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Simulators as generative models

A simulator prescribes a generative model that can be used to simulate data x.

Collider data Cosmology data Molecular dynamics

particles ~ p(particles) particles ~ p(particles) configurations ~ p(configurations)
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Conditional simulators

A conditional simulator prescribes a way to sample from the likelihood p(x|8),
where 6 is a set of conditioning variables or parameters.

Cosmology data
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Credits: Siddharth Mishra-Sharma, 2023.
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Intractable likelihoods

The (modeled) data generating process may involve additional latent variables z
that are not observed, leading to likelihoods

p(x16) = [ plx,2/6)d.

In this case, evaluating the likelihood becomes intractable.
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5/33



p(2p|0)

Latent variables Parameters
of interest
Parton-level Theory

momenta parameters




p(z,]0) = /p(zpe)p(ZS‘Zp)dzp

Latent variables Parameters
of interest

Shower  Parton-level Theory
splittings momenta parameters

Zy —— Zp —— )

e NG AT
TN l_.
s DT Do
I S
$A N 8y

6/33



p(24l6) = [[ 0(2y|0)p(a, 2y p(za )2y da,
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p(x16) = [ b0y 09p(2 2, ot 2 () i
NG

yikes!
. Parameters
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of interest
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interactions splittings momenta parameters
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[Image source: M. Cacciari,
G. Salam, G. Soyez 0802.1189]
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What can we do with generative models?

Produce samples and Evaluate densities Encode complex priors
make predictions
p(x[0) p(x)
x ~ p(x|0)
p(x|0)p(6
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Inference
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. Frequentist inference: find @ that maximizes the likelihood p(x|6) or build a

confidence interval thereof.

« Bayesian inference: compute the posterior distribution p(f|x) = 2(x9)p(6)

p(x)

Statistical inference becomes challenging when the likelihood p(x|6) is
implicit or intractable. Simulation-based inference algorithms are needed.
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Parameters ¢ —_— Simulator —_—

Latent 2z

Observables x

Prediction:

Well-motivated mechanistic, causal model

Simulator can generate samples = ~ p(z|6)

<€

Inference:

Interactions between low-level components lead to
challenging inverse problems

Likelihood p(z|0) = /dz p(x, z|0) is intractable



The frontiers
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(Frequentist) Approximate the likelihood p(x|0) as
p(x|0) ~ p(x|0) = p(s(x)|0) for some (well-chosen) summary statistic s(-).
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Observables

Prior Parameters Simulator
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(Bayesian) Approximate the posteriorp(@\x) using Approximate Bayesian

Computation.
Issues:

e How to choose x' = s(x)?€? || - ||?

e No tractable posterior.

e Need to run new simulations for new data or new prior.
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Many domains of science have developed complex simulations to
describe phenomena of interest. While these simulations provide
high-fidelity models, they are poorly suited for inference and lead
to challenging inverse problems. We review the rapidly devel-
oping field of simulation-based inference and identify the forces
giving additional momentum to the field. Finally, we describe how
the frontier is expanding so that a broad audience can appreciate
the profound influence these developments may have on science.

statistical inference | implidt models | likelihood-free inference |
approximate Bayesian computation | neural density estimation

echanistic models can be used to predict how systems

will behave in a variety of circumstances. These run the
gamut of distance scales, with notable examples including par-
ticle physics, molecular dynamics, protein folding, population
genetics, neuroscience, epidemiology, economics, ecology, cli-
mate science, astrophysics, and cosmology. The expressiveness of
programming languages facilitates the development of complex,
high-fidelity simulations and the power of modern computing
provides the ability to generate synthetic data from them. Unfor-
tunately, these simulators are poorly suited for statistical infer-
ence. The source of the challenge is that the probability density
{or likelihood) for a given observation—an essential ingredient
for both frequentist and Bayesian inference methods—is typi-
cally intractable. Such models are often referred to as implicit
models and contrasted against prescribed models where the like-
lihood for an observation can be explicitly calculated (1). The
problem setting of statistical inference under intractable likeli-
hoods has been dubbed likelihood-free inference—although it
is a bit of a misnomer as typically one attempts to estimate
the intractable likelihood, so we feel the term simulation-based
inference is more apt.

The intractability of the likelihood is an obstruction for scien-
tific progress as statistical inference is a key component of the
scientific method. In areas where this obstruction has appeared,
scientists have developed various ad hoc or field-specific meth-

the simulator—is being recognized as a key idea to improve the
sample efficiency of various inference methods. A third direction
of research has stopped treating the simulator as a black box and
focused on integrations that allow the inference engine to tap
into the internal details of the simulator directly.

Amidst this ongoing revolution, the landscape of simulation-
based inference is changing rapidly. In this review we aim to
provide the reader with a high-level overview of the basic ideas
behind both old and new inference techniques. Rather than
discussing the algorithms in technical detail, we focus on the
current frontiers of research and comment on some ongoing
developments that we deem particularly exciting.

Simulation-Based Inference

Simulaters. Statistical inference is performed within the context
of a statistical model, and in simulation-based inference the sim-
ulator itself defines the statistical model. For the purpose of this
paper, a simulator is a computer program that takes as input a vec-
tor of parameters #, samples a series of internal states or latent
variables z ~ py(z|#. z<,). and finally produces a data vector
r ~ pfz|f, z) as output. Programs that involve random samplings
and are interpreted as statistical models are known as probabilis-
tic programs, and simulators are an example. Within this general
formulation, real-life simulators can vary substantially:

e The parameters & describe the underlying mechanistic model
and thus affect the transition probabilities p, (|0, z.-,). Typ-
ically the mechanistic model is interpretable by a domain
scientist and & has relatively few components and a fixed
dimensionality. Examples include coefficients found in the
Hamiltonian of a physical system, the virulence and incubation
rate of a pathogen, or fundamental constants of Nature.

¢ The latent variables = that appear in the data-generating pro-
cess may directly or indirectly correspond to a physically mean-
ingful state of a system, but typically this state is unobservable
in practice. The structure of the latent space varies substantially
between simulators. The latent variables may be continuous
or dizerete and the dimensionality of the latent snace mav be
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The adoption of simulation-based inference has been growing steadily since
then, with new algorithms and applications pushing the boundaries of what is

possible.

Number of Simulation-based Inference Papers by Year

160

1zo

5
7

m
=}
1

Number of papers

a
a

4

o

2

=}

o T[]
B B 2 E E B BB 3
BE R EEREERER

=}

001

Credits: simulation-based-inference.org, 2024.

]
=
=1
51

4
b
¥

a3
AR

Bar

q
A

g
A

5
b

2 2 8 8 88 &

- =} =1
A R AR ERAER

Papers

The lst is autornatically compiled each day. Should you observe any inaccuracies or concerns, kindly bring them to our attention.
Additionally, if you believe a new paper aligns with the topic, feel free to submit it
Visualize the annual growth in the number of publications,
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https://simulation-based-inference.org/

Developments in deep learning (e.g., diffusion models, transformers, GNNs, etc)
have continued to scale up simulation-based inference to higher dimensional
simulation models (both in the number of parameters @ and size of the data x).

Forward SDE (data — noise)
dz(t) = f(t)z(t)dt + g(t)dw(t) —— z1.1(¢)

Reverse SDE (noise — data)

Rozet and Louppe et al (2023): "We introduce score-based data assimilation for trajectory inference. We
learn a score-based generative model of state trajectories of a high-dimensional dynamical system and
use it for the assimilation of noisy observations.”

Credits: Rozet and Louppe, 2023.


https://arxiv.org/pdf/2306.10574.pdf

Active learning remains largely unexplored. Beyond greedy strategies, little
attention has been given to the informed selection of simulations for building a
training set.

Current paradigms cannot deal with expensive simulators (e.g, climate
models, cosmological simulations).



Extracting side information based on 6, z, x
remains challenging due to implementation
constraints.

However, designing inference networks that
leverage domain knowledge (e.g., symmetries,
conservation laws) or the structure of the
simulator (e.g., hierarchical models) has shown
promising results.

Rouillard et al (2024): "We demonstrate the ability of PAVI to tackle
large neuroimaging hierarchical inference problems. For each of
the 59000 vertices of every of the 1000 subjects, we infer a
probabilistic label to belong to one of the 7 functional networks.

This amounts to inferring over 400 million latent variables."

Credits: Rouillard et al, 2023; Rouillard, 2024.
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https://arxiv.org/pdf/2308.16022.pdf

A case study

Hermans et al, "Constraining dark matter with stellar streams”, 2021.
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Can we constrain the nature of dark matter from cosmological observations?
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Image credits: C. Bickel/Science; D. Erkal.

Palomar 5

™ (Pal5) stream
Pal5 was discovered in 2001 as
the first thin stream formied from
- * a globular cluster. Its current orbit
1 takes it far over the galactic center.

Globular clusters
These hives typically hold

100,000 stars or fewer and give
rise to long. thin streams.

5 subhaloes

GD1 stream
Discovered in 2006, GD1is

the longest known thin stream,
stretching across more than half the ¥
northern sky. It contains a gap that could
be the scar of a dark matter collision
500 million years ago. Pl

10 0 10 20 an
Re-scaled angle along

stream (degrees)

VAWASK!


https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://t.co/U6KPgLBdpz?amp=1

p(GD]- ‘ mMwWDM , tage )p(mWDM ) tage )
p(GD-1)

p(mWDM y Lage ‘ GDl) —
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3UE

Neural ratio estimation (NRE)

The likelihood-to-evidence r(x|0) = ]ZE?—,LO;) = z% ratio can estimated from
a binary classifier d(6, x), even if neither the likelihood nor the evidence can be
evaluated.

_

0,x ~ p(0,x)

Simulator

3 o 7 (x|6)

/ classifier

00000
Q000

Simulator

0,x ~ p(0)p(x)

Credits: ,2015; ,2020.


https://arxiv.org/pdf/1506.02169.pdf
http://proceedings.mlr.press/v119/hermans20a/hermans20a.pdf

‘%

The solution d found after training approximates the optimal classifier

p(0,x)

%)~ d 6 x) = G+ PO

Therefore,

p(x[0)  p(6,x)

&) =5 T pOee)  1- d(6,x)
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Parameters @ >

| 0,
Observables | /) U R
’ o g Approximate
() likelihood IR ,
‘ ratio S0 O P
Simulator arg min L[g] — 7#(2|f) ———> _5": :" _,"'
g H |‘ . . .‘.'

1. Simulation 2. Machine Learning

Train NN classifier, interpret as

R imulat d dat o . .
un simuiatorand save data likelihood ratio estimator

p(0]x) ~ 7 (x|60)p()

Observed data Prior

3. Inference

Amortized: cheap
to repeat for new data



NRE for stellar streams

Observed stellar density N ‘a
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Credits: Hermans et al, 2021.
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https://arxiv.org/pdf/2011.14923

Preliminary results for GD-1 suggest a preference for CDM over WDM.
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Wait a minute Gilles...
| can't claim that in a paper!
Your neural network must be wrong!
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Expected coverage
EC(p,a) = Eppx) 0 € Op(g1x) ()]

If the expected coverage is close to the nominal
coverage probability a;, then the approximate
posterior p is calibrated.

o If EC < o, then the posterior is
underdispersed and overconfident,

o If EC > @, then the posterior is overdispersed

and conservative.

Credits: Hermans et al, 2021; Siddharth Mishra-Sharma, 2021.
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https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2110.01620

Balancing inference
for conservative posteriors

NRE BNRE NRE C BNRE C NPE BNPE
¥ B A
D .
& o W B V.
v 'x/ ot '://
J’/ 'f/‘/
K z
p #
- P
2
o K>
o R
] .7
i R g
4 K
wv "
e
3
=2
=
z
B
-
” “ . 5
c = o,
8 &u y 5
é .. o
¥
E ge 7

65536 = =+ Calibrated estimator

[l
88
N
8

|

Conservative posteriors can be obtained by enforcing d to be balanced, i.e. such
that Ep(p,x) [d(8: %)] = Ep(g)p(x) [1 — d(6, x)].

Credits: Delaunoy et al, 2022; Delaunoy et al, 2023. 30/33


https://arxiv.org/abs/2208.13624
https://arxiv.org/abs/2304.10978

Summary
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Simulation-based inference is a major evolution in the statistical capabilities
for science, as it enables the analysis of complex models and data without
simplifying assumptions.

Obstacles remain to be overcome, such as the curse of dimensionality, the
need for large amounts of data, or the necessary robustness of the
inference network.



The next frontiers? Let's find out this week!
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