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Carnot batteries are a flexibility
option for energy systems
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Data centres produce
very low grade heat

high exergy low exergy (< 30°C)
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How could Carnot batteries be
integrated into data centres?

performance

indicator best designs

possible designs

>
cost of the system
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1. System and model description



This Carnot battery is based
on the Rankine cycle
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This Carnot battery is based
on the Rankine cycle
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A possible thermal integration
in the UCLouvain data centre

Carnot battery

photovoltaic array
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Real time series are used to run
annual simulations
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The goal is to maximise the SSR
and to minimise the LCOE

Economic: Levelized Cost Of Electricity (LCOE)

cost of the system

LCOE =
energy consumed

Technical: Self-Sufficiency Ratio (SSR)

energy from the grid
SSR=1 - &Y 5

energy consumed



This optimisation problem
has g design variables
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This optimisation problem
has g design variables
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Condensing temperature in HP
sets the storage temperature
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This optimisation problem
has g design variables
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Sub-cooling temperature in HP
sets the LT storage temperature
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Sub-cooling temperature in HP
sets the LT storage temperature
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This optimisation problem
has g design variables
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Modelling the costs: a very
uncertain process...

Economic: Levelized Cost Of Electricity (LCOE)
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Electricity price is extrapolated
from Band IB index (Eurostat)
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Modelling the costs: a very
uncertain process...

Economic: Levelized Cost Of Electricity (LCOE)
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In this model, the CAPEX has
five contributors
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Polynomial Chaos Expansion is
used to propagate the uncertainty

Uncertainty on 20 techno-economic
parameters (see paper for more details)

Parameter Units Mean Standard Distribution Ref.
deviation
Tmech,comp [%6] 72.5 2.5 uniform [17]. [33]
Nmech.exp [%] 725 25 uniform [17]. [33]
Npump [%0] 55 10 uniform 7
ATyineh [°c] 3.0 1.0 uniform 710171
Apnpev [mbar] 50 50 uniform 17
Aphpcd [mbar] 50 50 uniform [17]
APy e [mbar] 50 50 uniform 17
A cd [mbar] 50 50 uniform 17
Prorvers W] annual data )
Feoling [kg/s] annual data 5% Gaussian na.
Carmat (%) 45 5 uniform [34]
G (%] annual data 7.8 Ganssian [35]
Tambient [=C] annual data 0.4 Gaussian [35]
CAPEXyp [€] correlation  17%eapex uniform [26]
CAPEXye [€/kw) 2845  35%capey  uniform [36]
CAPEX¢r [€] correlation  12%gapex  wniform [29]
CAPEXpy [€/kw,] 475 125 uiform [35]
CAPEXpy [€/kw] 175 75 uniform [18]. [37]
OPEX,, [%ocapex,.] 2.0 1.0 wniform 7], [11]. [19]
Ea (%] 0 9.2 uniform [30]
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The LCOE exponentially
increases with the SSR

detailed explanation about the
obtained designs in the paper!
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Sobol indices show the
dominant parameters
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LCOS meanis big, and
variance is very wide
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RH cost

solar
irradiance

1 ] ] ] 1
0.438 0.554 1.063 1.167 0.00 0.05 0.10 0.15 0.20 0.25 0.30

LCOS [€/kWh] Sobol' index




Outline

System and model description
Optimisation problem
Uncertainty quantification
Results

v e

Conclusion and perspectives

34



Take away messages

* Integrated approach shows that cost and
efficiency are competing objectives;

* Operational constraints are considered
(hourly resolution), leading to higher LCOS;

* Carnot battery can help to reach a SSR of
48.5% for a similar cost;

* Uncertainty could be reduced with a thinner
characterization of the CAPEX and OPEX;

* New designs (e.g. with regenerator) should
be explored.
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Summary of the methodology
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Polynomial Chaos Expansion:
statistics in a tractable time
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temperature [°C]

This Carnot battery is based
on the Rankine cycle
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Layout of the UCLouvain
data centre
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Volume ratio sets location of

maximum isentropic efficiency
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Designs obtained at the
end of the optimisation
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