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Abstract—When elaborating a distribution network devel-
opment plan, it is paramount to jointly consider the multi-
year network infrastructure development plan and the network
users’ energy infrastructure evolution. To this end, we provide a
comprehensive formulation of a bilevel program in a one-leader
multi-follower setting with the distribution network development
plan as the upper level, while the lower level minimizes network
users’ energy costs. Solving this optimization problem allows
for assessing the impact of exogenous factors, such as network
users’ demand on network development plans and network user
investment in distributed energy sources and storage. Results
are reported using a 23-node test system and a new open-source
toolbox developed during this research. We also evaluate the CO2
footprint of the components of the system.

Index Terms—Distribution network, network users, develop-
ment planning, bilevel programming.

I. INTRODUCTION

A huge energy infrastructure investment will be needed
to transition towards a decarbonized energy sector [1]. As
estimated [1], a small percentage of increased efficiency in
this transition could create trillions of euros value. It appears
that co-optimization, across different energy sectors and within
each energy sector, is the key to an efficient transition.

An important aspect of the electricity sector transition
is distribution network development planning (DNDP). A
solution to this problem aims to establish an optimal and
cost-effective plan that includes the enhancement of existing
distribution feeders and substations and the installation of
new ones. This plan must cater to the projected demand
over the defined time horizon while adhering to the technical
constraints of the network. The importance of this problem
is recognized by the European Commission through setting
the rule requiring distribution network operators (DNOs) to
conduct their network development plan at least every two
years for a time horizon of five to ten years [2]. A number of
approaches have been considered to solve this problem [3],
[4]. All these research works focus on the DNO’s perspective,
overlooking the behavior of network users resulting from their
interactions with the DNO. From the users’ standpoint, there
is already a large body of research aimed at optimizing the
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sizing and operation of a microgrid or an energy community,
as seen in [5], [6].

In this work, we demonstrate how bilevel programming [7]
(an optimization approach that fits the co-optimization context)
offers an efficient way to solve the DNDP problem. Bilevel
programming has already been considered as an approach
for the DNDP problem in [8] and [9]. In [8], generation
and distribution network development is set as the upper-
level problem, while the lower-level concentrates on demand
response. In contrast, [9] sets the upper-level problem to
optimize the DNDP, with the lower-level problems involving
RES and demand aggregators.

We recently presented a bilevel program (BP) formulated
in a one-leader multi-follower setting [10] as a solution of
the DNDP. To the best of our knowledge, no other work con-
sidered the DNDP using a BP that incorporates a lower-level
representing the behavior of users as a microgrid optimization
problem, with their investment decisions directly coupled to
the DNO’s policy.

This work extends [10] by detailing the DNO and the
network users’ objectives and constraints, including electricity
storage in the model, and performing an extended sensitivity
analysis. The ultimate goal is to develop a comprehensive
framework (as an open-source toolbox) to solve the DNDP
problem with the following characteristics:

• It is in line with the European context and the recent
European Commission directives [2],

• It allows the study of the exogenous factors’ impact on
the development plan,

• It is easily extensible with new network users.
The problem formulation is presented in Section II, while

Section III presents the results using a 23-node test system.
Section IV discusses the results. In Section V, some conclu-
sions and future research are presented.

II. PROBLEM FORMULATION AND MATHEMATICAL MODEL

The DNO, assumed here to be the leader, optimizes the
DNDP, while the network users, assumed here to be the
followers, optimize their investments to meet their electricity
demand. The users’ demand is considered fixed, and therefore
drives investment in the network, renewable energy sources
(RES) and storage. We make several assumptions (to be



relaxed in future work): investment decisions are made at the
beginning of the planning horizon and remain fixed afterward
(single-stage), users are considered to act independently and
are modeled as perfectly rational agents with complete knowl-
edge of the future, and users’ demand is inflexible. The bilevel
programming optimization problem is formulated as follows:

min Upper-Level Objective Function (3a) (1a)
s.t. : Upper-Level Constraints (3b) to (3ad) (1b)

Lower-level optimality:

(p imp, p exp, q imp, q exp, c grid)

∈ argmin {(2a)| s.t.: (2b) to (2z)} (1c)

A. Lower-level

Each user’s optimization program can be seen as a single-
bus microgrid optimization problem. It aims to identify the
optimal investment decisions regarding generating units, stor-
age, network connection capacity, and the optimal dispatch
decisions over a planning horizon. By summing all network
users individual objective functions and considering all of
their individual constraints, we obtain the linear lower-level
problem:

min
∑
i∈Bu

(
cPV
i + c st

i + c grid
i

+ α
∑
t∈T

(c imp
i, t + c grid

i, t − c exp
i, t )

)
(2a)

s.t. ∀i ∈ BU ,

cPV
i = 1/γ PV C

(
sPV C
i π PV C

)
+ 1/γ PV

(
pPV
i π PV

)
(2b)

csti = 1/γ stC
(
s stC
i π stC

)
+ 1/γ st

(
e st
i π st

)
(2c)

c grid
i = s grid

i πGC (2d)

∀i ∈ BU , ∀t ∈ T ,

c grid
i, t =

(
p imp
i, t ΠEI + p exp

i, t ΠEE
)
∆t (2e)

c imp
i, t = p imp

i, t πEI∆t (2f)

c exp
i, t = p exp

i, t πEE∆t (2g)

p imp
i, t − p exp

i, t = pD
i, t − pPV

i, t + p stc
i, t − p std

i, t (2h)

q imp
i, t − q exp

i, t = qD
i, t (2i)

p imp
i, t ≤ s grid

i (2j)

q imp
i, t ≤ s grid

i (2k)

p exp
i, t ≤ s grid

i (2l)

q exp
i, t ≤ s grid

i (2m)

pPV
i, t ≤ sPV C

i (2n)

pPV
i, t ≤ pPV

i P PV
i, t (2o)

SOCi, t ≤ esti E (2p)
SOCi, t ≥ esti E (2q)

pstci, t ≤ 1/∆t
(
esti R+

)
(2r)

pstdi, t ≤ 1/∆t
(
esti R−) (2s)

pstci, t ≤ 1/(ϵstc∆t)
(
esti E − SOCi, t

)
(2t)

pstdi, t ≤ ϵstd/∆t
(
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)
(2u)

pstdi, t ≤ 1/∆t
(
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/R+
)
pstci, t (2v)
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i (2w)
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i (2x)

∀i ∈ BU , ∀t ∈ T \ T 1,

SOCi, t = SOCi, t−1 +
(
ϵstcp stc

i, t − p std
i, t/ϵstd

)
∆t (2y)

∀i ∈ BU , ∀t ∈ T 1,

SOCi, t = SOCi, t+T−1

+
(
ϵstcp stc

i, t − p std
i, t/ϵstd

)
∆t (2z)

The objective function (2a) sums the total expenditures
on local generation and storage investments, the network
connection capacity expenses, the electricity import costs,
and the energy grid tariffs. This sum is then diminished by
the revenues obtained from the electricity injected into the
grid. Equations (2b) to (2g) relate these costs to the decision
variables. The factor α scales the operational costs estimated
over d rep representative days to account for the lifetime of
the investments.

The primary decision variables of this model are the grid
connection capacity (s grid

i ), the PV installation size (pPV
i ),

the storage unit size (e st
i ), and the active and reactive power

exchanges (p imp
i, t , q imp

i, t , p exp
i, t , q exp

i, t ) with the grid at each time
step.

Constraints (2h) and (2i) are the bus active and reactive
power balances for all time steps, respectively. The analysis
of the effect of reactive power support from PV and storage
devices is left for future work. This can be achieved by
adding their contribution in the reactive power balance and
restricting the active and reactive power of each device to
stay within their P-Q diagram. Constraints (2j) and (2k) bound
the active and reactive power imported from the grid at each
time step, whereas (2l) and (2m) bound the active and reactive
power injected to the grid at each time step. We use (2j)
to (2m) to approximate linearly the grid connection capacity.
Furthermore, (2n) limits the active power generated by the
PV plant at each time step to the PV inverter capacity. The
PV power generation of user i’s PV installation is bounded
in (2o) at each time step t by the PV generation forecast.
The storage dynamics are modeled by constraints (2p) to (2z).
Constraints (2p) and (2q) bound the state of charge of the
storage device and constraints (2r) and (2s) limit its charging
and discharging capacity rates. Constraints (2t) to (2v) provide
limits to the p stc

i, t -p std
i, t feasible region according to the Extn-

LP formulation from [11]. Charging and discharging powers
are limited by the converter capacity with constraints (2w) and
(2x). Equality (2y) updates the state of charge SOCi, t based
on its previous state and the charging and discharging powers
of user i’s storage unit at time period t. This requires knowing



two additional parameters: the charging efficiency ϵ stc and the
discharging efficiency ϵ std. These efficiencies are considered
constant regardless of the storage unit state of charge and take
values in the interval [0, 1]. Equality (2z) is similar to (2y) but
links the state of charge of the first time period to the one of
the last time period for each representative day, and let this
be a variable of the optimization problem.

B. Upper-level

The DNO solves the DNDP problem with the following
objectives:

1) The DNO aims to identify the optimal investment deci-
sions for conductors and substations within a specified
planning horizon, typically spanning from 10 to 30
years. Optimal decisions correspond to strategies that
reduce both the initial capital expenditure (CAPEX)
associated with investments in conductors and substa-
tions and the continuous operational costs (OPEX),
represented by the cost of losses in the network.

2) The distribution network topology resulting from these
choices should ensure the connection of all grid users
to a substation, and in operation, the network graph
should have no loop. Mathematically, this requirement
translates to seeking a distribution network graph that is
a spanning tree.

3) The distribution network must be able to accommodate
the predicted electricity demand from users throughout
the planning period.

4) The distribution network must satisfy the operational
constraints on bus voltages and line currents.

5) The money invested by the DNO, plus a margin to
remunerate its activities, must be recovered through the
network tariffs applied to the grid users. This is the so-
called budget balance constraint.

Moreover, a series of assumptions are introduced to simplify
the formulation of our upper-level model:

• we approach our problem as if we were creating an
entirely new distribution network, although this can be
easily adapted to model an existing network by fixing
some decision variables,

• the DNO makes investment decisions only once at the
beginning of the planning period,

• a single-phase equivalent network is considered, assum-
ing a balanced three-phase regime.

Below is the MISOCP for the upper-level optimization
program. It is based on a branch flow model (BFM) and a
second-order conic programming (SOCP) relaxation of power
flow equations. This formulation incorporates loop elimination
constraints, guaranteeing the radial nature of the distribution
network graph when distributed generation (DG) units are
integrated into the network.

min
1

Γ

(
C cond + C sub

)
+ α

∑
t∈T

(
C loss

t + ωIΦI
t

)
(3a)

s.t. C cond =
∑
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λij, kΠ
cond
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V 2
i, t − 1 ≥

(
V2 − 1

)
(1− βi) ,∀i ∈ Bs (3u)

∀ij ∈ L, ∀k ∈ K, ∀t ∈ T
Pij, k, t ≤ λij, kIij, kV , (3v)

Pij, k, t ≥ −λij, kIij, kV , (3w)

Qij, k, t ≤ λij, kIij, kV (3x)

Qij, k, t ≥ −λij, kIij, kV (3y)

hij, k, t ≤
(
Iij, k

)2
I lim
ij, k, t (3z)

I2ij, k, t − hij, k, t ≤
(
Iij, k

)2
λij, k (3aa)∑

k∈K

λij, k = Λij ,∀ij ∈ L (3ab)∑
ij∈L

Λij = nu,∀t ∈ T (3ac)

single commodity flow constraints from [12] (3ad)

The optimization problem spans a planning horizon of T
time steps of equal size ∆t. The objective function (3a) of the
DNO is to minimize the total costs of new conductors C cond

plus the total cost of substations C sub, the yearly values of
the cost of the losses, and a term capturing the penalty for
violations of current constraints. The last term is a relaxation
of the problem to ensure the feasibility and tightness of cone
constraints. Moreover, investment costs, i.e. C cond+C sub, are
scaled by the amortization period Γ to express the objective
function to one year.

(3f) is the budget balance. (3g) to (3i) define branch physical
quantities. (3j) and (3k) represent active and reactive power
balances at substation nodes, whereas (3l) and (3m) consider
the lower-level variables p imp and p exp to write the active
and reactive power balances at grid users’ nodes. Regarding
power flow constraints, the BFM relaxation of power flow
constraints is adapted in (3n) to (3p) to account for conductor
choices. Specifically, (3p) is the rotated SOCP constraint,
which guarantees optimality when it is tight.

(3q) to (3s) model the decision of building a substation
by introducing the binary variables βi. S

sub

i represents the
allocated substation capacity. Reference voltages are set to
1 pu at substation nodes through the introduction of (3t)
and (3u). (3v) to (3y) impose a zero active and reactive power
flow when conductor k is not selected for the line ij. This
is done by considering the binary variable λij, k that equals
one when conductor k is selected for line ij, and 0 otherwise.
The relaxation of the current limit is expressed by introducing
in (3z) the slack variable hij, k, t. (3z) introduces the binary
variable I lim

ij, k, t equal to one when the current limit constraint
is violated. The binary variable Λij is introduced in (3ab).
Finally, the radiality constraints comprise the simple radiality
constraint (3ac) and the loop elimination constraints (3ad).

III. RESULTS

We conduct a detailed analysis of the results on a base case,
then a sensitivity analysis on several important parameters.

A. The UDinet.jl toolbox

All the results were obtained with the UDinet.jl toolbox,
which represents an initial effort to provide DNOs with a
customizable tool for the formulation of DNDP. The tool
was implemented in Julia using the JuMP and BilevelJuMP
optimization packages. It enables the creation of multiple alter-
native formulations of the BP defined in (1). The required input
data are related to network topology, load, and PV forecasts
for several representative days spanning the planning horizon,
costs and tariffs, and the configuration of the formulation to
be tested. Based on these inputs, the module generates a BP
formulation and conducts simulations across the representative
days. The results of these simulations include key performance
indicators, a radial network topology, and the network’s state
at each time step during the simulation. In its current version,
the tool incorporates various features, such as experimentation
with two convex relaxation formulations for power flow equa-
tions, relaxation of constraints related to current and voltage,
the possibility of allowing for dynamic network reconfigura-
tion and exploring multiple loop elimination constraints.

B. Test case description

We consider the 23-node test system of [13], illustrated
in Fig. 1. There are two possible substations and 21 nodes
with loads that we consider independent users of the network.
The available conductors are listed in Table I. Demand and
generation profiles come from [15]. In the base case, the
demand is scaled so that the peak load is 7 MVA on a five-
minute time scale, pro-rata of the load data in Table VI of
[13]. The total energy consumed in the network is 16440
MWh/year. The amortization periods are 50 years for the DSO
investment, 30 years for the PV panels, and ten years for the
PV inverters. The other relevant parameters are summarized
in Table II, where case 0 is the base case.

C. General sensitivity analysis

A sensitivity analysis is performed on some key parameters:
the PV installation, the storage, the energy import price and
the load. From cases 0 and 2 in Table III, PV and storage
installations allow for a lesser grid usage, leading to a lower
grid connection capacity and DNO investments. In case 1,
DSO investments increase due to users’ energy exportation
and grid usage. In these three cases, self-sufficiency and self-
consumption ratios show higher values. Also, users’ invest-
ment cost in PV and storage installations is compensated by a
cost decrease of the grid connection capacity and the energy

TABLE I
ALL ALUMINUM CONDUCTORS (DATA FROM [14]).

Code Word
q imax r xl cost

mm2 kA Ω/km Ω/km kC/km

Poppy 53.5 0.23 0.5502 0.429 10
Oxlip 107.3 0.34 0.2747 0.402 12
Daisy 135.3 0.46 0.2180 0.394 15
Tulip 107.3 0.53 0.1732 0.381 20
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Fig. 1. Diagram illustrating a test network featuring bus IDs and potential
line routes. Dashed lines denote the potential line routes, squares indicate
potential substation locations, and circles represent grid users’ buses.

TABLE II
DESCRIPTION OF TEST CASES.

MPV: Maximum PV capacity per bus (MVA), STO: add storage capability, EIP: energy
import price (kC/MWh), EV: add electric vehicles’ consumption, HP: add heat pumps’
consumption. False (F), true (T).

Case MPV STO EIP EV HP
0 0 F 0.3 F F
1 0.4 F 0.3 F F
2 0.4 T 0.3 F F
3 0.4 T 0.6 F F
4 0 F 0.3 T T
5 0.4 F 0.3 T T
6 0.4 T 0.3 T T
7 0.4 T 0.6 T T

drawn from the network. The same observations are made with
higher loads from cases 4, 5 and 6.
In cases 2 and 6, since the PV installation size is fixed, the
higher cost of PV installation is due to an increased converter
capacity.
Increasing the energy import price in cases 3 and 7 encourages
to invest in storage in order to cushion users’ cost increase.

D. PV and storage sensitivity analysis

A second analysis focuses on the impact of the PV installa-
tion size in Table IV, based on cases 0, 1 and 2 from Table II.

TABLE III
RESULTS OBTAINED WITH THE BILEVEL MODEL

DNO: DNO’s total annual amortized cost (MC/y), Users: Users’ total annual amortized
cost(MC/y), UPVC: Users’ PV annual amortized cost of investments (MC/y), UStoC:
Users’ storage annual amortized cost of investments (MC/y), UGCC: Users’ annual
grid connection cost (MC/y), USS: Users’ average self-sufficiency (%), USC: Users’
average self-consumption (%).

Case
DNO Users UPVC UStoC UGCC USS USC
MC/y MC/y MC/y MC/y MC/y % %

0 1.05 7.28 0.00 0.00 2.35 0 -
1 1.09 5.82 0.24 0.00 1.95 25 32
2 0.90 5.07 0.25 0.96 1.20 46 60
3 0.89 7.70 0.25 1.03 1.18 47 61
4 2.40 23.30 0.00 0.00 7.38 0 -
5 2.40 21.70 0.25 0.00 6.97 9 37
6 1.64 20.20 0.32 2.15 5.24 22 93
7 1.62 32.70 0.32 2.26 5.20 23 95

TABLE IV
RESULTS OBTAINED WITH THE BILEVEL MODEL

MPV: Maximum PV capacity per bus (MVA), UPVP: Users’ average PV production
ratio (%), USS: Users’ average self-sufficiency (%), USC: Users’ average
self-consumption (%), CO2: CO2 emissions of the whole system. Boldface numbers
correspond to cases with storage.

MPV UPVP USS USC CO2
0.1 78 99 13 19 64 98 1989 2017
0.2 55 88 19 34 47 87 2009 1978
0.4 36 60 25 46 32 60 2159 2084
0.8 25 37 33 57 22 37 2480 2423

The indicator UPVP is the fraction of the PV production
actually used, i.e. consumed, stored or exported. What is not
used is lost and can be seen as a consequence of an oversized
PV installation. Then the more the PV, the less useful the last
panel becomes.
With a constant level of self-sufficiency, the addition of storage
enables a decrease of the PV installation size. With an average
level of 33% self-sufficiency for example, adding storage
allows to divide the PV installation by four.
Adding storage increases also self-consumption and allows to
better profit from an already existing PV installation.
Adding PV panels increases the CO2 emissions of the whole
grid since PV panels have a large contribution on the CO2
impact of users’ installations as described in the next section.

E. CO2 analysis

CO2 emissions are computed using Table V for case 2 from
Table II. Substations are considered transformers, lines are
considered three-cable aluminum conductors, loss emissions
are computed using the grid electricity CO2 costs for Belgium,
PV and storage CO2 emissions come from the installation
sizes i.e. the peak power of the PV installation and the size
of the storage battery, and the CO2 emissions of electricity
drawn from the grid is based on the net consumption of grid
users.

Table VI shows great discrepancy between the cost items.
The largest contributions to CO2 emissions come from the grid
electricity and the PV installation, whereas emissions from



TABLE V
CO2 DATA

Transformer 600 ton/MVA [16]
Aluminum 16 ton/ton Al [17]
Al density 2.7 ton/m³

PV 1700 ton/MWp [18]
Storage 200 ton/MWh [19]

Energy from grid 0.128 ton/MWh [20]

TABLE VI
CO2 RESULTS

Substations 62.7 T/year
Lines 0.3 T/year

Losses 1.7 T/year
PV 571.0 T/year

Storage 16.7 T/year
Net grid consumption 555.0 T/year

PV 47 kg/MWh
Grid 128 kg/MWh

lines, losses, and storage are comparatively small. The last
two items show the emission per kWh consumed. In the case
of Belgium and for the specific case considered, for a fixed
energy consumption value, it can be concluded that installing
PV panels would result in a sharp decrease in CO2 emission
if it was the objective of our optimization problem.

IV. CONCLUSION

Bilevel programming naturally fits the co-optimisation con-
text as the key for a successful energy transition. In this work:

• We illustrated how bilevel programming fits the problem
of DNDP,

• A detailed problem formulation and used models are
presented,

• We presented, using a small 24-bus medium voltage
standard test system, the results supporting the viability
of the proposed methodology for DNDP, and

• We developed an open source tool, in Julia, implementing
the proposed methodology.

Future work will focus on extensions to network users’
non-rational (bounded rationality) behavior, using consensus
bilevel programming where a consensus rather than an optimal
solution is sought, testing the methodology on larger cases, and
better representative days considerations.
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APPENDIX: NOMENCLATURE

A. Notation for the lower-level problem
Sets and indices:

t index of a time period

T number of time periods per representative day

T set of time periods, with T = {1, 2, . . . , Td rep}
T 1 set of initial time periods from each representative day

i index of a grid user

nu number of grid users

BU set of grid users, with BU = {1, 2, . . . , nu}



Parameters:

pDi, t active power demand of user i at time period t,
in kW

qDi, t reactive power demand of user i at time period t,
in kVar

PPV
i, t shape of the forecast power generation profile of the

PV installation of user i at time period t, in [0, 1]

R+ fraction of storage capacity charged per time step

R− fraction of storage capacity discharged per time step

E maximum state of charge,
as a fraction of the storage capacity

E minimum state of charge,
as a fraction of the storage capacity

∆t duration of a time period, in hours

γ PV C amortization period of a power converter,
in years

γ PV amortization period of a PV installation,
in years

γ stC amortization period of a storage device converter,
in years

γ st amortization period of a storage device,
in years

α scaling factor of the simulation,
such that α = d year

d rep

d rep number of representative days

d year number of days in a year

π PV C unitary cost for PV converter capacity, in C/kW

π PV unitary cost for installed PV peak power
capacity in C/kWp

π stC unitary cost for storage converter capacity, in C/kW

π st unitary cost for storage device, in C/kWh

πGC unitary cost for grid connection capacity,
in C/kW

πEI unit price of energy imported from the grid
at time period t, in C/kWh

πEE unit price of energy exported to the grid
at time period t, in C/kWh

ΠEI grid tariff imposed by the DNO on the energy
imported from the grid at time period t, in C/kWh

ΠEE grid tariff imposed by the DNO on the energy
exported to the grid at time period t, in C/kWh

Variables:

cPV
i total PV investment costs of user i, in C

csti total storage investment costs of user i, in C

c grid
i total grid capacity costs of user i, in C

c grid
i, t grid tariff costs of user i at time period t, in C

c imp
i, t total cost of user i for the energy imported

from the grid at time t, in C

c exp
i, t total revenue of user i for the energy exported

to the grid at time period t, in C

sPV C
i maximum power capacity of the PV converter of

user i, in kW

pPV
i peak power capacity of the PV installation of

user i, in kW

s stC
i maximum power capacity of the storage device

converter of user i, in kW

SOCi, t state of charge of user i’s storage device at time
period t, in kWh

e st
i storage device capacity of user i, in kWh

s grid
i grid connection capacity of user i, in kVA

p imp
i, t active power imported from the grid for user i

at time period t, in kW

q imp
i, t reactive power imported from the grid for user i

at time period t, in kVar

p exp
i, t active power exported to the grid by user i

at time period t, in kW

q exp
i, t reactive power exported to the grid by user i

at time period t, in kW

pPV
i, t active power produced by the PV installation

of user i at time period t, in kW

q PV
i, t reactive power produced by the PV installation

of user i at time period t, in kW

P PV
i, t polyhedron defining the PV installation

PQ diagram of user i at time period t

p stc
i, t active power charging the storage device

of user i at time period t, in kW

p std
i, t active power discharging the storage device

of user i at time period t, in kW



B. Notation for the upper-level problem

Sets and indices:

t index of a time period

T number of time periods

T set of time periods, with T = {1, 2, . . . , T}
i/j index of an electrical bus

n number of electrical buses

ns number of substation buses

nu number of grid users’ buses

B set of electrical buses

Bs set of substation buses, with Bs = {1, . . . , ns}
Bu set of grid users’ buses, with Bu = {ns + 1, . . . , n}
ij index of a line route connecting the sending bus

i to the receiving bus j

l index of a line route
L number of possible line routes

L set of possible line routes, with |L| = L

K number of conductor choices

K set of possible conductor choices,
with K = {1, . . . ,K}

Parameters:

τ interest rate of the DNO, in [0, 1]

∆t duration of a time period, in hours

Γ amortization period of investments for new line

routes and substations, in years

α scaling factor of the simulation,

such that α = d year

d rep

d rep number of representative days

d year number of days in a year

ω I unit cost for violating a current operational

constraint, in kC

Π cond
ij, k unit cost for building the new line route ij

with conductor k, in kC

Π sub unit cost for a new substation, in kC/MVA

Π loss unit cost of losses, in kC/MWh

Rij, k resistance of the line route ij when built

with conductor k, in Ω

Xij, k reactance of the line route ij when built
with conductor k, in Ω

M big M constant used in CONSTRAINTS 3m

and 3n

S
sub,max

i maximum allowed substation capacity at node i,

with i ∈ Bs, in MVA

V i maximum voltage magnitude allowed

at bus i, with i ∈ B, in kV

Vi minimum voltage magnitude allowed
at bus i, with i ∈ B, in kV

Iij, k maximum current magnitude allowed in
line ij with conductor k, in kA

Variables:

C cond total DNO conductor investement costs of, in kC

C sub total DNO substation investement costs of, in kC

C loss
t total DNO loss costs at time period t, in kC

ΦI
t amount of overloaded lines at time t

λij, k binary variable equal to 1 when the conductor k
is selected for line ij, and 0 otherwise

Λij binary variable equal to 1 when the line route ij

is built, and 0 otherwise

S
sub

i substation power capacity at bus i, with i ∈ Bs,
in MVA

S sub
i apparent power supplied by the substation at bus i,

with i ∈ Bs, in MVA

P sub
i, t active power supplied by substation i at time t,

with i ∈ Bs, in MW

Q sub
i, t reactive power supplied by substation i at time t,

with i ∈ Bs, in MVar

βi binary variable equal to 1 if the substation
at bus i is built, and 0 otherwise, with i ∈ Bs

I2ij, k, t square magnitude of the current in line ij at
time period t when the conductor k is selected,
in (kA)2

I2ij, t square magnitude of the current in line ij

at time period t, in (kA)2

I lim
ij, k, t binary variable equal to 1 when the current

in line ij at time period t when the conductor k
is selected violates the current operational limits,
and 0 otherwise.

hij, k, t slack variable of current CONSTRAINT 3aa

Pij, k, t active power flow at sending bus i in line ij

at time period t when conductor k is selected,
in MW

Pij, t active power flow at sending bus i in line ij

at time period t, in MW

Qij, k, t reactive power flow at sending bus i in line ij

at time period t when conductor k is selected,
in MVar

Qij, t reactive power flow at sending bus i in line ij

at time period t, in MVar

V 2
i, t square magnitude of the voltage at bus i,

at time period t, with i ∈ B, in (kV)2


