
Geoderma 447 (2024) 116928

Available online 7 June 2024
0016-7061/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Assessing the 3D distribution of soil organic carbon by integrating 
predictions of water and tillage erosion into a digital soil 
mapping-approach: a case study for silt loam cropland (Belgium) 

P. Baert a,*, M. Vanmaercke b, J. Meersmans a 

a TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium 
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A B S T R A C T   

Although agricultural intensification has generally increased crop yields, it also resulted in a range of environ
mental issues. These include increased erosion rates and declined soil organic carbon (SOC) stocks. In order to 
improve our understanding on how erosion impacts the overall SOC storage capacity of croplands, this study 
analyses the 3D distribution of SOC as a function of water and tillage erosion in a conventionally ploughed field 
in the Belgian silt loam region. We present a novel methodological framework to integrate the output of an 
advanced erosion model as a co-variate within a Digital Soil Mapping (DSM) approach with the objective to 
create detailed SOC maps. More precisely, we combined (i) the Water and Tillage Erosion Model and Sediment 
Delivery Model (WaTEM/SEDEM), simulating spatial patterns of soil erosion and sediment deposition due to 
water and tillage erosions, with (ii) a SOC sampling campaign, resulting in a SOC spatial distribution model that 
considers both types of erosion. The results show that, as compared to plateaus, SOC stocks are nearly half as 
large along eroding slopes (i.e. convex slope positions affected by tillage erosion and steep slopes affected by 
water erosion). Yet, they are up to twice as large in areas characterized by sediment deposition (i.e. concave 
positions due to tillage erosion and foot slope positions due to water erosion). Our results further show that 
tillage erosion has a significant influence on the SOC stocks in the top 0.7 m and in particular on the top 0.4 m. 
The influence of water erosion is less strong but mostly significant along the entire depth profile. Overall, this 
work demonstrates the relevance of considering different erosion processes when aiming to predict spatial 
patterns of SOC. Considering the top 1 m and a WaTEM/SEDEM application at a resolution of 10 m our 3D SOC 
modelling approach obtained a coefficient of determination (R2) of 0.62, a relative root mean square error 
(RRMSE) of 30.5 % and a relative mean absolute error (RMAE) of 26.0 %. While future work may likely lead to 
further improvements e.g. a more detailed SOC sampling network along the foot slopes and thalwegs in order to 
obtain a more spatially detailed prediction of the area characterized by depositions due to water erosion, we 
demonstrate the great potential of existing erosion and deposition models in doing so.   

1. Introduction 

Agricultural practices influence soil properties on both the short and 
long term (Larson and Pierce, 1994). Agricultural intensification has 
often boosted yields, but also resulted in many negative effects on soils. 
These include loss of biodiversity, increased susceptibility to erosion and 
decline in organic matter (Tilman et al., 2002). Chemical, physical and 
biological indicators such as texture, bulk density, pH, soil organic 
matter content and microbial biomass, are used typically to assess the 
health of agricultural soil (e.g. Li et al., 2023). As in many other regions 

worldwide, the progressive deterioration of the quality of agricultural 
soils has been identified as a severe threat across the Belgian loess belt 
(Goidts and van Wesemael, 2007). This while soils are considered a non- 
renewable resource on the scale of human generations (Lal, 2016). The 
growing awareness of the human impacts on soils has led researchers 
and decision-makers to develop tools to monitor soil quality, as well as 
policies to limit soil degradation by promoting sustainable practices (e. 
g. Borrelli et al., 2022). 

Soil organic matter − and therefore soil organic carbon (SOC), which 
makes up roughly half of its mass − plays a fundamental role in the 
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overall soil health status and the ecosystem services they support 
(Matson et al., 1997; Gardi et al., 2016). It is therefore a key property 
and measure of soil quality, associated with various physical, chemical 
and biological processes (Six et al., 2004). Meanwhile, organic matter 
undergoes a series of transformations as a result of biological activity as 
well as the physical and chemical conditions of the soil. These SOC 
dynamics are generally slow and changes are only detectable after 
several years to decades (Goidts and van Wesemael, 2007). In addition, 
SOC dynamics are by no means homogeneous (von Lützow et al., 2007). 
Rather, it consists of various carbon compounds with highly variable 
decomposition rates (Schmidt et al., 2011). Moreover, changes in land 
use and/or agricultural practices over long time periods of time (several 
decades to several centuries) are having a major impact on SOC evolu
tion (Van Rompaey et al., 2002; van Wesemael et al., 2010). According 
to Meersmans et al. (2011) Belgian cropland soils lost around 8 % of its 
SOC stock between 1960′s and 2000′s. However, in the Belgian silt-loam 
region this loss appears to be bigger with values ranging between –22 % 
(Meersmans et al., 2009a) and –33 % (Goidts and van Wesemael, 2007) 
for the top 30 cm and an average decline of 20 % for the top 1.0 m 
(Meersmans et al., 2009a). 

Soil erosion is the detachment and removal of soil material by a 
transporting agent. While it is largely a natural process depending on 
topography, weather and soil conditions, human activities can greatly 
influence this process by land cover changes and/or through land 
management practices (Borrelli et al., 2017). Historically, water erosion 
and wind erosion were considered as the main forms of soil erosion. 
However, over the last few decades, research and field data have shown 
that tillage erosion is another very important type of soil erosion in 
conventional agricultural systems (Govers et al., 1994). Finally, an 
important but relatively understudied form of anthropogenic erosion are 
soil losses due to crop harvesting root and tuber crops, which is typically 
uniform throughout the field (Kuhwald et al., 2022; Panagos et al., 
2019). All these natural and anthropogenic forms of erosion affect soil 
properties and processes, and are widely recognized as a major cause of 
soil degradation in arable land, potentially leading to reductions in crop 
yields (Bakker et al., 2007; Wang et al., 2021). In the Belgium loess belt, 
the nation’s most important food producing region, water and tillage 
erosions are more important than wind erosion (Poesen et al., 1996; 
Borrelli et al., 2022). Many studies identified muddy floods as one of the 
most threating hazards for local communities in this particular region (e. 
g. Evrard et al., 2007; Boardman and Vandaele, 2010; De Walque et al., 
2017). Hence, limiting these types of erosions will be key in preserving 
the biodiversity and agronomic quality of these typically very fertile and 
high yielding soils. 

Driven by the current-day threats of climate change and soil man
agement impacts, numerous studies have been carried out to understand 
the evolution of soil carbon storage capacity and dynamics as a function 
of different factors and at different spatial and temporal scales. Many of 
these studies rely on the “scorpan” model (McBratney et al., 2003) with 
the objective to make spatially explicit predictions considering climate, 
land cover, soil properties and agro-management data, the so-called 
Digital Soil Mapping (DSM) approach. Nevertheless, great un
certainties remain about the exact impact of different types of erosion on 
the dynamics and spatial distribution of SOC; both in the plough layer 
and at greater soil depths within croplands (Goidts and van Wesemael, 
2007). Similarly, we must stay cautious about generalizing these im
pacts on crop production to all agroecosystems (Bakker et al., 2007). 
Various models have been developed to predict the amount of SOC as a 
function of different soil-climate and soil-cover parameters, such as the 
best known “Rothamsted Carbon (ROTHC) model” or “DeNitrification- 
DeComposition (DNDC) model”. Based on the carbon cycle, these 
models have been designed for a temporal analysis of SOC stocks, and 
therefore of soil carbon storage or loss, at different scales i.e. from plot 
level to national scale (Byrne and Kiely, 2009). However, these models 
come with shortcomings, as they do not take into account specific 
characteristics related to different landforms and/or associated erosion 

processes. As a consequence, in some cases these models will attribute a 
decrease in SOC due to soil erosion incorrectly to enhanced respiration 
rates (Chappell et al., 2015). 

Another important shortcoming of these models is the poor charac
terization of the vertical heterogeneity of SOC along the soil profile. The 
empirical 3D SOC model of Meersmans (Meersmans et al., 2009b) this 
vertical heterogeneity of SOC up to 1 m depth predicts across Flanders 
(Belgium). It does so by taking into account soil type and land use fac
tors, but ignores any potential topographically induced variability. 
Nonetheless, recent research has shown that the depth component is a 
critical dimension when considering the redistribution of SOC across 
erosional landscapes. For example, Doetterl et al. (2012) showed that 
the lateral transport of SOC due to erosion resulted in (i) a depletion of 
SOC topsoil across the entire depth profile at eroding sites along convex 
and steep slope positions and (ii) an accumulation of SOC, in particular 
at greater depths (below the plough layer), at deposition sites along 
concave and foot slope positions. Nonetheless, this study makes no dif
ferentiation in the type of erosion process. More recently, Borrelli et al. 
(2022) showed that the type of erosion varies greatly at local scales, 
highlighting the need to consider different types of erosion when 
studying the spatial distribution of SOC. Hence there exists an urgent 
need to develop a 3D SOC model that integrates the impact of different 
soil erosion processes on the vertical distribution across the entire pro
file. This implies the development of an improved sampling strategy 
(instead of classical approaches such as random, systematic, …) by 
taking into account the spatial distribution of different types of erosion 
using advanced models. This study therefore analyses the 3D distribu
tion of SOC as a function of water erosion (Ew) and tillage erosion (Et) in 
a conventionally cultivated field in the Belgian silt loam region. In doing 
so, we propose a novel methodological framework to integrate the 
output of an advanced erosion model (WaTEM/SEDEM) as a co-variate 
within a digital soil mapping (DSM) approach with the objective to 
create detailed SOC maps highlighting the erosion induced within-field 
redistribution of SOC. 

2. Materials and methods 

2.1. Study site description 

The study was conducted on a single cropland field located in central 
Belgian loess region (i.e. in the commune of Orp-Jauche) at coordinates 
50◦42′26′’N and 4◦58′57′’E and within an elevation range of 78 m to 99 
m (Fig. 1). This field is characterized by an undulating topography and a 
temperate oceanic climate (Köppen classification Cfb) with an annual 
average rainfall amount of 758 mm, well distributed along the entire 
year, and an annual average temperature of 10,5 ◦C (IRM, 2023). As 
indicated on the European Soil Erosion Map croplands in the Belgian silt- 
loam region are characterized by fairly high soil loss rates even 
exceeding 5 ton ha− 1 yr− 1 (Borrelli et al., 2018). This field covers an area 
of 15.5 ha, is under cultivation since 1990 and is characterized by a 4- 
year crop rotation plan defined by a succession of Solanum tuberosum, 
Triticum aestivum, Beta vulgaris, vegetables − Spinacia oleracea, Daucus 
carota, Allium cepa. The field has a silt-loam texture with luvisols on the 
plateaus, cambisols along the slopes and colluvic regosols in the sedi
ment deposition areas. Since 1990, no organic matter other than crop 
residues has been added to amend the soil. 

The field is characterized by a typical convex-concave slope profile, 
exceeding 10 % at the most steep sections. It has two main thalwegs: one 
in the middle of the field and one along the Northwestern border. The 
latter thalweg has been ignored in this study because intensive activities 
with heavy machinery took place along the Northwestern border of the 
field. This displaced soil from the thalweg uphill, causing potentially 
significant disturbances of the soil profiles. Within the field there are no 
century-old charcoal production sites, which are common in the Belgian 
Loess region (e.g. Heidarian Dehkordi et al., 2020). In addition, the 
studied cropland has been conventionally ploughed using a classical 
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moldboard up to a depth of 30 cm for the last 50 years. Even though the 
region has known several historic land consolidations phases, our fields 
has been cultivated in a homogeneous and undivided manner for at least 
30 years. Nevertheless, we avoided sampling along old field boundaries. 
For this, we consulted historic maps. 

2.2. Methodological approach 

The methodological flowchart displayed in Fig. 2 shows the 
approach used to achieve the objective of this study, i.e. assessing the 3D 
distribution of SOC as a function of water erosion (Ew) and tillage 
erosion (Et) and to create a detailed SOC map. Firstly, the WaTEM/ 
SEDEM model was run in the “default application mode”, i.e. using a 
DEM with a resolution of 20 m (step 1). The resulting simulated patterns 
of Ew and Et guided our sample design (step 2), where we identified 23 
pixels showing a good range of Ew and Et values as well as a wide spatial 
coverage within the studied cropland. Coordinates of the center of these 
pixels were used to collect soil samples at depths of 0.1 m to 1.0 m with 
an interval of 0.1 m (step 3). From the measured SOC contents of these 
samples, the corresponding SOC mass densities and SOC stock were 
calculated. Subsequently, a first order linear regression model was used 
to predict SOC stock as a function of depth, Ew and Et (step 4). In 
addition, the WaTEM/SEDEM was applied in a “spatially refined mode”, 
i.e. using a DEM with a resolution of 10 m (step 5) in order to find which 
resolution (10 m vs. 20 m) is most appropriate in a DSM context linking 

SOC spatial distribution to both Ew and Et. Finally, the best model has 
been selected to create SOC maps considering a reference depth 0.3 m 
and 1.0 m (step 6). 

2.3. Modelling water and tillage erosion with WaTEM/SEDEM 

Typically, most process-based models predicting both water erosion 
and tillage erosion, such as SWAT, EPIC and LandSoil, require a large 
number of input parameters and variables (De Vente et al., 2013). 
However, the WaTEM/SEDEM model has generally acceptable input 
data requirements and has been successfully calibrated and validated in 
several regions, including the Belgian silt loam region at 20 m resolution 
(e.g. Verstraeten et al., 2002; Notebaert et al., 2006). This, in combi
nation with the fact that it can simulate both water (i.e. sheet and rill) 
erosion, tillage erosion as well as sediment deposition, make it a widely 
applied model (Borrelli et al., 2021). Detailed descriptions of the model 
can be found in (Van Oost et al., 2000), (Van Rompaey et al., 2001), 
(Verstraeten et al., 2002). 

Overall, WaTEM/SEDEM calculates the mean annual soil loss (A, (kg 
m− 2 yr− 1)) caused by water erosion in each pixel, based on the Revised 
Universal Soil Loss Equation (Eq. (1)): 

A = R*K*L*S*C*P (1) 

where R is a rainfall erosivity factor (MJ mm h− 1 m− 2 y-1); K is a soil 
erodibility factor (kg h MJ− 1 mm− 1); L is a dimensionless slope length 

Fig. 1. Study site location within the Belgian silt loam region (red dot). DTM (1 m resolution) and contour lines of the field; 23 sample locations.  

Fig. 2. Methodological flowchart illustrating the approach consisting of following steps: (1) Erosion mapping (Ew & Et) with WaTEM/SEDEM at 20 m resolution 
(“default application”); (2) Sample strategy and design; (3) SOC measurements at depth of 0.1 m to 1.0 m with 0.1 m increment; (4) statistical model predicting SOC 
stock at different depths as a function of erosion (Ew & Et); (5) mapping erosion (Ew & Et) in a “spatially refined application” with WaTEM/SEDEM (10 m resolution); 
(6) Digital SOC stock mapping based on the best statistical model until reference depths of 0.3 m and 1.0 m. 
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factor; S is a dimensionless slope steepness factor; C is a dimensionless 
cropping and management factor, reflecting (amongst other things) the 
effect of vegetation cover and P is a dimensionless factor reflecting the 
effect of conservation practices. 

The model also estimates an average sediment transport capacity for 
each pixel (Tc, (kg m− 1)) using an empirical approach that relies on the 
assumption that Tc is proportional to the potential rill erosion (Eq. (2)) 
(van Oost et al., 2000). This rill erosion is the difference between total 
erosion and inter-rill erosion. The inter-rill erosion on each turn has been 
calculated following the method developed by McCool et al. (1987). 

Tc = Ktc*R*K*
(
LS − 4.12*S0.8) (2) 

where R, K, L and S are the same as in Eq. (1) and Ktc (m) is a cali
brated transport capacity parameter that depends on the environmental 
setting and pixel resolution. Using a sediment routing algorithm, 
WaTEM/SEDEM then calculates the long-term average net erosion or 
deposition (Ew, (kg m− 2 yr− 1)) in each pixel, based on A and Tc. More 
specifically, model transfers an amount of sediments downslope equal to 
the minimum of either Tc or the sum of A and sediments already 
transferred from upslope pixels. If Tc is smaller than this sum, the 
remaining sediments are deposited within the pixel. 

In addition, WaTEM/SEDEM calculates the amount of erosion/ 
deposition in each cell due to tillage practices (Van Oost et al., 2006) 
(Eq. (3)): 

Et = − ktill*d2h
/
dx2 with ktill = b*D*ρs (3) 

where ktill (kg m− 1) is the tillage transport coefficient function of soil 
bulk density ρs (kg m− 3) and tillage depth D (m) considered identical in 
the field, b is a constant, h (m) is the height of a given pixel of the 
hillslope and x (m) is the distance in horizontal direction. As such, tillage 
erosion/deposition rates mainly depend on the profile curvature of the 
hillslope, with convexities typically resulting in erosion and concavities 
in deposition. 

Running the model hence requires the following input data: (i) a 
DEM and a parcel map with the same resolution, and (ii) values for R, K, 
C, P and Ktc and (iii) the tillage transport coefficient ktill and the soil bulk 
density. In our study, we used DEMs and parcel maps with a resolution of 
20 m (default application) and 10 m (spatially refined application). Both 
DEMs are the result of a DEM originally created at a resolution of 1 m 
(Public services of Wallonia, 2015) which were resampled using the 
ARCGIS aggregate tool (mean approach). We considered the field to be 
hydrologically isolated, i.e. all flow accumulation is produced within the 
field with no influence from adjacent fields. The rainfall erosivity index 
(R) was set to 753 MJ mm ha-1h− 1 yr− 1, based on a rain kinetic energy 
equation for central Belgium (Verstraeten et al., 2006). The soil erod
ibility index (K) was assumed to be 0.45 t h MJ− 1 mm− 1, based on field 
experiments carried out on Belgian loam soils (Bollinne and Rosseau, 
1978). The vegetation cover index (C) was set to 0.37, i.e. an annual 
average index for our type of cropland rotation within Belgian loess 
region (Notebaert et al., 2006). The tillage transport coefficient (ktill =

600 kg m− 1), the soil bulk density (i.e. 1350 kg m− 3) and the Ktc value (i. 
e. 250 m) were derived from Notebaert et al. (2003) and Verstraeten 
et al. (2003). We used the WaTEM/SEDEM version 2004 which has been 
calibrated across the Belgian Loess region, where also our study area is 
located, considering 21 catchments (Verstraeten and Poesen, 2001). 
More precisely, 5 out of 21 catchments used to calibrate this version of 
the model are located within a radius of 15 km from our study site. These 
5 sites have similar land use (cropland dominated) and soil type (silt 
loam dominated) settings than our studied field. Also the L and S values 
were calculated within the model application, using the Nearing (1997) 
and McCool et al. (1987) approach. 

2.4. Sampling strategy and techniques 

In this study, the vertical heterogeneity of SOC was studied by taking 

soil cores until a depth of 1.0 m considering a sampling interval of 0.1 m. 
Using the output of the WaTEM/SEDEM default’s setting at a resolution 
of 20 m, a total of 23 sample locations were selected following a model 
based sampling approach across the entire cropland (excluding the zone 
described in section 2.1) in a way that they had both a good spatial 
coverage (Fig. 1), as well as a large range of Ew and Et values repre
sentative of the combined erosions distribution (Fig. 4C). As such, 
sampling locations occurred along the different topographical positions 
(i.e. plateau, convexity, steepest slope, concavity and thalweg). To 
reduce potential errors related to soil heterogeneity, three soil core 
replicates were taken at each of the 23 locations. These sampling points 
correspond to the vertices of an equilateral triangle, of which the base is 
perpendicular to an N-S axis and its center of gravity is located at the 
center of pixel of the WaTEM/SEDEM map at a resolution of 20 m 
(Fig. 3). The distance between this center of gravity and the sampling 
points is 0.5 m. In total, 690 soil samples were taken, across the 23 lo
cations. Sampling was conducted on 16 and 23 March 2022, using a 
classical Edelman auger. Composites were formed from the three rep
licates (originating from the same location and depth increments), 
resulting in a total of 230 composite samples for which soil organic 
carbon (SOC) content (g C kg− 1 soil) was analyzed. These analyses were 
conducted at the Provincial Centre for Agriculture and Rural Affairs 
laboratory in La Hulpe (Belgium) based on the dry combustion method 
and using an elemental analyzer (Primacs, Skalar Analytical, The 
Netherlands) according to the ISO 10694 norm. 

2.5. SOC stock calculation and verification 

SOC mass densities (kg C m− 3) are obtained by multiplying the SOC 
content (g C kg− 1) by the bulk density of the soil ρs (g cm− 3) (Eq. (4)). To 
obtain bulk density of all composite samples, a pedo-transfer function 
(Manrique and Jones, 1991) (Eq. (5)) was used. The SOC stock (kg C 
m− 2) of a layer is then calculated by multiplying the SOC mass density 
(kg C m− 3) by the thickness (m) of the corresponding layer (Eq. (6)). In 
our study, the thickness of this layer corresponds to the vertical sampling 
distance of 0.1 m. Subsequently, the SOC stock (kg C m− 2) for (i) the 
topsoil (i.e. until reference depth of 0.3 m), (ii) the total soil profile (until 
a reference depth of 1.0 m thickness), (iii) the intermediate soil layer (i. 
e. between 0.3 m and 0.5 m depth) and (iv) the subsoil (i.e. between 0.5 
m and 1.0 m depth) were calculated by summing the SOC stock values of 
the corresponding layers of 0.1 m. 

SOC mass density = ρs*SOC content *10− 3 (4)  

ρs = 1.66 − 0.318*
(
SOC content*10− 1)1/2 (5)  

(SOC stock)layer = (SOC mass density)layer*(Thickness)layer (6) 

The model of Meersmans et al., (2009b) (Eq. (7)) was applied to fit a 
depth distribution curve through the calculated SOC mass densities at 

Fig. 3. Soil sampling points of a pixel.  
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each sample location: 

if z ≤ Td : SOC (z) = SOCsurf  

if z > Td : SOC (z) = A * eαz + SOCinf (7) 

where z is the soil depth (m), Td is the tillage depth (m), SOC(z) is the 
SOC mass density (kg C m− 3) at depth z, SOCsurf is the SOC mass density 
(kg C m− 3) at the surface, SOCinf is the SOC mass density (kg C/m− 3(− |- 
)) at the bottom of the soil profile and α is a constant which determines 
the shape of the exponential part of the curve. 

2.6. Constructing a SOC map as a function of depth, Ew and et 

SOC stocks for each soil depth as well as for the above described soil 
reference depths were predicted as a function Ew and Et using a first 
order linear model (Eq. (8)). 

SOC(d) = Ad + ad* Ew + bd* Et (8) 

where SOC(d) is the SOC stock (kg C m− 2) at the depth d (m), Ew is 
the net amount water erosion/deposition (t ha− 1 yr− 1), Et is the tillage 
erosion (t ha− 1 yr− 1) and Ad, ad, bd are fitted parameters. 

After the calibration phase, during which the linear regression model 
parameters have been calculated, the model performance was assessed 
by calculating the coefficient of determination (R2). Because of the small 
numbers of sample locations, the model was validated using the leave- 
one-out cross-validation (LOOCV). More precisely, the precision of the 
model has been calculated using the relative root mean square error 
(RRMSE) (%) (Eq. (9)), whereas its accuracy with the relative mean 
absolute error (RMAE) (%) (Eq. (10)). This model was then used to build 
a SOC stock map for the topsoil (until a depth of 0.3 m) and for the entire 
soil profile (until a depth of 1.0 m). 

Fig. 4. Sample locations and WaTEM/SEDEM model output with (A) & (D) the water erosion (Ew) maps, (B) & (E) the tillage erosion (Et) maps and (C) & (F) Ew, Et 
prediction for all pixels (blue dots) and sample locations (red dots), considering the default (20 m, resolution) and the spatially refined (10 m, resolution) application 
modes, respectively. 
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RRMSE = REQM/(1/n*
∑

yobs)*100

with REQM = (
∑(

ypred − yobs

)2
/

n)1/2
(9)  

RMAE = MAE/(1/n*
∑

yobs)*100

with MAE =
∑⃒

⃒
⃒ypred − yobs

⃒
⃒
⃒/n

(10) 

where yobs is the observed value; ypred is the value predicted by the 
model; and n is the number of samples. 

2.7. Software 

Modeling calculations were conducted in RStudio© software version 
1.4.1717. Ew and Et digital maps have been built with the WaTEM/ 
SEDEM version 2014 for Windows©. All the maps were created with 
ESRI’s ArcGIS© version 10.5.1 and use the “Belgian Lambert 2008″ 
(EPSG:3812) geographic projection system. 

3. Results and discussion 

3.1. Water and tillage erosion mapping 

Fig. 4A and 4B show respectively the simulated patterns of Ew and Et 
at a 20 m resolution, using the WaTEM/SEDEM model. Both maps show 
clear contrasts in both the amount and spatial patterns of erosion and 
deposition. On the Ew map, 93 % of pixel showed net erosion and 7 % 
deposition. For the Et map, 55 % showed erosion and 45 % deposition. 
Overall, the low number of deposition pixels in the Ew digital map re
lates to Eq. (2), which assumes that the transport coefficient Tc is pro
portional to the potential amount of rill erosion. As this potential is 
generally high, deposition only occurs at flatter hillslope bottoms. Yet, 
the amounts of deposition can be large in this area. 

In the Et, the field is topographically balanced, resulting in a com
parable number of erosion and deposition pixels. Et values range from 
− 19 t ha− 1 yr− 1 (erosion) to 31 t ha− 1 yr− 1 (deposition) while Ew values 
vary from − 69 t ha− 1 yr− 1 to 650 t ha− 1 yr− 1. Fig. 4C presents a com
parison of the Ew and Et value of each pixel (Fig. 4C). 

Fig. 4 further shows that applying WaTEM/SEDEM at a resolution of 
20 m (Fig A & B) or at a resolution of 10 m (Fig. 4 C & D) results in 
overall similar spatial patterns. Nonetheless, Ew and Et predictions can 
be fairly different for specific locations. This has consequences for the 
total sediment production, deposition and export, in that sense that 
these values are respectively 5.3 %, 4.3 % and 17.3 % lower at 10 m 
resolution as compared to the 20 m resolution (Table 1). 

When looking to the erosion maps at 10 m resolution, we notice that 
for the Ew map 95 % of the pixels show erosion and 5 % deposition. For 
Et, this is 52 % and 48 %. Comparing these maps with those obtained at 
20 m resolution reveals that the area characterized by Ew deposition 
reduced ceteris paribus in the thalweg, whereas the Et pixel values are 
even more balanced between erosion and deposition. Furthermore, one 
can notice a discontinuity in these Ew depositions along the thalweg axis, 
with some areas being characterized even by Ew erosion. In this 
particular topographical position is the slope steepness (S) rather low 
but the slope length (L) rather high, as such small variations in local 
slope steepness can result in contrasting predictions of erosion versus 

deposition. However, this may also indicate the need for further 
research in order to obtain a more detailed understanding as regards the 
sediment transport processes in this particular landscape unit, which 
may also be helpful to potentially improve the rooting function within 
the WaTEM/SEDEM deposition algorithm, including defining Ktc values. 

Fig. 4F shows the Ew versus Et for each pixel, based on 10 m reso
lution applications (Fig. 4D, 4E). This graph shows some contrasts with 
the same comparison at 20 m resolution (Fig. 4E). The most remarkable 
differences can be found in the top right quadrant representing depo
sition in both Ew and Et. By using the higher resolution DEM at 10 m, the 
number pixels characterized by deposition for both erosion processes 
clearly decreases. Deposition rates are typically an order of magnitude 
lower for the 10 m model run. This result indicates that the choice of the 
resolution has an important influence on the redistribution of the pre
dicted Ew and Et values across the sample locations, which has a 
particular strong impact in the depositional areas. Hence, increasing the 
number of samples in these depositional areas may be a good idea to 
reduce the associated source of uncertainty, and such, improve the 
present methodology in future research. 

The WaTEM/SEDEM model was specifically developed in the early 
2000 s to simulate the impact of soil conservation and sediment control 
measures as well as land use changes in the framework of an integrated 
catchment management, on the local soil loss and sediment delivery to 
rivers. Therefore, this model has been designed for large watersheds of 
hundreds to even thousands of hectares. The DEMS available at that time 
(i.e. early 2000 s), and the size of watersheds, justifies the default usage 
of the model at a resolution of 20 m resolution. However, the objective 
of our study was to use this model for a hydrologically isolated field of 
15 ha in order to map Ew and Et. As such, our results indicate clearly the 
limitations of using WaTEM/SEDEM in its default setting (20 m) when 
analyzing water and tillage erosion at the field-scale. Hence, further 
research is needed to develop a higher resolution version of the model 
with enhanced routing functions to better represent the sediment 
deposition process related to Ew. A first interesting attempt has been 
made by the development of SAGA WATEM at 5 m resolution (Oorts 
et al., 2019) but this model does not predict depositions and uses a 
general scaling factor of 1.4 on the LS-component of RUSLE applied on 
all pixels of the DEM in order to reduce the LS factor impact on water 
erosion. Also, additional studies are needed to improve sediment 
deposition mapping and values in slope concavities, outside the thalweg 
defined by the model. Finally, as our methodological approach involves 
the transformation of data between different GIS modelling- 
environments and associated raster formats (e.g. RST, GeoTIFF), we 
noticed a relatively small offset of the raster grid of ca. 3 m. This off-set is 
smaller than the resolutions of the SOC and erosion maps considered in 
this study (i.e. 20 m and 10 m), and as such, it most probably won’t have 
any important influence on the final outcomes, but could still introduce 
a small source of error. Hence, in future research this could become an 
important issue to address, especially when carrying out this kind of 
DSM exercise considering a smaller resolution, for example at 5 m. 

3.2. SOC measurements, calculation and verification 

Fig. 5 shows the boxplots of the SOC stock values across all 23 sample 
locations for the topsoil (top 0.3 m), the entire profile (top 1.0 m), the 
subsoil (0.5 m − 1.0 m) and the intermediate soil layer (0.3 m − 0.5 m). 
The mean SOC stock for the entire profile (top 1.0 m) is 6.3 ± 0.5 kg C 
m− 2 (Fig. 5), which is slightly lower than the average top 1.0 m SOC 
stock of 6.8 kg C m− 2 as reported by Meersmans et al., (2009a) for well 
drained cropland soils across the Belgian silt-loam region corresponding 
in 2006. Roughly two third of this SOC is stored in the topsoil as indi
cated by the average SOC stock of 4.2 ± 0.2 kg C m− 2 within the top 0.3 
m. This value falls within the range of values reported by recent studies 
for Belgian silt loam cropland soils (i.e., 3.6 – 5.3 kg C m− 2; Sleutel et al., 
2006; Goidts and van Wesemael, 2007; Meersmans et al., 2009a). As a 
consequence, the SOC stock in the intermediate soil layer (i.e. 1.1 ± 0.2 

Table 1 
Total sediment production, deposition, export of the cultivated field from 
WaTEM/SEDEM model with two DEM resolution (10 m and 20 m).   

DEM Resolution  

20 m 10 m 

Total Sediment Production (t) 299 283 
Total Sediment Deposition (t) 276 264 
Total Sediment Export (t) 23 19  
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kg C m− 2) and the subsoil (0.9 kg ± 0.2 kg C m− 2) are fairly small. 
Moreover, the boxplot of the subsoil shows a skewed distribution with a 
median value of only 0.1 kg C m− 2. This can be attributed to the fact that 
in many sampling locations (and in particular at eroded sites) no SOC 
was detected at greater depths (below 0.5 m). SOC contents (Table A.1), 
SOC mass densities (Table A.2) and SOC stocks (Table A.3) values of all 
sample can be found in appendix A – supplementary tables. 

The model of Meersmans et al., (2009b) describes the depth distri
bution of SOC in the plow layer as a constant and as exponentially 

declining below. When fitting this model through our SOC density 
measurements, an average tillage depth Td of 0.23 ± 0.02 m was ob
tained. The mean SOC stock in the plow layer (i.e. 3.26 ± 0.32 kg m− 2) is 
similar to that of the top soil. The predicted values of the SOC distri
bution model (Eq. (7) were used to verify the overall trend in the depth 
distribution. An overview of the depth distributions of all 23 sample 
locations can be find in appendix B (Supplementary figures B1-B.23). To 
illustrate the impact of soil erosion on the SOC depth distribution of 
SOC, Fig. 6 displays 3 representative examples for (i) a highly eroded site 
(sample location 5), (ii) a depositional site (sample location 9) and a 
plateau site (sample location 23). In general, the eroded site has some
what lower SOC mass densities near the surface (i.e. 12.1 kg C m− 3 

versus 14.2 kg C m− 3 and 16.5 kg C m− 3 for respectively the erosional, 
plateau and depositional site). However, most remarkable is the steep 
decline of SOC below the plough layer, with almost negligible SOC 
densities from 0.4 m onwards at the erosional site. At the two other sites 
(plateau and depositional) this decline with depth is more gradual. This 
is particularly true for the depositional sites, with SOC density values 
still ranging between 3 and 5 kg C m− 3 near the bottom of the profile. As 
a result, the SOC stocks of the entire profile (i.e. top 1.0 m) at the 
erosional site (3.8 kg C m− 2) is only nearly half of that at the plateau site 
(6.4 kg C m− 2) and around 3 times smaller than that at the deposition 
site (10.8 kg C m− 2). The most likely explanation is that a large quantity 
of the SOC lost at the erosional sites was transported and buried at the 
depositional sites. This remarkable spatial variability of SOC stocks and 
associated depth distributions within fields highlights the caution that 
needs to be given when aiming to quantify SOC at larger scales (e.g. DSM 

Fig. 5. Boxplot of SOC stock values considering all 23 sample locations for the 
topsoil (0.0 m – 0.3 m), intermediate soil layer (0.3 m – 0.5 m), subsoil (0.5 m 
− 1.0 m) and entire profile (0.0 m – 1.0 m). Red dotes show mean values. 

Fig. 6. SOC mass density depth distribution for a highly eroded site (sample location 5), a depositional site (sample location 9) and a plateau site (sample location 
23). Red dots represent the SOC mass density value obtained from composite samples (originating from 3 replicates). The blue line represents the trend curve fitted 
after applying the model of Meersmans et al., (2009b). Top 1 m SOC stock, as well as water and tillage erosion values (at 20 m and 10 m resolutions) predictions as 
obtained from the WaTEM/SEDEM model (cf. Fig. 4), are given for each sample location. An overview of all sample locations can be found in appendix B − sup
plementary figures B.1 to B.23. 

P. Baert et al.                                                                                                                                                                                                                                    



Geoderma 447 (2024) 116928

8

studies mapping SOC at the regional / national level). This because it 
often involves the risk of missing out on this erosion-induced SOC 
variability, and the resulting large SOC heterogeneity that may occur 
across agricultural landscapes. 

3.3. SOC modelling as a function of erosion 

Based on the erosion predictions using the 20 m DEM (i.e. the 
‘default’ WaTEM/SEDEM application) the linear regression model, 
which expresses SOC stock at a given depth as a function of Ew and Et, 
did not result in any statistically significant fit for the first 0.6 m 
(Table 2). However, this relationship was significant for Ew at a depth 
between 0.6 m and 1.0 m, whereas this was not the case for Et. The 
corresponding R2 values ranged between 0.11 and 0.52, while for the 
validation, we obtained RRMSE values in the range of 17.7 % to 272.0 % 
and RMAE values in the range of 14.7 % to 172.0 %. Furthermore, when 
considering the top, intermediate and subsoil layers, only in the subsoil 
(0.5 m − 1.0 m) and entire soil profile (0.0 m – 1.0 m) the SOC stocks are 
significantly modeled as a function of Ew, resulting in R2 values of 0.42 
and 0.34, RRMSE values of 128.9 % and 41.1 % and RMAE values of 
106.3 % and 34.2 %, respectively. 

Results further improve when considering the spatially refined 
application of the WaTEM/SEDEM model (i.e. at 10 m resolution). One 
can observe many more statistically significant relationships between 
SOC stock and both Ew and Et at all depths (Table 2). The role of Et seems 
to be particularly important for explaining SOC variations in the top 0.4 
m of the soil profile (p < 0.001), but seems insignificant below 0.7 m. 
Meanwhile, the effect of Ew on SOC stocks seems smaller in this top 
layer. However, Ew remains an important variable for explaining SOC at 
greater depths. Overall, our model performance using erosion estimates 
at 10 m resolution are statistically better than when using estimates at 
20 m resolution. This is particularly true for the upper part of the soil 
profile (0.0 m — 0.4 m) with R2 values of around 0.6. At greater depths, 
performances diminish in terms of R2, RRMSE and RMAE which can be 
partly explained by the fact that we have rather high variability and very 
low SOC values. Note that all model coefficients (for both Et and Ew) are 
positive, indicating that SOC increases with increasing Ew and Et values, 
or in other words predicting higher SOC stocks in depositional than 
erosional sites. 

Concerning the SOC stock in topsoil (0.0 m − 0.3 m), intermediate 
soil (0.3 m − 0.5 m), subsoil (0.5 m − 1.0 m) and total soil (0.0 m − 1.0 
m), the model output shows that Ew and Et are significant variables, 

except for Et in the subsoil. The topsoil (0.0 m – 0.3 m) and total soil (0.0 
m – 1.0 m) seems to have good model performance values, i.e. R2 values 
of 0.68 and 0.62, RRMSE of 15.0 % and 30.5 % and RMAE of 12.7 % and 
26.0 % respectively, which is remarkably better than the results ob
tained when using the model’s default setting. 

Overall, our results indicate that the present approach is less suitable 
for predicting SOC per 0,1 m depth increment (especially at greater 
depth), but is particularly interesting for modelling SOC until a fixed 
reference depth, e.g. top 0.3 m and 1.0 m. Nevertheless our results also 
indicate that (i) Et is for most affecting SOC in the upper 0.5 m of the 
profile, which can be explained by the fact that the considered cropland 
has been tilled until a depth of 30 cm, whereas (ii) Ew tends to have also 
an impact on SOC at greater depths (below 0.5 m of depth), which could 
be the consequence of a SOC stabilization mechanism in the buried 
sediments following the process of re-aggregation within zones char
acterized by significant Ew deposition (Doetterl et al., 2016). 

3.4. SOC mapping 

Given their good performance (Table 2), the topsoil and the entire 
profile models at 10 m resolution were used in combination with the 
corresponding Ew and Et maps to create DSM SOC maps for the topsoil 
(0.0 – 0.30 m) and the entire profile (0.0 – 1.0 m) (Figs. 7, 8). Com
parisons of these DSM SOC maps (Fig. 7) with the two erosion maps 
(Fig. 4) highlight the influence of both water and tillage erosion on the 
spatial distribution of SOC, with low SOC stocks occurring mainly in 
strongly eroded areas (e.g. convexity and steep slopes) and high stocks 
occurring along deposition areas (along the thalweg and, to a lesser 
extent, in the slope concavities). When considering the topsoil SOC map, 
the influence of Ew is in particular strong with high SOC values located 
along the thalwegs (Fig. 4F) in areas where predicted Ew indicate 
depositional values which are typically an order of magnitude bigger 
than elsewhere. 

Overall, our topsoil SOC map corresponds well our observations, 
with half of the samples showing a deviation above 10 % (Fig. 7A). For 
the entire profile, the deviations are somewhat larger, with 20 out of 23 
sample locations exceeding this 10 % (Fig. 7B). Yet, these deviations 
appear to show no clear spatial pattern of these under / over estimation. 
These fairly good model performances are also confirmed by Fig. 8, 
showing a good agreement between observed and predicted SOC stock 
values for these 23 sample locations areas. Nonetheless, one can notice 
that under- or overestimations are somewhat linked to the SOC stock 

Table 2 
Performance of the linear model expressing SOC stock (kg C m− 2) as a function of water erosion (Ew) and tillage erosion (Et) with the level of significance of the 
parameters of Ew and Et variables (with. p < 0.1, * p < 0.05, ** p < 0.01 and *** p < 0.001), coefficient of determination (R2) for the calibration, relative root mean 
square error (RRMSE) (%) and relative mean absolute error (RMAE) (%) for the validation. The upper part of the table considers SOC stocks for every 0.1 m depth 
increment along the entire profile. The lower part of the table presents SOC stocks from the topsoil (0.0 m – 0.3 m), intermediate layer (0.3 m − 0.5 m), the sub soil (0.5 
m − 1.0 m) and entire profile (0.0 m – 1.0 m).   

20 m resolution (default application) 10 m resolution (spatially refined application)  

Calibration LOOCV Calibration LOOCV 

Depth (m) Ew Et R2 RRMSE (%) RMAE (%) Ew Et R2 RRMSE (%) RMAE (%) 

0.0 – 0.1  .  0.25  17.7  14.7 * ***  0.63  12.8  10.0 
0.1 – 0.2    0.14  20.5  15.1 * ***  0.64  14.2  9.9 
0.2 – 0.3    0.11  33.4  26.0 * ***  0.58  24.5  20.8 
0.3 – 0.4    0.19  86.9  78.0  ***  0.67  54.4  44.4 
0.4 – 0.5 .   0.30  112.6  94.8 * **  0.48  96.4  82.3 
0.5 – 0.6    0.22  135.5  113.7  *  0.20  132.3  104.5 
0.6 – 0.7 **   0.42  120.6  99.5 ** *  0.46  109.2  85.1 
0.7 – 0.8 ***   0.50  141.2  111.0 *   0.25  169.4  127.6 
0.8 – 0.9 ***   0.52  130.3  102.8 *   0.23  163.7  124.3 
0.9 – 1.0 *   0.19  272.0  175.0    0.06  231.8  159.3            

0.0 – 0.3    0.16  22.6  17.8 * ***  0.68  15.0  12.7 
0.3 – 0.5 .   0.27  88.7  77.2 * ***  0.64  61.8  53.8 
0.5 – 1.0 **   0.42  128.9  106.3 *   0.26  132.4  98.6 
0.0 – 1.0 *   0.34  41.1  34.2 ** ***  0.62  30.5  26.0  
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value. For the topsoil SOC map, slight overestimations mainly occur for 
lower observed SOC stock values (< 3 kg C m− 2) (Fig. 8A). For the total 
profile, values towards the higher SOC stock values (> 7kg C m− 2) tend 
to be underestimated, while samples characterized by a lower SOC stock 
tend to be overestimated (Fig. 8B). These results are in accordance with 
other empirical regression models which are optimized to correctly 
predict the mean but can’t describe the full variability that occurs (e.g. 
Nearing, 1998). Although a LOOCV procedure has been applied, a future 
methodological improvement could be the application of a K-fold cross- 
validation procedure with a validation / calibration data split of 90 % −
10 % or 80 % − 20 % for instance. This was not possible in the present 
study due to the limited amount of sampling locations. Hence, 
increasing the number of sampling locations will be required. In that 
respect, it could be an option to avoid replicate sampling per sample 
location in order to maintain more or less the overall amount of samples 
while increasing the number of sampling locations. 

3.5. Limitations and future research perspectives 

Current-day large scale DSM studies aiming to quantify SOC stocks at 
catchment, regional or even larger scales often use covariate maps 
characterized by resolutions in the range of 100 m to 1 km. However, 
this study highlights the importance of within-field variability in SOC 
due to erosion. As such, we indicate the need to integrate high resolution 
(c. 10 m) Ew and Et predictions in DSM-approaches in order to obtain 

reliable high-resolution SOC predictions, enabling a more robust 
assessment of the net impact of intensive conventional agricultural 
practices on SOC. We presented an innovative approach to better ac
count for the impact of water and tillage erosion on SOC distribution. 
Nonetheless, some limitations can been highlighted which open inter
esting perspectives for future research:  

- More samples in depositional landforms (i.e. concave and thalweg as 
typically being characterized by a large variation in Ew and Et) 
should be taken to understand relationships between significant 
sediment deposition rates due to water erosion and associated SOC 
stock values and spatial distribution within these particular areas of 
the field.  

- Find the right balance between number of replicates and number of 
sample locations to either (i) increase the number of observations 
enabling a robust modelling approach or (ii) make reliable within- 
location SOC measurements by increasing the number of replicates 
in the composite reducing the random error. By increasing the 
number of observations, we could also change our sampling strategy 
moving from a model based sampling approach to a design based 
sampling approach (e.g. random, systematic, …).  

- Instead of using a model, integrate soil erosion measurements (either 
remote sensing based, e.g. lidar, or on-terrain using a proxy, e.g. 
137Cs) in the present approach in order to link directly erosion with 
SOC-value and its vertical distribution. This will be in particular 

Fig. 7. Map of SOC stock value predictions (kg m− 2) in the (A) top soil (0.0 m − 0.3 m) and the (B) total soil profile (0.0 m – 1.0 m). The colored dots show the 
relative under- / overestimation at each sample location. 

Fig. 8. Predicted versus observed SOC stock values (kg C m− 2) in (A) the top soil (0.0 m – 0.3 m) and (B) the total soil (0.0 m – 1.0 m); the 1:1 line is shown in orange; 
the linear regression line in dashed blue with its equation and R2 value. 
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important in the Ew depositional areas where the WaTEM/SEDEM 
model seems to underperform by predicting in some pixels extreme 
high values and rather high variability along the thalweg-axe. 

- Although WaTEM/SEDEM is most probably the best model predict
ing the spatial distribution of both long-term water and tillage 
erosion, improvements could still be considered with in particular 
improving (i) the DEM resolution and (ii) the water erosion deposi
tion component, with a special focus on the routing function.  

- Another soil erosion model than WaTEM/SEDEM may need to be 
considered when adopting the proposed DSM approach under spe
cific conservation agriculture conditions such as no-till in which the 
contribution of Et will be nihil. 

- Enlarging the spatial extent of the sampling area considering multi
ple fields characterized by different topographic features and agri
cultural practices in order to apply the present approach within a 
first-order catchment (few 100s ha).  

- Apply the present approach on the depth distribution model of 
Meersmans et al., (2009b) in order to model the associated 
parameter-values (i.e. SOCsurf, Td, α, SOCinf) as a function of Ew and 
Et, and as such, obtain a full (non-linear) 3D model, rather than the 
usage of linear regression models per depth increments as being 
presented here. 

4. Conclusion 

We presented a novel approach to map the spatial distribution of 
SOC in relation to simulated patterns of water and tillage erosion and 
deposition. Our results highlighted the remarkably large impact of these 
erosion and deposition processes within a conventionally cultivated 
cropland. Water erosion had an effect on the entire profile while tillage 
erosion had mostly an impact on topsoil SOC. The SOC stocks are around 
50 % lower on slopes subject to erosion than on plateaus and consid
erably higher in sediment deposition zones (along the thalweg and to a 
lesser extent in the slope concavity). Our results pave the way for further 
studies on other cropland with different pedological and topographical 
characteristics and agro-management practices; and more specifically, 
with a particular focus on the distribution of SOC within the sediment 
deposition zones. This reinforces the fact that additional cropland soil 
and erosion data are needed in order to build more advanced models 
that may allow the integration of water and tillage erosion predictions in 
DSM-approaches in order to obtain reliable high-resolution SOC 
predictions. 

CRediT authorship contribution statement 

P. Baert: Writing – original draft. M. Vanmaercke: Methodology, 
Software, Validation, Writing – original draft. J. Meersmans: Concep
tualization, Methodology, Supervision, Validation, Writing – original 
draft, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

We’re grateful to E. Vranckx for supporting this research by giving 
access to the studied field. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.geoderma.2024.116928. 

References 

Bakker, M.M., Govers, G., Jones, R.A., Rounsevell, M.D.A., 2007. The Effect of Soil 
Erosion on Europe’s Crop Yields. Ecosystems 10, 1209–1219. https://doi.org/ 
10.1007/s10021-007-9090-3. 

Boardman, J., Vandaele, K., 2010. Soil erosion, muddy floods and the need for 
institutional memory. Area 42, 502–513. https://doi.org/10.1111/j.1475- 
4762.2010.00948.x. 
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Utilisation d’une méthode de calcul du facteur K de l’équation universelle de perte 
de sol. Bull. Société Géographique Liège 127–140.  
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Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., 
Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an 
ecosystem property. Nature 478, 49–56. https://doi.org/10.1038/nature10386. 

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link 
between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage 
Res. 79, 7–31. https://doi.org/10.1016/j.still.2004.03.008. 

Sleutel, S., De Neve, S., Singier, B., Hofman, G., 2006. Organic C levels in intensively 
managed arable soils – long-term regional trends and characterization of fractions. 
Soil Use Manag. 22, 188–196. https://doi.org/10.1111/j.1475-2743.2006.00019.x. 

Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., 2002. Agricultural 
sustainability and intensive production practices. Nature 418, 671–677. https://doi. 
org/10.1038/nature01014. 

Van Oost, K., Govers, G., Desmet, P., 2000. Evaluating the effects of changes in landscape 
structure on soil erosion by water and tillage. Landsc. Ecol. 15, 579–591. 

Van Oost, K., Govers, G., De Alba, S., Quine, T.A., 2006. Tillage erosion: a review of 
controlling factors and implications for soil quality. Prog. Phys. Geogr. Earth 
Environ. 30, 443–466. https://doi.org/10.1191/0309133306 pp487ra. 

Van Rompaey, A., Govers, G., Puttemans, C., 2002. Modelling land use changes and their 
impact on soil erosion and sediment supply to rivers. Earth Surf. Process. Landf. 27, 
481–494. https://doi.org/10.1002/esp.335. 

Van Rompaey, A.J.J., Verstraeten, G., Van Oost, K., Govers, G., Poesen, J., 2001. 
Modelling mean annual sediment yield using a distributed approach. Earth Surf. 
Process. Landf. 26, 1221–1236. https://doi.org/10.1002/esp.275. 

van Wesemael, B., Paustian, K., Meersmans, J., Goidts, E., Barancikova, G., Easter, M., 
2010. Agricultural management explains historic changes in regional soil carbon 
stocks. Proc. Natl. Acad. Sci. u. s. a. 107, 14926–14930. https://doi.org/10.1073/ 
pnas.1002592107. 

Verstraeten, G., Van Rompaey, A., Poesen, J, Van Oost, K., Govers, G. & Stalpaert, L., 
2003. Thema 2.20 Kwaliteit Bodem: erosie. In: MIRA-T 2003, Milieu en 
Natuurrapport Vlaanderen, thema’s, Vlaamse Milieumaatschappij, 345-355. 

Verstraeten, G., Poesen, J., 2001. Factors controlling sediment yield from small 
intensively cultivated catchments in a temperate humid climate. Geomorphology 40, 
123–144. https://doi.org/10.1016/S0169-555X(01)00040-X. 

Verstraeten, G., Van Oost, K., Van Rompaey, A., Poesen, J., Govers, G., 2002. Evaluating 
an integrated approach to catchment management to reduce soil loss and sediment 
pollution through modelling. Soil Use Manag. 18, 386–394. https://doi.org/ 
10.1111/j.1475-2743.2002.tb00257.x. 

Verstraeten, G., Poesen, J., Demarée, G., Salles, C., 2006. Long-term (105 years) 
variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel 
(Brussels, Belgium): Implications for assessing soil erosion rates. J. Geophys. Res. 
Atmospheres 111. https://doi.org/10.1029/2006JD007169. 
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