on the decapsulating node for a variable number of

validations (i.e., Gmacs).

decapsulation due to the IPSec tunnel mode, one IPv6 re-
encapsulation, and one Gmac in that order). This role is
therefore the bottleneck for Solution 4.

Finally, let us focus on the decapsulating role. Fig. 3c can
be explained with the same reasoning as for the encapsulat-
ing role. However, the fact that Solution 2 (“Validation at the

end – no header check”) and Solution 3 (“Neighbor validation”)
both have similar performance may be surprising. Indeed,
with Solution 3, only one Gmac is performed on the decapsu-
lating node, while Solution 2 performs a variable number of
validations (i.e., Gmacs) depending on the number of nodes
in the trace. In fact, as a common baseline in this figure, only
one validation (i.e., Gmac) was performed by the decapsulat-
ing node for Solution 2, which corresponds to its best case
scenario (i.e., similar to Solution 3). As a consequence, Fig. 4
also studies the impact of different number of validations
(i.e., Gmacs) for a decapsulating node with Solution 2. One
interesting observation is that the maximum number of vali-
dations (i.e., 52) is suitable for line-rate up to 0.1%. Another
interesting point is that five validations are suitable up to
1%. Based on discussions we had with operators, five nodes
corresponds to the average Ioam domain length.

5 RELATEDWORK

Up to now, only few works have been done to secure in-
band telemetry technology. In particular, those works focus

on the data plane programmability through Int [15]. Pan
et al. [20] used vector homomorphic encryption to design
a lightweight telemetry data encryption scheme. Wang et
al. [24] rely on Int to identify an IP address spoofing. They,
however, notice that the attacker may tamper with the mea-
surement data, failing the detection. With Sint, Zhao et
al. [26] propose a blockchain-based architecture to incor-
porate the security triad into the Int architecture. Finally,
Kong et al. [16] discusses several attacks Int can suffer and
propose Even-Mansour [9] block ciphering and SipHash [1]
for integrity validation. With respect to Ioam, Brockners et
al. [3] define mechanisms to securely prove that traffic tran-
sited said defined path. In this paper, we discussed multiple
solutions for integrity validation in Ioam and implemented
several of them into the Linux kernel for evaluating their
performance.

6 CONCLUSION

In this paper, we analyze work in progress regarding the
integrity protection of Ioam, and we discuss why the pro-
posed solution can be improved. We propose five alternative
solutions, select three of them as promising solutions for
Ioam integrity protection, implement them in the Linux ker-
nel, and evaluate them in a controlled environment.
We first confirm that Solution 2 (”Validation at the end –

no header check“) should be pushed towards standardization.
However, the upcoming standard should not make manda-
tory for a decapsulating node to perform the validations and
explain that validations can be delegated off-path to keep the
forwarding path efficient. Regarding Solution 3 (“”Neighbor
validation“”), it could be standardized later if an operator has
a need, as a lightweight and intermediate solution. Finally,
Solution 4 (“IPSec”) could be discussed as a fallback solution.
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