Towards Integration of Carnot Batteries in Data Centres: Design Optimisation and Global Sensitivity Analysis under Techno-Economic Uncertainties Objective Designing a Carnot battery integrated into a real data centre

<u>A. Laterre^{1,2}, O. Dumont², V. Lemort², F. Contino¹</u> ¹UCLouvain and ²ULiège (antoine.laterre@uclouvain.be)

Thermal Integration in Data Centres

From a thermodynamic point of view, data centres are massive exergy destructors: they convert electricity into low-grade heat (i.e. cooling water is typically **below 25°C**), and there is an extra power consumption due to the associated cooling system. **Carnot batteries** (CB) and PV arrays can be integrated into data centres: they recover the waste heat, reduce the cooling duty and increase the **independence** from the **grid**.

Case Studies and Method

Two **integration scenarios** are considered:

and to minimise the final cost of electricity.

recovery of the 25°C cooling water from cooling packages and cooling down to 15°C (current **air-cooled** facilities);

and coupled to a PV array to maximise its self-sufficiency ratio

recovery of the 60°C cooling water from servers and cooling down to 50°C (future **water-cooled** data centres) [1].

A semi-empirical operational model is used to simulate the behaviour of the whole system based on time series from an

This work proposes:

- to optimise the design of a CB and the size of a PV array towards integration into a $\sim 100 \text{ kW}$ data centre (see fig.);
- to maximise its self-sufficiency ratio and minimise the final cost of electricity;
- and to quantify the uncertainty on economic figures.

existing facility (1h resolution). An economic model is used to assess economic figures. Details about the models and **power management strategy** can be found in our earlier work [2]. Multi-criteria optimisation and global sensitivity analyses are carried out with the RHEIA package (genetic algorithm and polynomial chaos expansion) [3].

UCLouvain data centre

Multi-Criteria Optimisation

- **PV only** provide **lowest LCOE** and SSR up to 39.3%;
- **PV + CB** in both case studies provide **similar LCOE and SSR** for **SSR up to 46**. 3%;
- PV + CB achieves higher SSR in water-cooled case for same LCOE as in air-cooled case;
- SSR is constrained by maximum available PV capacity;
- In best cases, CB can increase SSR by up to about 15%;
- In actual infrastructure, LCOE is $0.22 \in /kWh$ so **PV + CB is** always competitive.

Global Sensitivity Analysis

Uncertainty on **LCOE**:

- PV only is more sensitive to electricity price and PV cost;
- PV + CB is less sensitive to elec. price thanks to higher SSR;
- Storage leads to higher dev. on LCOE due to uncert. on cost. Uncertainty on **LCOS**:
- Driven by **ORC cost**, total **OPEX** and solar **irradiance**;
- **Narrower** for water-cooled than for air-cooled because it is less affected by solar irradiance (i.e. higher P2P efficiency).

Conclusion

In the two case studies, the data centre can achieve up to 55% self-sufficiency with PV + CB (of which about 15% is due to CB) while providing a lower final cost of elec. than in the actual infrastructure. The uncertainty on the final cost of electricity is also less sensitive to the price of electricity thanks to storage.

Acknowledgement

Time series corresponding to the data centre have been gratefully provided by the Center for High Performance Computing and Mass Storage (CISM) from UCLouvain.

References

- [1] K. Ebrahimi, G. F. Jones, and A. S. Fleischer, 'A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities', Renewable and Sustainable Energy Reviews, vol. 31, pp. 622–638, Mar. 2014.
- [2] A. Laterre, O. Dumont, V. Lemort, and F. Contino, "Design Optimisation and Global Sensitivity Analysis of a Carnot Battery Towards Integration in a Data Centre under Techno-Economic Uncertainties", in Proceedings of 5th SEE SDEWES, Vlorë, May 2022.
- [3] D. Coppitters, P. Tsirikoglou, W. D. Paepe, K. Kyprianidis, A. Kalfas, and F. Contino, 'RHEIA: Robust design optimization of renewable Hydrogen and dErlved energy cArrier systems', Journal of Open Source Software, vol. 7, no. 75, p. 4370, Jul. 2022.

Figures of Merit							
	case	T _{sto,hot} [°C]	T _{spread} [K]	$LCOS\left[\frac{\in}{kWh}\right]$	P2P [%]	frac _{sto} [%]	tank [m ³]
	air-cooled	150	57.3	0.413	19.9	11.9	90.9
	water-cooled	150	65.5	0.353	32.2	12.2	57.6

