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ABSTRACT 

Carnot batteries are quickly-developing technologies that use heat pumps and heat engines to 

charge and discharge a thermal storage. Although they have multi-scale and multi-application 

potential, it is still unclear where and how they should be deployed to compete with other 

storage systems, such as electro-chemical batteries or power-to-X. In this work, we perform the 

techno-economic optimisation of a small-scale Carnot battery (less than 100 kW) based on the 

Rankine cycle. This Carnot battery is designed for a real data centre that would be coupled to 

photovoltaic panels. The main motivation for this integration scenario is the recovery of the 

cooling water (at 24 °C) from the data centre when charging the system, as this increases the 

storage electrical efficiency while reducing the data centre energy consumption. This paper first 

presents the optimisation of two objectives: the minimisation of the data centre Levelized Cost 

Of Electricity (LCOE) and the maximisation of its Self-Sufficiency Ratio (SSR). For each 

evaluated design, the two objectives were calculated by performing annual simulations using a 

thermo-economic model with an hourly resolution including the actual operating conditions of 

the data centre. Then, the paper describes the impact of the uncertainties of the system 

parameters on its techno-economic performance. This impact is assessed by a global sensitivity 

analysis obtained with Polynomial Chaos Expansion. Optimisation results show that there is a 

clear trade-off between designs that minimise the LCOE and maximise the SSR. They also 

show that, thanks to the Carnot battery, the data centre can increase its SSR up to 48.5% with a 

lower LCOE than in the current infrastructure, and while maintaining a similar uncertainty 

range. The global sensitivity analysis finally suggests that the uncertainties related to the capital 

and operational costs of the Carnot battery drive the uncertainty on the Levelized Cost Of 

Storage. Future studies will focus on reducing the uncertainty on the critical parameters.  
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INTRODUCTION 

Electrical Energy Storage (EES) is recognised as a key driver in the transition to intermittent 

and non-dispatchable renewable energy sources (e.g. wind, solar), as it can bridge the gap 

between the production and the demand [1]. In this context, finding cost-effective EES systems 

has become essential. At the same time, sector coupling (i.e. coupling different energy 

producing and consuming sectors) is perceived as a way to reduce the stress on the required 

amount of EES while increasing the flexibility and efficiency of energy systems [2]. From this 

perspective, Carnot batteries (CB), a rapidly developing group of technologies, turn out to be 

an interesting flexibility option combining energy storage and coupling between electrical and 

thermal systems [3].  

Overview of Carnot batteries 

Carnot batteries store energy under the form of heat in thermal energy storage systems. In most 

implementations, CB are charged with different possible heat pump technologies (HP), and to 

lesser extent with resistive heaters (RH). They are then discharged with heat engines (HE) that 

produce electricity [4]. Most HE technologies are either based on the closed Brayton cycle, or 

on the (organic) Rankine cycle [4]. The main advantages of CB are the possible heat coupling 

at low or high temperature during the charge or discharge process [5], low expected investment 

costs and low environmental footprint [4]. Indeed, most concepts propose to store heat in cheap 

and abundant materials, such as rock, water or molten salts [4], [6]. 

Although it is possible to imagine a multitude of thermal integration scenarios, it is still unclear 

where and how could CB compete with other EES technologies, such as chemical batteries [7] 

or power-to-X [8]. More specifically, techno-economic analyses of low to medium-scale CB 

(i.e. < 1 MW) are really lacking to initiate their commercial development [4], [6]. 

Aims of this study 

In this work, the techno-economic potential of integrating a CB based on the Rankine cycle in 

a real 100 kW data centre is investigated. The motivation for this integration scenario is the 

recovery of the low-grade waste heat (24 °C) from the cooling system when charging the CB, 

and the reduction of energy consumption dedicated to chilling. To illustrate some typical 

operating conditions, a photovoltaic array (PV) is installed to support the data centre. Using 

design optimisation, the goal is to identify CB designs that can maximise the Self-Sufficiency 

Ratio (SSR) of the data centre, which represents its independence from the grid, while 

minimising its Levelized Cost Of Electricity (LCOE). 

This paper first presents the model of the CB, the PV array and the data centre, followed by the 

description of the annual data associated with this integration scenario. These data are used to 

account for performance degradation under off-design conditions and for operational 

constraints (e.g. PV production, heat source availability, …) when simulating the system. The 

optimisation algorithm is then briefly discussed. As designing such system is subject to large 

parameter uncertainty (i.e. CB’s have a low Technology Readiness Level [1]), uncertainties 

related to investment costs and technology performance, as well as those related to 

meteorological conditions and power consumption, are then introduced. To assess their overall 

effect on the LCOE, Polynomial Chaos Expansion, the method used to quantify the global 

uncertainty, is finally explained.  

MODEL AND METHOD 

In this section, the system model and the corresponding annual data are first presented. The 

optimisation criteria and the economic considerations are then introduced. Thereafter, the 

uncertainties characterising the techno-economic parameters of the model are discussed, followed 
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by a brief description of the method used to propagate the formers and to quantify their effect on 

the model outputs. 

Case study 

The integration of a Carnot battery supported by a PV array in the UCLouvain data centre is 

considered (see Fig. 1). The corresponding climate and demand data are introduced in Climate 

and system data. When the PV array complies with the data centre power demand, excess 

electricity is stored under the form of heat in the CB, using either a vapour compression HP, either 

a resistive heater, or both. In HP mode, the evaporator extracts heat from the cooling water. When 

the PV electricity fails to meet the demand, the CB is discharged with a heat engine based on an 

organic Rankine cycle. Its heat sink is the cooling water, and the latter is cooled down with the 

already existing dry cooler. A grid support is also available. All these sub-systems are further 

discussed below. The full power management strategy is detailed Fig. A1 in APPENDICES. 

 

 
 

Figure 1. Integration of a CB in the UCLouvain data centre. In HP mode, the evaporator extracts 

heat from the cooling water. In HE mode, the condenser heat sink is the cooling water. 

 

The UCLouvain data centre is of the hot confined aisle type. The hot air produced by the servers 

is trapped in an aisle and expelled from it through a chilled water-cooling system. Currently, the 

water temperature on the hot side 𝑇cooling
hot  is about 24 °C. This water is cooled down to 14 °C with 

a dry cooler when the external temperature is below 12 °C, or with an air chiller. The power 

consumption of the air chiller and of the dry cooler are unfortunately not available and data 

reconstruction is therefore employed.  

 

The chiller coefficient of performance (COP) is derived as a fraction 𝜂chiller
Carnot of the Carnot COP: 

 

 COPchiller =
𝑄chiller
cold

𝑃chiller
= 𝜂chiller

Carnot ⋅ COPCarnot , (1) 

 

where 𝑄chiller
cold  and 𝑃chiller are the chiller cooling power and its electrical power respectively. 

COPCarnot is derived based on the temperatures of the cooling water and the ambient air. The value 

of 𝜂chiller
Carnot is given in Tab. A1, in APPENDICES. 
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The power consumption of the dry cooler is assumed to be negligible compared to that of the 

chiller. This assumption is realistic as the specific power consumption of dry coolers (i.e. inverse 

of COP, in [kWel kWth⁄ ]) typically ranges from 0.012 to 0.091 (i.e. COP equivalent ranging from 

11 to 81), which is much more efficient than chillers [9]. 

Thermodynamic model 

In this work, all thermodynamic quantities are obtained using CoolProp [10]. 

 

Charging system: heat pump and resistive heater.  The charging system of the CB relies on two 

components: a vapour compression HP, which uses the hot cooling water as heat source, and a 

RH, which is used in addition to the HP when the latter reaches its maximum power output. The 

motivation for this thermal integration [5] is twofold: when charging the CB, the HP recovers the 

low-grade waste heat (i.e. 𝑇cooling
hot  is only 24 °C) and it reduces the chiller power consumption, as 

the HP does the cooling work for it. 

 

The HP is modelled with its thermodynamic cycle. First, the working fluid evaporates and is super-

heated in the low-pressure heat exchanger (HEX) where it absorbs the waste heat from the cooling 

water. Its exit temperature is obtained with the pinch-point Δ𝑇pinch model. This approach is 

motivated by the lack of knowledge regarding the heat transfer development and by its low 

computational complexity. It has been used in several other studies [7], [11], [12]. The pressure 

losses Δ𝑝hp,ev are also taken into account. 

The fluid pressure is then increased in a volumetric compressor. So far, most authors have used 

constant efficiency models when optimising the design of CBs [7], [11], [12]. Here, performance 

degradation in off-design conditions is taken into-account using a simplified version of the semi-

empirical model proposed and validated by Lemort [13]. The simplification is introduced to lump 

the eight losses parameters (accounting for the internal leakages, supply pressure drops, heat losses 

and friction) into 𝜂mech, a single mechanical efficiency, and it has already been applied in expander 

models for organic Rankine cycles [14], [15]. With this model, the two variables that are used to 

design the compressor are its built-in volume ratio 𝑟v (i.e. the ratio between intake and discharge 

chambers volumes) and its swept volume 𝑉s. The compressor speed can vary between 2000 and 

5000 rpm, depending on the operating conditions and to ensure that the model remains valid. 

Afterwards, the fluid is condensed and sub-cooled in the high-pressure HEX, where heat is 

transferred to charge the thermal storage. The condensing temperature 𝑇hp,cd is imposed as a 

design variable. The pressure losses Δ𝑝hp,cd are also taken into account. The condenser exit 

temperature is obtained with the degree of sub-cooling Δ𝑇hp,cd,sc, which is also a design variable 

(see below for further details). 

The fluid is finally expanded in a valve, and the expansion is modelled as adiabatic. The 

evaporation temperature in the low-pressure HEX is defined as the minimum between the cold 

cooling water temperature minus the pinch-point and the fluid temperature at the exit of the 

evaporator minus the desired degree of super-heating Δ𝑇hp,ev,sh. 

 

The working fluid selected here is R1233zd(E). This choice is motived by the excellent 

performance it has shown in thermally integrated Carnot batteries [16], [17] and based on 

preliminary optimisation results. 

 

The resistive heater is intended to be used as a peak unit due to its lower electricity to heat 

conversion ratio. When the heat pump runs at full load, extra power can be injected into the thermal 

storage with this component. The latter is modelled with an efficiency of 100%, meaning that all 

the electrical power is converted into heat [18]. Its maximal power is a design variable. 
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Sensible heat thermal storage.  The sensible heat storage system is based on two water tanks, with 

different temperature levels. Water is adopted as storage material as it offers a high thermal storage 

density (i.e. up to 50 kWhth/m
3 [4]) at a low cost, in the considered temperature range (i.e. < 100 

°C, see later). Although this configuration is more expensive than a single tank option, it avoids 

temperature uniformization within the tank due to the thermocline and temperature variations with 

the state of charge. Latent heat storage is not considered in this work as it is currently costly (i.e. 

10-50 $/kWh compared to 0.1-10 $/kWh for sensible heat [4]). The tanks volume is selected as a 

design variable associated with the storage capacity. 

 

The storage high temperature is set by the HP condensing temperature 𝑇hp,cd and the pinch-point. 

The storage low temperature is set by the heat pump condenser exit temperature (i.e. thus the sub-

cooling Δ𝑇hp,cd,sc) and by the pinch-point. Using these definitions, the storage temperatures 

remain constant over the year. In this model, the storage heat losses are neglected, assuming a 

sufficient thermal insulation (i.e. less than 0.5% loss per day [19]) and as the target application is 

for overnight storage (i.e. coupling with PV). This simplification is introduced to reduce the model 

complexity and was also used in other studies [11], sometimes operating at way higher storage 

temperatures than in the present case (i.e. up to 750 °C) [19]. 

 

Discharging system: heat engine.  The heat engine (HE) is based on an organic Rankine cycle 

(ORC). Its evaporator extracts heat from the thermal storage while its condenser uses the cold 

cooling water as heat sink. The latter is chilled by the existing dry cooler, since it has been largely 

oversized for the current needs of the data centre. Based on the estimated remaining cooling 

capacity, it is decided that up to 800 kW can be rejected by the ORC condenser through it. 

 

Like the HP, the HE is modelled with its thermodynamic cycle. After condensing, the fluid is sub-

cooled in the low-pressure HEX where it rejects heat to the dry-cooled water. Its exit temperature 

is defined with the cold cooling water temperature and the pinch-point. The condensing 

temperature is obtained with degree of sub-cooling Δ𝑇he,cd,sc. 
The fluid pressure is then increased in a feed pump, which is represented with the constant internal 

efficiency model: 

 

 𝑤pump =
∫ 𝑣d𝑝
ex
su

𝜂pump
≃
𝑣su(𝑝ex−𝑝su)

𝜂pump
 . (2) 

 

Afterwards, the fluid evaporates and is super-heated in the high-pressure HEX. The evaporating 

temperature is obtained from the storage temperatures, the pinch-point and the desired degree of 

super-heating Δ𝑇he,ev,sh. The pressure losses Δ𝑝he,ev are again taken into account. 

The fluid is finally expanded in a volumetric expander. The latter is also represented with a 

simplified version of the semi-empirical model proposed and validated by Lemort [13]. This model 

has been used multiple times for design optimisation in ORCs [14], [15]. The expander speed can 

also vary between 2000 and 5000 rpm. Its swept volume and volume ratio are the design variables. 

The ORC working fluid is also R1233zd(E), for the same motivations as mentioned above. 

 

Photovoltaic array.  The PV array is modelled with PVlib, an experimentally validated open-

source Python package [20], [21]. The PV current and voltage are evaluated with the single-diode 

model: 

 

 𝐼PV = 𝐼𝐿 − 𝐼0 (𝑒𝑥𝑝 (
𝑈+𝐼𝑅s

𝑛diode𝑁s𝑈th
) − 1) −

𝑈+𝐼𝑅s

𝑅sh
 . (3) 
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The parameters in Eq. (3) are determined with the method developed by De Soto et al. [22], based 

on manufacturer data adopted from a typical monocrystalline silicon PV panel (Sun-power SPR 

X-19-240-BLK [23]). In this work, the nominal PV capacity to be installed is a design variable. 

 

Auxiliary systems.  Other auxiliaries are not represented in this model. It is assumed that their 

impact on the techno-economic performance can be neglected in a first step [7], [11]. 

Climate and system data 

In this work, Louvain-la-Neuve (Belgium) is the considered location. The climate data (ambient 

temperature 𝑇ambient and solar irradiance 𝐺) have been obtained with Renewables.ninja [24], 

[25] and correspond to the year 2019. The data centre related data (cooling water flow rate 

𝑚̇cooling and temperature 𝑇cooling
hot , as well as servers consumption 𝑃servers) have been gratefully 

provided by Center for High Performance Computing and Mass Storage from UCLouvain. The 

chiller power consumption has been synthetized with the method introduced above. All these 

data are depicted in Fig. A2, in APPENDICES. 

Design variables and optimisation criteria 

The nine independent design variables that were introduced above are: the volume ratios and swept 

volumes of the HP compressor and HE expander, the volume of each storage tank 𝑉tank, the HP 

condensing and sub-cooling temperatures, the RH maximum power and the PV capacity. The 

design space associated with these variables is provided in Tab. 1. Note that the optimiser can 

exclude some components whenever beneficial (i.e. design value set to 0).  

 

The PV maximum capacity was determined based on the available area around the data centre. 

The HP condensing temperature is limited by technological constraints on the compressor (i.e. 

lubrication oil, pressure ratio). The volume ratio range for the volumetric compressor and expander 

corresponds to commercially available technologies. Their maximum swept volumes can be 

considered as theoretically unconstrained since multiple components can be used in parallel. 

 

Table 1. The design space associated with the design variables. 

 

Parameter Description Units Min Max Constraint type 

𝑟v,comp compressor volume ratio [−] 1.5 5.0 technological 

𝑉s,comp compressor swept volume [𝑐𝑚3] 0 10,000 arbitrary 

𝑟v,exp expander volume ratio [−] 1.5 5.0 technological 

𝑉s,exp expander swept volume [𝑐𝑚3] 0 10,000 arbitrary 

𝑉tank volume of a single tank [𝑚3] 0 1000 arbitrary 

∆𝑇hp,cd,sc sub-cooling degree in HP [°𝐶] 0 70 physical 

𝑇hp,cd condensing temp. in HP [°𝐶] 25 100 technological 

𝑃RH resistive heater power [𝑘𝑊] 0 800 arbitrary 

𝑃PV PV array nominal power [𝑘𝑊] 0 800 physical 

 

 

https://www.renewables.ninja/
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The Levelized Cost Of Electricity (LCOE) and Self-Sufficiency Ratio (SSR) are selected as design 

objectives for the optimisation. The LCOE is a techno-economic performance indicator and the 

SSR illustrates the resilience against large electricity price variations. They can be defined as: 

 

 LCOE =
CAPEX+∑

OPEX(𝑡)+𝑐el(𝑡)𝐸grid

(1+𝑟)𝑡
LT
𝑡=1

∑
𝐸DC
(1+𝑟)𝑡

LT
𝑡=1

  , (4) 

 

 SSR = 1 −
𝐸grid

𝐸DC
  , (5) 

 

where 𝐸DC and 𝐸grid are the annual electricity consumed by the data centre and provided by the 

grid respectively. 𝑐el(𝑡) is the average price of electricity for a given year, LT the system lifetime 

and 𝑟 the discount rate. Note that in this LCOE definition, excess PV generation that is returned to 

the grid is sold at a zero price. This is a conservative choice, yet it favours the storage of electricity. 

Economic model 

CAPEX has five contributions in this model: CAPEXHP, CAPEXRH, CAPEXST, CAPEXHE and 

CAPEXPV. CAPEXHP is evaluated with the correlation proposed by Croteau et Gosselin [26], 

which is expressed in CAD14. It is converted in EUR14 using a CAD/EUR rate of 0.6826 (average 

value for 2014 from European Central Bank). It is actualized in EUR2020 using the Chemical 

Engineering Plant Cost Index (CEPCI) [27]: 

 

 EUR2020 =
CEPCI2020

CEPCI2014
EUR2014 , (6) 

 

with CEPCI2014 = 576.1 and CEPCI2020 = 596.2. This method was used by other scholars [7], 

[11], [28]. CAPEXST is derived from the correlation for bullet pressure vessels constructed by 

Shamoushaki et al. [29] (expressed in USD2020). The USD/EUR rate is 0.8460 (average value for 

2020). Other CAPEX parameters are given in Tab. A1, in APPENDICES. 

In this model, the OPEX is evaluated as a fraction of the CAPEX, as often done in the literature [7], 

[11], [19]. Still, this definition is imperfect as the operational costs should be a function of the 

operations. Future works should therefore focus on improving the OPEX model for Carnot 

batteries. 

The price of electricity is finally modelled as linear function of time: 

 

 𝑐el(𝑡) = (𝑎el ⋅ 𝑡 + 𝑏el) ⋅ (1 + 𝜀el) , (7) 

 

where 𝑎el is the average annual growth of the electricity price and 𝑏el is the average price of 

electricity when commissioning the Carnot battery. 𝜀el is used to represent the uncertainty. These 

coefficients are fitted based on the Band IB prices of electricity for non-household consumers in 

Belgium from 2007 to 2021, extracted from the Eurostat database [30]. 

Optimisation method and global sensitivity analysis 

 

Optimisation algorithm.  In this work, the multi-criteria optimisation is carried out with the 

Nondominated Sorting Genetic Algorithm (NSGA-II) [31] through the framework developed by 

Coppitters et al. [32]. This metaheuristic algorithm is selected because of the complexity and non-

linearity of the system. Further details on the method can be found in [32]. 
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Uncertainty characterisation.  The mean, standard deviation and distribution associated with each 

model parameter are provided in in Tab. A1, in APPENDICES. 

 

The efficiencies of the compressor, expander and pump, as well as the pressure losses in HEX, can 

vary as the performance of the actual components cannot be known in advance. Looking at the 

sub-cooling and super-heating temperatures, they are set deterministic since they are typically used 

to control the system, although there is a small uncertainty in the measurement. On its side, the 

pinch-point is a function of the HEX performance, so it is set stochastic. The deviation in data 

centre power consumption and cooling water flow rate is the same, as both parameters are directly 

related to each other. The uncertainty on economic correlations is set based on their fitting error. 

The rather pessimistic lifetime prediction (i.e. 20 years compared to 25 years proposed in the 

literature [7], [11]) is constrained by the typical PV lifetime and expected data centre lifetime. 

Note that the standard deviation set to each parameter should be discussed with regard to its impact 

on the global uncertainty of the parameter of interest. 

 

Uncertainty quantification.  In this work, uncertainty quantification is done by non-intrusive 

Polynomial Chaos Expansion (PCE) using the framework developed by Coppitters et al. [32]. 

Compared to conventional Monte Carlo simulations, as carried-out by McTigue et al. [19] for a 

CB based on the Brayton cycle, PCE achieves accurate statistics in less computational time. 

 

PCE enables to characterize a surrogate model of the real model. This surrogate model is based on 

a set of orthogonal polynomials and corresponding coefficients that are tuned through evaluations 

of the real model. After quantifying the coefficients, Sobol’ indices can be retrieved with analytical 

post-processing. These indices are used to assess the contribution of each uncertain parameter to 

the global variance of the selected objective. More details can be found in [32]. 

RESULTS AND DISCUSSION 

In this section, design optimisation is first conducted to maximise the SSR and minimise the 

LCOE. This optimisation is followed by a sensitivity analysis of the obtained designs to quantify 

the distribution of their LCOE. To illustrate how the LCOE variation could be further reduced, the 

parameters contributing most to this variation are then highlighted through uncertainty 

quantification. The LCOS of the CB is finally introduced for comparison with other CB concepts. 

Multi-criteria design optimisation 

Based on the annual climate and demand data, multi-criteria deterministic optimisation has been 

conducted with NSGA-II to maximise the data centre SSR and minimise its LCOE. The clear 

conflicting nature of these objectives is illustrated by the Pareto front in Fig. 2: the LCOE increases 

exponentially with the SSR. The corresponding design variables are depicted in the left-hand side 

of Fig. 3.  

The HP condensing temperature is not represented in Fig. 3 as it is 100 °C in all cases (the 

maximum allowed). This suggests that it is always more favourable to maximise the HE efficiency 

than the HP coefficient of performance (i.e. a higher storage temperature increases the HE 

efficiency while it reduces the COP of the HP). This result is a new contribution to the literature, 

and it is probably valid for very low temperature heat sources only (e.g. 24 °C), as it is in 

contradiction with the trends observed by Dumont and Lemort [17]. Further investigation should 

be conducted to assess the threshold of the heat source temperature above (resp. below) which it 

is more favourable to maximise the HP (resp. HE) performance. 

 

From the results depicted in Fig. 2 & 3, three different system layouts can be distinguished. The 

first one includes PV but no storage (yellow curve). When the maximum PV capacity is deployed 
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(i.e. 800 kW), the second layout starts to involve storage to increase the SSR, but the Carnot battery 

is only charged with a RH (red curve). The last 4% in SSR are gained by using the HP (blue curve). 

The shaded band was obtained with uncertainty quantification and represents the uncertainty on 

the LCOE. 

 

 
 

Figure 2. The Pareto front between the optimisation criteria. The shaded band indicates the 

uncertainty on the LCOE. The uncertainty on the LCOE for the current data centre is also 

depicted. Both uncertainties are represented with a 95% confidence interval. 

 

These results indicate that, to increase the SSR in this scenario, it is preferable to deploy storage 

with a RH first. Despite its lower efficiency (i.e. 𝜂CB ≃ 8%), it offers a lower cost (i.e. LCOE ≃
0.184€/kWh). If the aim is to further increase the SSR, the required higher efficiency (i.e. 𝜂CB ≃
12%) is achieved with the HP, but it is associated with a higher cost (i.e. LCOE = 0.218€/kWh).  

This result is a consequence of the fact that, since electricity is returned to the grid for free, not 

consuming it is equivalent to losing it, and it is therefore more attractive to store it at low cost 

despite the lower efficiency.  

The estimated LCOE for the current data centre (i.e. without PV and CB) is also represented with 

a black dot in Fig. 2. Its uniform distribution is delimited with the inner-pointing black arrows. It 

is only shown for comparison with the LCOE including PV and CB, as the corresponding SSR is 

actually zero. Its location clearly shows that the system could reach a SSR of 48.5% while being 

economically competitive with the current data centre layout. 

 

Some Key Performance Indicators (KPI) are also represented in the right-hand side of Fig. 3. These 

are (from top to bottom): the CB electrical efficiency 𝜂CB, the HP coefficient of performance 

COPHP, the HE efficiency 𝜂HE, the LCOS and the fraction of 𝐸DC that is actually coming from the 

storage. The LCOS is defined here by excluding the PV and electricity costs in the LCOE 

definition, and with the electricity produced by the HE at the denominator. 

All the relations between the design variables and KPIs are consistent. It can for instance be 

observed that COPHP decreases with Δ𝑇hp,cd,sc while 𝜂HE increases with it. In fact, when Δ𝑇hp,cd,sc 

decreases, the storage low temperature gets closer to the storage high temperature. Consequently, 

the 𝑇he,ev increases and therefore 𝜂HE as well. At the same time, the average pressure ratio seen 

by the ORC expander also increases, and 𝑟v,exp therefore increases accordingly. Note that, in these 

results, convergence is not perfectly reached for 𝑟v,exp (even though there is a net increasing trend), 
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despite the large population size (i.e. 126) and important number of generations (i.e. 275) used in 

NSGA-II. This can be explained by the wide range of pressure ratios over the year in the HE due 

to seasonal and design variations (i.e. from about 3 to 12), and by the moderate impact of this 

parameter on the SSR and LCOE compared to other design variables (i.e. PV power, tanks 

volume). 

 

 
 

Figure 3. The designs variables and some KPI’s after optimisation. 

 

The SSR is limited to 51.1% as the maximum PV capacity (i.e. 800 kW) and ORC thermal power 

output (i.e. 800 kW) are reached. 

Uncertainty quantification and global sensitivity analysis 

The Sobol’ indices corresponding to all uncertain parameters are evaluated to conduct the global 

sensitivity analysis. In a way, these indices illustrate the contribution of each parameter on a given 

quantity of interest: the closer they are to one, the greater the contribution of the parameter. 

 

In Fig. 4, the Sobol’ indices of the dominant parameters are depicted. For the designs in which few 

or no storage is installed (i.e. low LCOE), the uncertainty is mainly due to the electricity price and 

PV cost. As storage gets deployed (i.e. increasing LCOE), the effect of the electricity price and PV 

cost decreases whereas the system OPEX, servers power, HE price and tank price, start to have a 

stronger effect on the LCOE deviation. These results clearly indicate that restricting the uncertainty 

on the operational costs of the system would help to narrow the LCOE distribution. Efforts should 

also be made on reducing the uncertainty associated with the cost of the HE and storage system. 
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Figure 4. The Sobol’ indices of the parameters driving the uncertainty on the LCOE. 

 

Global sensitivity analyses have then been carried out to characterize the uncertainty on the LCOS 

of two Carnot battery designs (i.e. RH only and RH + HP). These designs have been chosen 

because of the low LCOE and low LCOS they provide. The results are depicted in Fig. 5.  

It can first be observed that the LCOS distribution is very wide, especially compared to the 

standard deviations obtained by McTigue 𝑒𝑡 𝑎𝑙. [19]. This can be attributed to the larger 

distributions characterizing the capital costs and to the more important number of uncertainties in 

this work. Also note that the average LCOS for both designs is notably higher (i.e. from about two 

to five more times) than predictions published in the literature [7], [11]. This can be explained by 

the effect of operational constraints that are considered in this work (i.e. compared to ideal daily 

charge and discharge cycles), the use of different economic correlations and probably scale effects. 

The lower lifetime (i.e. 20 years compared to 25) also penalises the LCOS. 

 

Sobol’ indices in Fig. 5 indicate that the CB design based on the RH only is mainly sensitive to 

the RH and HE costs, to the OPEX and to a lesser extent to the storage cost. On the other hand, the 

design based on the RH + HP is more sensitive to the OPEX and HE cost. 

 

 
 

Figure 5. Global sensitivity analysis of the LCOS. Left: probability densities. Right: the 

Sobol’ indices for: the pinch point, the solar irradiance, the RH cost, the storage system cost 

(i.e. the tanks), the operational costs and finally the HE cost. 
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CONCLUSION 

This work investigates the techno-economic potential of integrating a Carnot battery based on a 

resistive heater, a heat pump and an organic Rankine cycle into a real 100 kW data centre, which 

is supported by a photovoltaic array. Its specificity is to take into account the operational 

constraints through annual simulations with an hourly resolution, as well as to consider techno-

economic uncertainties on 20 model parameters. Using multi-criteria optimisation, the Carnot 

battery and PV array are designed to maximise the Self-Sufficiency Ratio of the data centre while 

minimising its Levelized Cost Of Electricity. 

The results indicate that, adopting an integrated and systemic approach, minimising the LCOE 

does not imply maximising the storage efficiency. Instead, it is shown that, in the present case, 

degrading the storage efficiency can be afforded as it reduces the LCOE by saving part of the PV 

production, which would otherwise be lost to the grid. The best design trade-off suggests that, 

when deploying 800 kW of PV (i.e. maximum capacity), the SSR can reach 48.5%, of which 6% 

is gained from the Carnot battery. With this design, the expected LCOE is similar to that of the 

current data centre.  

The global sensitivity analysis reveals that the uncertainty on the LCOE for the designs without 

storage is driven by the electricity price and PV cost, while for designs incorporating the CB, the 

uncertainty is dominated by the operational costs, the power consumption of the servers, and by 

the cost of the HE and the tanks. Further investigation of the storage cost also show that, 

considering the operational constraints, the obtained LCOS is relatively higher than values 

reported in the literature. Moreover, its wide distribution is due to uncertainties on the operational 

and capital costs of the Carnot battery. 

Future work will focus on improving the performance of the system by exploring regeneration for 

the organic Rankine cycle (i.e. the expander outlet temperature ranges between 45 and 75 °C) and 

by considering new power management strategies. Other renewable sources of electricity, such as 

wind turbines, could be investigated as they are complementary to PV. The COP of the heat pump 

could also be increased by directly using the hot air (30 °C) trapped in the aisle as the heat source. 
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NOMENCLATURE 

𝑐el  Cost of electricity    [€ 𝑊ℎ]⁄  

CAPEX  Capital expenditures    [€] 
𝐸  Electrical energy   [𝑊ℎ] 
𝐺  Solar irradiance   [𝑊 𝑚2⁄ ] 
𝐿𝑇  Lifetime    [𝑦𝑒𝑎𝑟] 
𝑚̇  Mass flow rate    [𝑘𝑔 𝑠⁄ ] 
OPEX  Operational expenditures   [€] 
Δ𝑝  Pressure losses    [𝑏𝑎𝑟] 
𝑝  Pressure    [𝑏𝑎𝑟] 
𝑃  Electrical power   [𝑊] 
𝑄  Thermal power    [𝑊] 
𝑟v  Built-in volume ratio    [−] 
𝑟  Discount rate     [%] 
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Δ𝑇pinch Pinch-point    [°𝐶] 

𝑇cooling
hot  Hot cooling water temperature  [°𝐶] 

𝑇  Temperature    [°𝐶] 
𝑉s  Swept volume     [𝑐𝑚3] 
𝑉  Volume     [𝑚3] 
𝑤  Specific work    [𝑊 𝑘𝑔⁄ ] 

Greek symbols 

𝜂  Efficiency     [%] 

Sub- and superscripts 

Carnot  Ideal Carnot cycle 

comp  Compressor 

cooling Cooling water 

cd  Condenser 

el  Electrical 

ev   Evaporator 

ex  Exhaust 

exp  Expander 

he  Heat engine 

hp  Heat pump 

mech  Mechanical 

sc  Sub-cooling 

sh  Super-heating 

su  Supply 

th  Thermal 

Acronyms 

CB  Carnot Battery 

COP  Coefficient Of Performance  [−] 
EES  Electrical Energy Storage 

HE  Heat Engine 

HEX  Heat Exchanger 

HP  Heat Pump 

KPI  Key Performance Indicator 

LCOE  Levelized Cost Of Electricity   [€ 𝑘𝑊ℎ⁄ ] 
LCOS  Levelized Cost Of Storage   [€ 𝑘𝑊ℎ⁄ ] 
PCE  Polynomial Chaos Expansion 

PV  Photovoltaic 

RH  Resistive Heater 

SSR  Self-Sufficiency Ratio   [%] 
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APPENDICES 

Detailed power management strategy 

The power management strategy that has been used to simulate at each hour of the year the 

integration of the Carnot battery in the data centre is illustrated in Fig. A1. 

 

 
 

Figure A1. Power management strategy used to evaluate the system at each hour of the year. 
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Climate and system data 

The annual data introduced in Climate and system data are represented in Fig. A2. 

 

 
 

Figure A2. The hourly cooling water mass flow rate, servers and chiller electrical power 

consumptions, ambient and cooling water temperatures, and solar irradiance profiles for the 

UCLouvain data centre. 
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Uncertainty characterization 

The deterministic and stochastic value of each model parameter is provided in Tab. A1. 

 

Table A1. Uncertainty characterization of the model parameters. 

 

Parameter Units Mean Standard 

deviation 

Distribution Ref. 

𝜂mech,comp [%] 72.5 2.5 uniform [17], [33] 

𝜂mech,exp [%] 72.5 2.5 uniform [17], [33] 

𝜂pump [%] 55 10 uniform [17] 

Δ𝑇pinch [°𝐶] 3.0 1.0 uniform [7], [17] 

Δ𝑇hp,ev,sh [°𝐶] 4.0 0.0 n.a. [7], [17] 

Δ𝑇he,ev,sh [°𝐶] 4.0 0.0 n.a. [7], [17] 

Δ𝑇he,cd,sc [°𝐶] 4.0 0.0 n.a. [17] 

Δ𝑝hp,ev [𝑚𝑏𝑎𝑟] 50 50 uniform [17] 

Δ𝑝hp,cd [𝑚𝑏𝑎𝑟] 50 50 uniform [17] 

Δ𝑝he,ev [𝑚𝑏𝑎𝑟] 50 50 uniform [17] 

Δ𝑝he,cd [𝑚𝑏𝑎𝑟] 50 50 uniform [17] 

𝑃servers [𝑊] annual data 
5% Gaussian n.a. 

𝑚̇cooling [𝑘𝑔/𝑠] annual data 

𝑇cooling
hot  [°𝐶] annual data 0 n.a. n.a. 

𝜂chiller
Carnot [%] 45 5 uniform [34] 

𝐺 [%] annual data 7.8 Gaussian [35] 

𝑇ambient [°𝐶] annual data 0.4 Gaussian [35] 

CAPEXHP [€] correlation 17%CAPEX uniform [26] 

CAPEXHE [€ 𝑘𝑊⁄ ] 2845 35%CAPEX uniform [36] 

CAPEXST [€] correlation 12%CAPEX uniform [29] 

CAPEXPV [€ 𝑘𝑊𝑝⁄ ] 475 125 uniform [35] 

CAPEXRH [€ 𝑘𝑊⁄ ] 175 75 uniform [18], [37] 

OPEXtot [%CAPEXtot] 2.0 1.0 uniform [7], [11], [19] 

LT [𝑦𝑒𝑎𝑟𝑠] 20 0 n.a. [35] 

𝑟 [%] 7 0 n.a. [38], [39] 

𝑎el [€ 𝑀𝑊ℎ⁄ 𝑦𝑒𝑎𝑟⁄ ] 2.84 0 n.a. [30] 

𝑏el [€ 𝑀𝑊ℎ⁄ ] 196 0 n.a. [30] 

𝜀el [%] 0 9.2 uniform [30] 
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