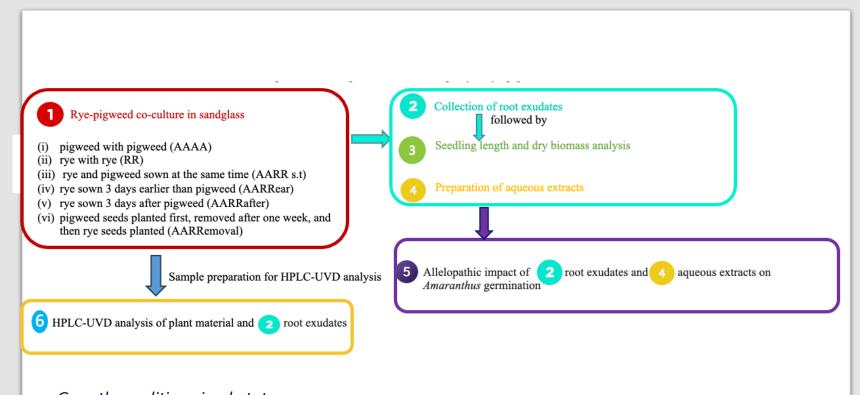
Assessment of induced allelopathy in crop-weed co-culture with ryepigweed model

Dr. Waseem Mushtaq Laboratory of Chemistry of Natural Molecules

Assessment of induced allelopathy in crop-weed co-culture with ryepigweed model

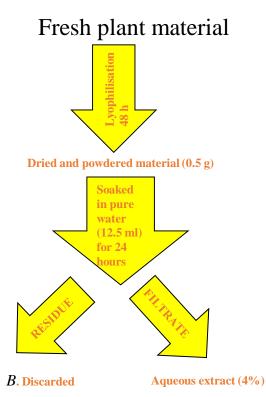

- 1. Introduction
- What is allelopathy?

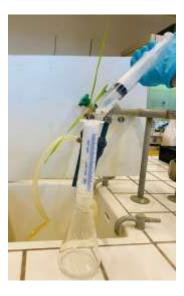
Objectives

• Determine conditions where Amaranthus growth is suppressed most by Rye or when Rye imposes its maximum allelopathic potential in Rye-Amaranthus co-culture

- To find the co-culture modality in which pigweed induces allelopathy in rye
- Assess the impact of the sowing time of seeds on allelopathy
- Determine conditions in which Rye detects its neighbours at the earliest
- Explore the root uptake of BXs by pigweed
- 2. Experimental Design
- 3. Methodology
- 4. Results and Discussion
- 5. Conclusion

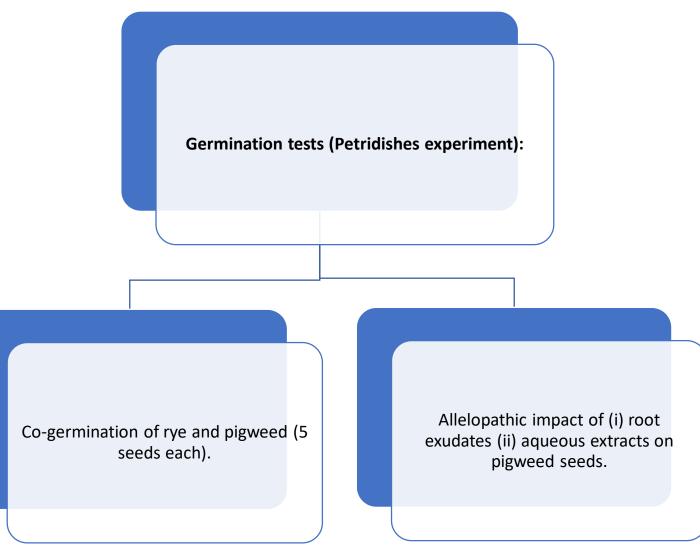
2. Experimental Design

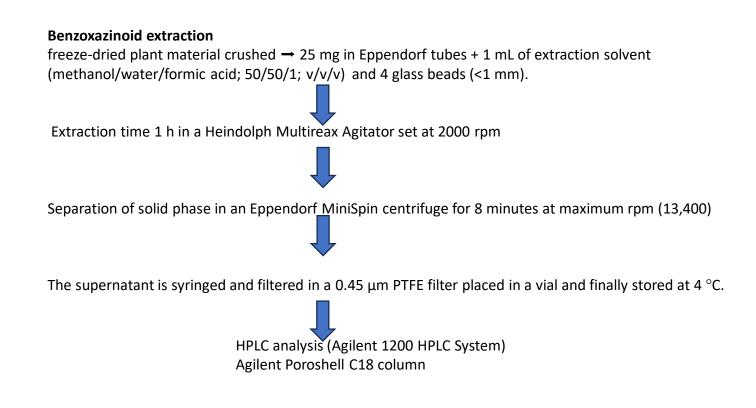



Growth conditions in phytotron 12-hour day/night photoperiod; temperature 21 -18°C-day/night ; relative humidity 70%.

3. Methodology

Modalities	Types of aqueous Extracts	Types of Exudates
1. AAAA (Amaranthus growing with Amaranthus)	ET1	ED1
2. RR (Rye growing with Rye)	ET2	ED2
3. AARR s.t (Rye, Amaranthus were sowed at the same time)	ET3	ED3
4. AARRear (Rye sown 3 days earlier than Amaranthus)	ET4	ED4
5. AARRafter (Rye sown 3 days after Amaranthus)	ET5	ED5
6. AARRemoval (In a plastic tube, we start by planting Amaranthus seeds, remove them after one week, and then plant Rye seeds, with the day of Rye planting considered as day 1.)	ET6	ED6


*Blank (sand serves as blank or control); Sampling time: 2 and 4 weeks



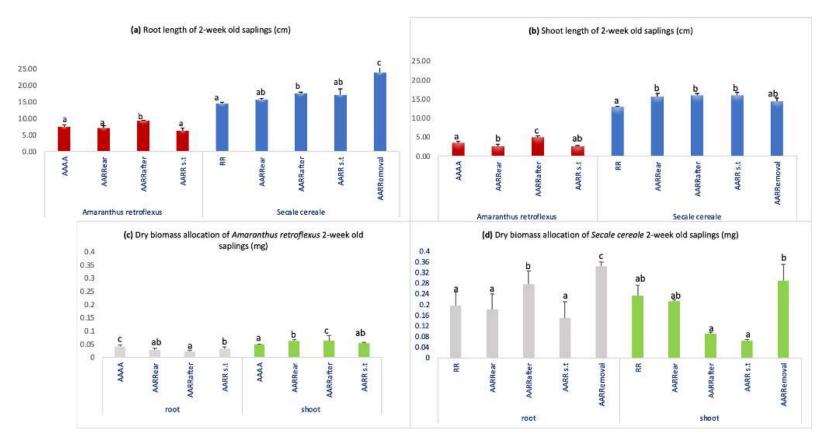
A. Customised device for root-exudate extraction

3. Methodology

3. Methodology

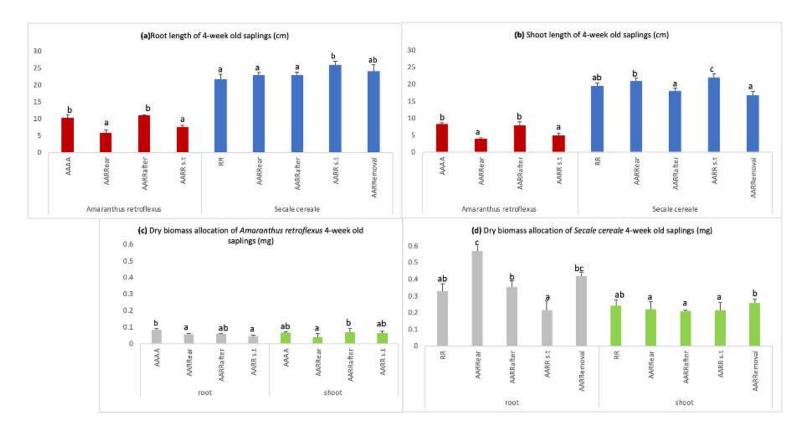
Solution A (methanol/water/ortho-phosphoric acid 85%; 10/90/0.1; v/v/v)

Solution B (methanol/ ortho-phosphoric acid 85% 100/0.1; v/v).

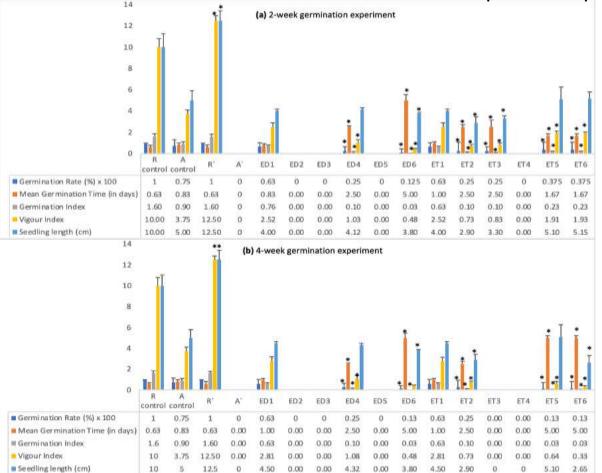

4. Results

- Growth parameters (root length, shoot length and dry biomass) separately* in all modalities after 2 and 4 weeks
- Germination indices of 2 and 4-week samples on exposure to exudates and extracts
- HPLC analysis of exudates and plant material (root and shoot separately* in all modalities) after 2 and 4 weeks. Standards used bezoxazinoids (DIBOA, DIMBOA and MBOA)

*for example in AARR modality, Amaranthus root and shoot are evaluated separately, so is Rye root and shoot



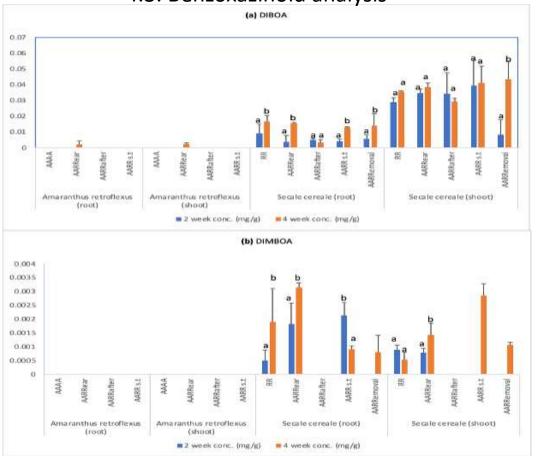
4.1. Growth parameters


- There is no difference in pigweed root length in any modality except AARRafter (Fig. a). Surprisingly, AARRafter shows improved growth (both root and shoot) (Fig. a,b)
- Rye shows improved seedling length in all modalities compared to the control RR (Fig. a,b) with AARRemoval showing maximum root growth (Fig. a)
- Reduction in dry biomass of Amaranthus root in all modalities. However, the shoot shows improved biomass particularly
 AARRafter when compared to the control.
- The trend is different in Rye. Rye in AARRemoval shows the highest shoot/root biomass.

4.1. Growth parameters

- Reduction in pigweed seedling length is observed in all modalities except AARRafter. It follows the same trend as at 2-week old stage.
- Rye did not show any major changes in root length except AARR s.t showing improved growth (Fig. a). Moreover AARRs.t shows maximum growth (Fig. a, b).
- Reduction in dry biomass of pigweed root was observed in all modalities except AARRafter.
- Rye in AARRear shows the highest root biomass followed by AARRemoval in contrast to the control (Fig. 2d). Similarly,
 AARRemoval (and control) shows the highest shoot biomass.

4.2 Germination indices of 2 and 4-week samples on exposure to exudates and extracts


- Pigweed shows no germination when exposed to ED2, ED3, ED5, ET1 and ET4
- Pigweed shows the highest GR in control (75%)
- MGT tends to increase while GI and VI decrease

Pigweed shows no germination when exposed to exudates (ED2, ED3, ED5) and extracts (ET3, ET4

- plant extracts from 4-week-old samples have stronger inhibitory potential
- MGT, GI and VI follow a similar trend as observed earlier

- In the co-germination test, rye shows a 100% GR both in control (R control) and in the presence of pigweed (R') (Fig. a,b).
- Moreover, rye shows improved VI and SL in the presence of pigweed.
- Pigweed did not germinate in rye presence of rye (A').

4.3. Benzoxazinoid analysis

- No BXs (DIBOA, DIMBOA and MBOA) were detected in root exudates
- In the plant material, there were no BXs detected in the control group of pigweed (AAAA).
- MBOA not detected
- DIBOA (shown in Fig. a) was found in all 2-week and 4-week-old rye plants
- Significant increase in the DIBOA in 4-week-old root samples
- "AARRemoval" had the highest DIBOA in the shoots at the 4-week-old stage.
- DIBOA was detected in some 4-week-old pigweed samples in the modality "AARRear".

5. Conclusion

- Pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects.
- Contrastingly, rye exhibits increased seedling length and BXs upsurge in response to pigweed presence.
- HPLC-DAD analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in the rye.
- Allelopathy in rve-piqweed co-cultures is influenced by seed timing and age-dependent dynamics of plants' allelopathic compounds

scientific reports
Explore content - About the journal - Publish with us -
nature > scientific reports > articles > article
Article Open access Published: 07 May 2024
Assessment of induced allelopathy in crop-weed co- culture with rye-pigweed model
Waseem Mushtag 🖾, Marie-Laure Fauconnier & Caroline de Clerck
Scientific Reports 14, Article number: 10446 (2024) Cite this article
253 Accesses Metrics

Thank You And Acknowleged

Dr. Caroline de Clerck

Allelopathy Team

Prof. M. L. Fauconnier (**Promoter**)

Dr. Waseem Mushtaq

Jeremy Berdy

Laura Lheureux

