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“The woods are lovely, dark and deep,
But I have promises to keep, And

miles to go before I sleep, And miles
to go before I sleep.”

Robert FrosT, (1874 — 1963)
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THESIS ABSTRACT

This PhD dissertation explores various Quantitative Structure-Retention
Relationship (QSRR) modelling approaches to enhance the method de-
velopment process in analytical chemistry. By establishing a predictive
framework that relates the chemical structure of analytes to their chro-
matographic retention behaviours, this approach aims to minimize experi-
mental efforts and increase efficiency in developing robust chromatographic
methods for pharmaceutical compound separation and analysis. For in-
stance, instead of empirically testing a broad range of conditions, QSRR
models enable the prediction of analytes’ retention behaviour under diverse
experimental conditions based on their molecular structure. This method
can significantly decrease the necessity for experimental trials by focus-
ing efforts on conditions most likely to enhance separation. In addressing
the challenges that analytical chemists encounter, particularly in retention
prediction modelling with varying data availability, this study sets out to
bridge the gap in the field. These challenges range from determining a start-
ing point in situations of data scarcity to selecting the optimal modelling
strategy when faced with large datasets ready for model training. Fur-
ther complexities arise in choosing the appropriate modelling approach as
experimental variations expand and the nature of the dataset evolves. Rec-
ognizing the absence of a clear, definitive strategy for QSRR modelling, this
study began with Single Target Retention Prediction Modelling. A detailed
QSRR strategy was developed, incorporating a wide range of methods for
selecting descriptors and utilizing a variety of regression algorithms, includ-
ing linear, non-linear, parametric, non-parametric, and ensemble methods,
all developed to predict retention times across different pH conditions in
Reversed-Phase Liquid Chromatography (RPLC). Each condition, referred
to as a target, was analysed individually. By implementing this comprehen-
sive QSRR approach, the study aims to systematically tackle the aforemen-
tioned challenges, thereby setting a foundation for future progress in this



area. After exploring single-target QSRR, the research progressed to Mul-
titarget QSRR modelling. This phase compared the accuracy of retention
predictions using two different approaches: one that creates separate models
for each condition (single-target) and another that uses a unified model to
predict retention times across all conditions simultaneously (multitarget).
The goal was to find a more efficient way to model multiple target prop-
erties at once, potentially making the process quicker and more compact.
This has significant implications for improving chromatographic separation
methods, offering analytical chemists a valuable tool in their method de-
velopment efforts. The thesis advances QSRR modelling by incorporating
Transfer Learning, to investigate enhancements in both accuracy and model
efficiency, particularly when data is scarce. This research delved into em-
ploying both physicochemical properties and image-based features of small
molecules for QSRR modelling using techniques emerging from advanced
Artificial Intelligence, aiming to broaden the methodological framework
and improve predictive capabilities. In summary, this thesis offers valu-
able insights and tools for pharmaceutical research and development. By
integrating computational modelling with RPLC, it introduces a systematic
approach and various potential strategies for analytical chemists to explore,
aiming to predict small molecule separation. This could ultimately lead to
optimized compound separation with reduced time and cost expenditures.
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RESUME

Cette thése de doctorat explore diverses approches de modélisation de la
Relation Quantitative Structure-Rétention (QSRR) afin d’améliorer le pro-
cessus de développement de méthodes en chromatographie liquide. En étab-
lissant un cadre prédictif qui relie la structure chimique des analytes & leur
rétention chromatographique, cette approche vise & minimiser les efforts ex-
périmentaux et & augmenter 'efficacité dans le développement de méthodes
chromatographiques robustes pour la séparation et I’analyse de composés
pharmaceutiques.

Cette thése a pour objectif de répondre a divers défis auxquels les scien-
tifiques sont confrontés lors du développement de modéles QSRR. Un pre-
mier défi est le choix de 'approche de modélisation appropriée en fonction de
la taille de la base de donées disponible et de la nature des données constitu-
ant celui-ci. Reconnaissant ’absence d’une stratégie claire et définitive pour
la modélisation QSRR, cette étude a commencé par ’établissement d’une
stratégie QSRR générique pour la modélisation de la prédiction de réten-
tion dans le cas d’une condition chromatographique unique. Cette stratégie
incorpore un large éventail de méthodes pour la sélection des variables et
I'utilisation de divers algorithmes de régression, y compris linéaires, non
linéaires, paramétriques, non paramétriques et des méthodes d’ensemble,
tous développés pour prédire les temps de rétention dans différentes condi-
tions de pH en chromatographie liquide en phase inverse (RPLC). Chaque
condition de pH, a été analysée individuellement. En mettant en ceuvre
cette approche QSRR compléte, 1'étude vise a aborder systématiquement
les défis mentionnés précédemment, jetant ainsi les bases pour des progrés
futurs dans ce domaine.

Aprés avoir exploré le QSRR pour des conditions uniques, la recherche a
progressé vers la modélisation QSRR multi-conditions. Cette phase a com-
paré I'exactitude des prédictions de rétention en utilisant deux approches
différentes : l'une qui crée des modéles séparés pour chaque condition
(cible unique) et une autre qui utilise un modeéle unifié pour prédire les
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temps de rétention pour toutes les conditions simultanément (multicibles).
L’objectif était de trouver une maniére plus efficace de modéliser la rétention
a différentes conditions simultanément, rendant potentiellement le processus
plus rapide et plus performant. Ceci a des implications significatives pour
I’amélioration des méthodes de séparation chromatographique, offrant aux
analystes un outil précieux dans leurs efforts de développement de méthode.
La modélisation multicible a commencé par 'utilisation d’approches con-
ventionnelles puis a investigué I'intérét de I’ Apprentissage par Transfert en
termes de précision et d’exactitude des prédictions, particuliérement lorsque
les données sont peu nombreuse. Cette partie du travail s’est penché sur
I'utilisation des propriétés physicochimiques et des caractéristiques basées
sur 'image de petites molécules pour la modélisation QSRR en utilisant
des techniques issues de 'Intelligence Artificielle avancée, visant & élargir le
cadre méthodologique et & améliorer les capacités prédictives. En résumé,
cette thése offre des outils pour la recherche et le développement pharma-
ceutiques. En intégrant la modélisation computationnelle avec la RPLC,
elle introduit une approche systématique et diverses stratégies potentielles
pour prédire la séparation de petites molécules. L’objectif final est une sé-
paration optimisée des composés tout en réduisant les dépenses en termes
de cofit et de temps.
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Table 1: List of abbreviations

Abbreviation Definition

AB Adaptive Boosting

ABC-PLS Artificial Bee Colony Partial Least
Squares

ACN_Data ACN _Data dataset name

AD Applicability Domain

Al Artificial Intelligence

ANN Artificial Neural Network

BRR Bayesian Ridge Regression

CFS Correlation-based Feature Selection

CNN Convolutional Neural Network

Ccv Cross-validation

DNN Deep Neural Network

DoE Design of Experiments

ECFP Extended Connectivity Fingerprints

FA-PLS Firefly Algorithm Partial Least Squares

FPA-PLS Flower Pollination Algorithm Partial
Least Squares

GA Genetic Algorithms

GA-PLS Genetic Algorithm-Partial Least Squares

GB Gradient Boosting

GBR Gradient Boosted Regression

GCN Graph Convolutional Network

GNN Graph Neural Network

iPLS Interval Partial Least Squares

KFold k-Fold Cross-Validation

LASSO Least Absolute Shrinkage and Selection
Operator

LC Liquid Chromatography

LFER Linear Free-Energy Relationship

LOO Leave-One-Out (cross-validation)

LSS Linear Solvent Strength model

LSER Linear Solvation Energy Relationship

MAPE/MRE Mean Absolute Percentage Error/Mean
Relative Error

MCDA Multi Criteria Decision Analysis

MD Molecular Descriptor

MIA Multivariate Image Analysis

ML Machine Learning
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Abbreviation

Definition

MLP

MLR

MSE

MTL

MT QSRR
MTP

PLS
PSO-PLS

QbD
QSAR

QSPR
QSRR
QSTR

R2

RC

RF

RFE
RFR
RGCN
RIKEN
RMSE
RPLC
ReLU
SELFIES
SHAP
SMARTS
SMILES

SMIRKS
SMRT

ST QSRR
STP

SVR

SYBYL Line Notation

Multi-Layer Perceptron

Multiple Linear Regression

Mean Squared Error

Multi Task Learning

Multi-Target QSRR

Multi-Target Prediction

Partial Least Squares method

Particle Swarm Optimization Partial
Least Squares

Quality by Design

Quantitative Structure-Activity Relation-
ship

Quantitative Structure-Property Rela-
tionship

Quantitative Structure-Retention Rela-
tionship

Quantitative Structure-Toxicity Relation-
ship

Coefficient, of Correlation

Regressor Chain

Random Forest

Recursive Feature Elimination

Random Forest Regressor

Relational Graph Convolutional Network
RIKEN dataset name

Root Mean Squared Error
Reversed-Phase Liquid Chromatography
Rectified Linear Unit

Self-referencing Embedded Strings
SHapley Additive exPlanations

SMILES Arbitrary Target Specification
Simplified Molecular Input Line Entry
System

SMILES Reaction Transform Language
SMRT dataset name

Single-Target QSRR

Single-Target Prediction

Support Vector Regression

A chemical structure representation for-
mat
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Abbreviation

Definition

TB
TL

tR

UVE
2D-QSAR

3D-QSAR

Transformation-Based

Transfer Learning

Retention Time

Uninformative Variable Elimination
Two-Dimensional Quantitative Structure-
Activity Relationship

Three-Dimensional Quantitative
Structure-Activity Relationship
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CHAPTER 1. INTRODUCTION

Preamble

This thesis introduces a comprehensive Quantitative structure retention re-
lationship (QSRR) studies by explaining first the QS(X)R, the umbrella
term that includes QSRR. This initial discussion connects QSRR to other
related concepts. The content is structured into three main parts of QSRR:
1. Structure (S): Discuss the structural properties of the compounds, in-
cluding how these structures are represented and the various structural de-
scriptors used. 2. Retention (R): Focus on the property to be predicted,
namely the retention time, explaining the calculation methods, data col-
lection processes, and other relevant considerations. 3. Relationship (R):
Outlines the core of QSRR modeling, covering various methods, including

state-of-the-art techniques and workflow detailing every individual steps of
QSRR modelling.
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EF Laying the Foundation of QSRR: QS(X)R

Quantitative structure-(X)property relationship (QSXR) modelling is a sci-
entific approach that involves establishing mathematical correlations be-
tween the chemical response of structurally related compounds and quan-
titative chemical attributes that define their molecular features [2|. This
approach aims to develop a formalism that describes the behaviour of chem-
icals in terms of their physicochemical properties, biological activity, toxic-
ity, or retention data. By leveraging the relationship between the structural
characteristics of chemical compounds and their properties, QS(X)R, which
stands for Quantitative Structure-(X)-Relationship modelling (Figure 1.1),
provides valuable insights into the underlying mechanisms governing chem-
ical behaviour, where "X’ represents a property of interest such as activity,
retention, toxicity, etc. The specific nomenclature used for modelling de-
pends on the nature of the response being modelled. For instance, in the
quantitative structure-activity relationship (QSAR), the property(X) of in-
terest is activity. In the quantitative structure-toxicity relationship (QSTR),
"X signifies toxicity, and in the quantitative structure-retention relationship
(QSRR), the focus is on retention time(X).

Molecular ® Z g g
2 g 7

o Structure d sl = 5 3
2 Z §

Descriptors

Figure 1.1: A simple schematic overview of QS(X)R

In QS(X)R, mathematical relationships are developed to predict the be-
haviour of molecules, including new chemicals or hypothetical molecules|15].
The basic formalism of QS(X)R can be mathematically represented as fol-
lows:

Property of interest = f(chemical attributes)

The term "chemical attributes” pertains to the characteristics defining
the observable behaviour or response (such as activity, toxicity, or retention

6
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time) of the studied chemical compounds. These attributes, also called de-
scriptors, are quantitative information about the chemistry of molecules that
can be obtained through experimental analysis or theoretical algorithms,
and the responses, also known as targets, are obtained from experiments.
QSRR is a method used to understand how changes in one or sometimes
more responses (known as Y-variables) can be linked to changes in vari-
ous factors (called X-variables), with the goal of predicting or explaining
these outcomes. The Y-variables are usually dependent on the X-variables
(descriptors), which are independent. This technique allows the retention
prediction of novel, not yet synthesized compounds, solely from their struc-
tural descriptors|[16].

EE] Goals and Application of QSRR

The goal of Quantitative Structure-Retention Relationships (QSRR) in chro-
matography is to construct a robust predictive model by identifying molec-
ular descriptors that strongly correlate with the retention behaviour of an-
alytes(Figure 1.2). This model is built upon a thorough understanding of
the physicochemical properties of molecules and the mechanisms governing
their chromatographic separation. It’s main goal is to reduce the time and

Identification of g Determination of «— _ Pl BN . o
. X . molecular mechanism of Quantitative Retention prediction and
informative descriptprs - ) o
separation comparision of columns analyte identification

T |

. Evaluation of relative biological
activity

Determination of complex
physicochemical properties

Figure 1.2: Goals of QSRR studies|2]

cost of chromatographic separations and method development. Moreover,
the QSRR tool could represent an advantage considering the complexity of
chromatographic separations, where several factors can influence the reten-
tion time of a compound, such as the type of column, the mobile phase,
the temperature, the pressure, and the chemical structure of the compound
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itself[17]. Ultimately, QSRR endeavours to enhance the efficiency of chro-
matographic analysis, facilitating the identification of unknown compounds
in complex mixtures[18] and enhancing the throughput and reliability of
analytical methods used in scientific research.

1.3.1 Applications of QSRR models

QSRR modelling finds numerous applications in the field of analytical chem-
istry, particularly in enhancing the efficiency and effectiveness of chromato-
graphic processes. Some applications include:

o Predicting Retention Times and Method development: By retention time
predictions of compounds, QSRR applications facilitate the optimization
of chromatographic separations, significantly saving time and resources
during method development. Furthermore, they aid in selecting optimal
conditions for separating compounds of interest, including the choice of
appropriate column and mobile phase composition, based on the chemical
properties of the analytes[19, 20].

o Analyte Identification: By predicting retention times based on molecular
structure, QSRR models assist in the identification of unknown compounds
in complex mixtures. This is useful in various applications including en-
vironmental analysis, food safety, and toxicology studies where unknown
compounds need to be identified[21, 22].

o Chemical Property Estimation: QSRR models can be used to estimate
physicochemical properties of compounds, such as lipophilicity, that are
important for drug absorption, distribution, metabolism, and excretion
(ADME) studies|21]. This application is crucial in pharmaceutical research
for predicting drug behaviour in the body.

e Metabolomics and Proteomics: In the study of metabolites and proteins,
QSRR models facilitate the separation and analysis of complex biological
samples, identification of products contributing to advances in life sciences
and biomedical research[23, 24].

e Drug Discovery: QSRR models are instrumental in drug discovery pro-
cesses, where they are used to predict the chromatographic behaviour of
new chemical entities, thus speeding up the screening and development of
potential drug candidates|25].

QSRR can be applied in other fields apart from pharmaceutical sciences
such as:
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e Environmental Monitoring: In environmental chemistry, QSRR models
help predict the behaviour of pollutants in chromatographic systems, aid-
ing in the detection and quantification of these substances in environmental
samples|26].

e Food Analysis: QSRR modelling is used in food chemistry to identify and
quantify food components and contaminants, ensuring food safety and
quality.

e Petrochemical analysis: To predict the retention times of petroleum com-
pounds in crude oil, allowing for more efficient refining processes and prod-
uct development|27].

K] Fundamentals of QSRR

There are mainly three aspects to explore in the QSRR study:
1. Molecular structure or features
2. property to be predicted- Retention time;
3. relationship, the methodology or algorithms to be used for the prediction.

These aspects make up the building blocks of QSRR(Figure 1.3) which are
described in more detail below.

e ettt

Structure

Figure 1.3: QSRR: Building blocks of study
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1.4.1 Structure: The basic dogma of chemistry of
compounds

QSRR is a powerful tool in computational chemistry that relates the structure-
derived properties of molecules to their chromatographic retention behaviour.
Such structure-derived properties are known as molecular descriptors. To
derive such properties, it is important to represent molecules in a digital
format that makes them machine-readable and facilitates retention predic-
tions(Molecular representations). A few examples are shown in Figure 1.6
(a) and (b). There can be multiple formats that can be used: SMILES,
SMARTS, SMIRKS, OpenSMILES, SYBYL Line Notation and recently,
SELFIES|28|. SMILES is the most frequently used representation and is
used in this thesis for the calculation of structure-derived features. These
are Simplified Molecular Input Line Entry Systems (SMILES) which trans-
late a chemical’s three-dimensional structure into a string of symbols to
make them understandable by computer software. However, descriptors de-
rived from SMILES in QSRR studies lack 3D conformational information
hence, potentially overlooking critical spatial and dynamic molecular inter-
actions. For example, the SMILE structure of Ibuprofen is:
CC(C)cc1=Ccc=Cc(C=C1)Cc(Cc)c(=0)0

To understand this notation it is important to know the symbols:

¢ Representing Atoms
Some examples of atomic symbols and their corresponding SMILES nota-
tions:

— C: methane (CHy)
— O: water (H20)

Usually, hydrogen is not shown in SMILES representations.
e Representing Bonds:

— single —
— double =
— triple #

Normally single bonds and aromatic bonds do not need to be written in
the SMILES notation. Branches are specified by enclosures in parentheses.
Other rules are explained in detail in article [29].

10
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Molecular Descriptors There are multiple types of molecular descriptors
that can be used for QSRR studies(Figure 1.4), including physicochemical
descriptors, categorization based on dimensions, fingerprints, graphs-based
descriptors, image-based descriptors, and transformed descriptors such as
principal components (PCs).

Physicochemical Descriptors Physicochemical descriptors provide
information about the molecular properties of a compound’s physical and
chemical characteristics [3]. They can be further classified into the following
subcategories:

Calculated from the 3D
coordinates of the atoms.
Capture the 3D information

regarding the molecular size,
shape, and atoms distribution.
e.g., WHIM, MoRSE and
GETAWAY, etc.

P QSRR

(@ Simple and commonly
used descriptors reflecting
the chemical information

2 of a molecule without any
»» information of atom

> connectivity.

»* €.g Atom and bond

.~ counts, MW. etc. Used to describe
r'e electronic aspects of the
o molecule or atoms bonds
< and moleculer fragments.
oo e.g Dipolemoment, HOMO, LUMO

energy, etc.

9luo yo90\3

Figure 1.4: Schematic diagram showing multiple descriptors|3]

e Constitutional Descriptors: Capture information about the molecular com-
position, such as the number of atoms, functional groups, and molecular
weight.

o Geometrical Descriptors: Consider the molecular shape and size, including
molecular volume, surface area, and molecular diameter.

11
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e Topological Descriptors: Represent the connectivity and arrangement of
atoms in a molecule, such as the number of bonds, branching, and cyclicity.

e Quantum Descriptors: Use quantum mechanical calculations to evaluate
electronic properties, such as molecular orbitals, electron density, and po-
larizability.

e Thermodynamics Descriptors: Provide thermodynamic internations be-
tween a solute and the thermodynamic systems. Some common thermodynamics-
related molecular descriptors for retention predictions include Gibbs Free
Energy (AG), MolRef(Molar Refractivity, AlogP etc.

Categorization Based on Dimensions: Molecular descriptors can
also be categorized based on their dimensions1.5, which represent different
levels of structural complexity [4]:
0D Descriptors: Provide global properties of a molecule independent of
its spatial arrangement. Examples include the number of atoms, molecular
weight, and hydrogen bond acceptors/donors.
1D Descriptors: Capture sequential information, such as molecular con-
nectivity, atom types, and bond types.
2D Descriptors: Consider the planar structure of molecules and include
features like topological indices, molecular fingerprints(Described below),
and fragment counts.
3D Descriptors: Incorporate three-dimensional information, including
molecular shape, chirality, and conformational flexibility.

Fingerprints: Fingerprints are binary or bit-string representations that
encode the presence or absence of specific molecular features. They are
widely used for structural similarity searching and virtual screening. Com-
mon fingerprint types include circular fingerprints, MACCS keys, and ex-
tended connectivity fingerprints (ECFP) [30].

Graphs-Based Descriptors: Graph-based descriptors represent a molecule
as a mathematical graph, where atoms are nodes and bonds are edges. These
descriptors capture molecules’ structural and topological features, including
connectivity, cycles, and symmetry. Examples of graph-based descriptors
are the Wiener index, Randic index, and molecular walk counts [31, 32].
Image-Based Descriptors: Image-based descriptors employ image-processing
techniques to analyze molecular structures. They convert 2D chemical struc-
tures into grayscale or colour images and then extract relevant features using
image descriptors like pixel intensity, texture, and shape. These descriptors
can be useful for applications involving machine learning and deep learning
in retention time predictions.

12
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Figure 1.5: Schematic diagram showing multiple descriptors|4]

Transformed Descriptors: Transformed descriptors involve dimension-
ality reduction techniques to capture the most important information from
a large set of descriptor.

Principal Components (PCs): PCs are linear combinations of original
descriptors that capture the maximum variance in the dataset. They help
reduce the data’s dimensionality while retaining most of the relevant infor-
mation [33].

1.4.2 Property: Retention Time

Retention times are the focus of study in QSRR, which refers to the duration
analytes take to traverse the column within a chromatographic system, such
as HPLC. Before understanding retention times, it is necessary to have an
understanding of chromatography.

Table 1.1: Components of Liquid chromatography|1]

Mobile Stationary Sample types

phase phase

Liquid Solid /Liquid - Liquid samples
- Solvent-soluble solid sam-
ples

13
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a Molecular descriptors Molecular representations
x
(o] x=< molecular graph
>—OH \ binary fingerprints atom features
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OH = bund features
[T o ]
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* logP . classical descriptors SMILES string
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Figure 1.6: QSRR:Building blocks of study[5] (a) Simplified representation
of molecular descriptors, which capture predefined molecular features. Tra-
ditional molecular descriptors are used in this work. We use the term physic-
ochemical descriptors. (b) Molecular graph, in which atoms are represented
as nodes (with corresponding node features) and bonds are represented as
edges (with corresponding edge features, if any). (¢) SMILES strings, which
capture two-dimensional information (atom and bond type and molecular
topology) into a string

This section will delve deeper into the topic called chromatography,

building upon the fundamental knowledge elucidated in this section. This
provides the base for the dataset used in this study.
Chromatography is a powerful separation technique to separate and an-
alyze complex mixtures into their components. It is a potent separation
process utilized in a variety of disciplines, including chemistry, biology, and
pharmaceuticals.

Basic details about the component of Liquid chromatography are men-
tioned in Table 1.1.

Principle of RPLC

RPLC is a widely used chromatography technique that separates compounds
based on their hydrophobicity or hydrophilicity, which determines their rel-
ative affinity for the stationary phase or the mobile phase. The basic princi-
ple of RPLC involves the use of a stationary phase consisting of a nonpolar
material, such as a hydrophobic functionalised silica, and a mobile phase
consisting of a polar solvent, such as water or an organic solvent. The

14
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¢ PC for Data
Acquisition

Column

3 Injector

Solvent Pump Detector Waste

Figure 1.7: Components of chromatography [6]

mixture to be separated is introduced into the mobile phase, which is then
pumped through the stationary phase. As the mobile phase passes through
the stationary phase, the more hydrophobic or nonpolar components of the
mixture tend to adsorb onto the stationary phase and are retained longer,
while the more polar or hydrophilic components tend to elute more quickly
(Figure 1.9). Adjusting the mobile phase’s composition and the stationary
phase’s properties allows a wide range of components to be separated and
detected based on their retention times and/or spectral properties.
Instrumentation of RPLC

The instrumentation of RPLC typically involves a liquid mobile phase, a
pump for delivering the mobile phase, an injector for introducing the sample
onto the column, a column which is a solid stationary phase, for separation,
and a detector for monitoring the eluting compounds (Figure 1.7). The
stationary phase is typically a silica-based material with hydrophobic
bonded phases, such as C18 or C8, which retain nonpolar analytes through
hydrophobic interactions Figure 1.8. The mobile phase is usually a mix-
ture of water, with or without additives(for pH adjustments) and an organic
modifier(typically Acetonitrile(ACN), or Methanol(MeOH), added to mod-
ulate the elution of analytes [1].The concept of ’like dissolves like’ governs
the behavior of a chromatographic column in retaining sample constituents,
particularly those that are hydrophobic. These constituents are retained as
long as their affinity for the stationary phase is stronger than their affinity
for the mobile phase. Conversely, more polar sample constituents tend to
elute faster because they are less retained, having a lower affinity for the
stationary phase and a higher affinity for the mobile phase. The sample
is injected into the column using an autosampler, and the mobile phase
is pumped through the column. As the mobile phase interacts with the

15
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Porous Silica Particle

Figure 1.8: Diagram of a traditional column used in RPLC|7, §|

Stationary phase

Mobile phase

Figure 1.9: Differential elution inside the column [§]

stationary phase, compounds in the sample are separated based on their
polarity and hydrophobicity. The eluting compounds are detected by a de-
tector. The function of the detector component is to record the quantity
and time at which a substance is eluted from the column and plotting the
intensity according to time is called chromatogram. |1| There are various
types of detectors accessible, depending on the structural features of the
substance being analyzed, such as a UV-Vis detector or a mass spectrome-
ter, and their retention times are compared to known standards or reference
spectra to identify the compounds.

Comprehending Retention Time

Figure 1.10 shows the schematic diagram of a chromatogram. The detec-
tor unit (1.4.2) records signal peaks of separated analytes transported by
the mobile phase, and their integrated arca under the curve is known as
a chromatogram. Each peak can offer both qualitative and quantitative
information about the analyte, with the former being conveyed by charac-
teristics such as peak shape, signal intensity, and appearance time in the

16
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Figure 1.10: Schematic diagram of a Chromatogram. solute’s retention
time-tR, baseline width-w, and the column’s void time-tm for non-retained
solutes.|9, 7]

chromatogram.

Retention time ¢,
The retention time denotes the duration between the injection and detec-
tion of a compound, encompassing the time it spends in both the mobile
and stationary phases. As a substance-specific measure, it should yield con-
sistent values when the conditions are identical.

1.4.3 Relationship: QSRR Modelling

Quantitative Structure-Retention Relationship (QSRR) modelling refers to
a computational approach in cheminformatics and analytical chemistry where
mathematical models are developed to establish a quantitative relationship
between the chemical structure of molecules and their retention times in
chromatographic systems. The goal here is to predict and understand how
the structure of a molecule influences its retention time. These models can
then be employed to predict the retention times of new compounds based on
their structural features. When it comes to QSRR modelling, sometimes the
models are built on scarce data. This raises concerns about the reliability on
predictions and hence, applicability of these models to new or unknown ex-
ternal compounds. Consequently, implementing (QS(X)R) models required
meeting several important validation requirements. REACH, which stands
for Registration, Evaluation, Authorization, and Restriction of Chemicals,
is a European legislation on chemicals that came into effect in 2007 for
this. REACH legislation, along with OECD (Organization for Economic
Co-operation and Development (OECD), came with certain requirements

17
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for such predictive modelling, which were named OECD principles. Adher-
ing to these requirements is vital in demonstrating the validity of (QS(X)R)
models intended for regulatory use [34].

OECD Principles:

The following principles are encompassed:

. Defined end point: The model should clearly define the specific aspect
being predicted.

. An unambiguous algorithm: The model’s algorithm should be explicit
and leave no room for ambiguity.

. A defined domain of applicability: The model should specify the range
of compounds and conditions for which it is applicable.

. Appropriate measures of goodness-of-fit: The model should employ
appropriate metrics to evaluate its accuracy and reliability.

. A mechanistic interpretation(Optional): The model may provide
a mechanistic interpretation that explains the relationship between the
model descriptors and the predicted endpoint.

In general, these principles furnish users with essential information regard-
ing the predicted endpoint, the algorithm employed by the model, the scope
of its applicability, any associated limitations, the model’s performance, and
an understanding of how the model descriptors are linked to the predicted
endpoint. This research adheres to all these principles to ensure that the
developed model can be readily applied to new test compounds.

EE State of the Art

1.5.1 Evolution of QSRR

The evolution of Quantitative Structure-Retention Relationship (QSRR)
modelling has undergone several key stages, each marked by important ad-
vancements.

Early Phase (1960s-1980s): During the early phase of QSRR develop-
ment, the focus was on creating simple models to predict compound re-
tention time in chromatographic techniques. FEarly QSRR models relied
on basic physicochemical parameters like molecular weight, partition coef-
ficient (logP), and boiling point, providing initial insights but with limited
predictive power|35, 36].

18
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Middle Phase (1990s-2010s): As technology and computational tools
progressed, more sophisticated QSRR techniques emerged. Molecular de-
scriptors, numerical representations of compound structure and properties,
became integral to QSRR models. These descriptors encompassed vari-
ous parameters such as topological indices, fragment-based descriptors, and
quantum-chemical descriptors[37, 38, 39|. Incorporating these descriptors
into QSRR models led to increased accuracy and predictive capabilities.
Another significant development was the utilization of machine learning al-
gorithms in QSRR modelling. These algorithms, including Partial Least
Square method (PLS), SVR, RF, ANN analyzed large datasets to identify
complex relationships between structural features and retention behaviour
[40, 41, 42, 43].

Recent Phase (2010s-Present): In recent years, the availability of chem-
ical databases and advancements in computational power have influenced
the evolution of QSRR. Deep learning methods, such as deep neural net-
works, have become increasingly popular [44, 45, 31, 46]. Data mining and
chemoinformatics approaches extract knowledge and patterns from large
chemical datasets, aiding in the identification of relevant structural fea-
tures and the development of more accurate QSRR models[47]. Integration
of QSRR with other computational tools, such as molecular docking and
molecular dynamics simulations, has expanded its applications [48]. This
integration allows researchers to explore the relationship between compound
structure, retention, and biological activity, supporting drug discovery and
design processes. The complexity of chromatographic processes is profound,
as elucidated in Section 1.4. This complexity is attributable to a multitude
of factors influencing retention time, including the chromatographic sys-
tem’s design, the constituents of stationary and mobile phases, operational
conditions such as temperature and pressure, and the inherent properties of
the compounds being analyzed. Despite the high accuracy and efficacy of
RPLC, time and cost associated with experimental measures poses a signifi-
cant challenge. These challenges are not only technical but also involve con-
siderations of cost and time efficiency. To mitigate these issues, extensive re-
search has been dedicated to developing methodologies for chromatographic
retention prediction, leading to the establishment of multiple approaches.
These approaches can be broadly classified into two main categories[49]:

1. Models designed to predict the retention time of a specific set of solutes
under variable chromatographic conditions. These models base their pre-
dictions on empirical data derived from previous measurements of the same
solute under different conditions, such as varying solvent strengths.

2. Models developed for a specific chromatographic system with the aim of

19



CHAPTER 1. INTRODUCTION

predicting retention times for new solutes. Such models(including QSRR
modelling) utilize retention data from a representative set of substances,
all measured under identical chromatographic conditions.

The first category predominantly employs computer-assisted methods,
which are frequently utilized during the development of chromatographic
methods. A key model in this category is the Linear Solvent Strength (LSS)
model[50, 18], which is based on the equation:

log k = log ky — S¢ (1.1)

where log k represents the solute retention factor, log k,, is the logarithm of
the retention factor extrapolated to a mobile phase composition with 0%
organic modifier, S is a constant specific to the solute and chromatographic
system, and ¢ denotes the volume fraction of the organic modifier in the
mobile phase. This model, among others in its category, plays a crucial
role in computer-assisted chromatographic method development, offering a
systematic approach to predicting solute retention under varying conditions
[51, 52]. However, LSS models, primarily designed to predict retention times
in RPLC based on changes in solvent strength [53], have a limited scope as
they may not adequately account for factors like temperature, column prop-
erties, or specific solute-stationary phase interactions and operate under the
assumption of a linear relationship between solvent strength and retention
time, which may not apply to all solute-stationary phase interactions, es-
pecially those involving complex mechanisms or unique solute properties
[54, 55].

The second category of prediction models encompasses Linear Free-Energy
Relationships (LFERs) and Quantitative Structure-Retention Relationships
(QSRRs), differentiated primarily by the nature of the molecular parame-
ters they utilize. Based on this differentiation the models can be categorized
into two types-

e Mechanistic models, which are based on the fundamental physicochemical
interactions between the analyte and the stationary phase of the chromato-
graphic system. They aim to describe these interactions using theoretical
principles and equations derived from physical chemistry. For example-
LFER models. LFER models leverage a set of solvatochromic solute pa-
rameters to characterize retention in RPLCI[56, 57]. This approach was
further refined by Abraham [58], who introduced a more generalized equa-
tion incorporating hydrogen-bond descriptors derived from complexation
scales, thereby transitioning the nomenclature to Linear Solvation Energy
Relationships (LSERs):

2

log(k) = log(ko) + =

24+ 82 1.2
100 + sm+aa” +bp (1.2)
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where V5 represents the analyte molecular volume, 7* denotes the dipo-
larity /polarizability descriptor, R? quantifies the analyte’s hydrogen bond
donating capability, and o? measures the analyte’s hydrogen bond ac-
cepting potency. The coefficients log kg, m/100, s, a, and b reflect the
differences in specific bulk properties between the stationary and mobile
phases.

Empirical Models, which are based on statistical or machine learning meth-
ods to find correlations between the structure of a molecule and its re-
tention time, without necessarily understanding the underlying physico-
chemical principles.For example- Insilico QSRR modelling. Molecular de-
scriptors are defined as either the outcome of a logical and mathematical
process that transforms chemical information encoded within a molecule’s
symbolic representation into a useful numerical value (theoretical descrip-
tor) or as the result of a standardized experimental procedure (experimen-
tal descriptor) [39]. This approach has inspired the exploration of vari-
ous chemical factors and computational methods for predicting compound
retention times, ranging from basic to complex statistical analyses [59],
machine learning techniques [60, 61|, and other computer-based strate-
gies, detailed in Sections 1.6 and 1.4.1. Notably, the term QSRRs also
encompasses LFERs for the purpose of retention prediction, given that
both methodologies utilize a set of molecular descriptors to elucidate re-
tention. However, the designation QSRR is predominantly reserved for
models not explicitly classified under LFERs [49] and unlike them which
does not need any kinds of experimentation for retention time predictions
and hence, predict the retention times in-silico. The primary objective of
QSRRs is to formulate a model that accurately describes chromatographic
retention within a specific system, thereby enabling the prediction of reten-
tion times for new solutes based on the model derived from a representative
set of substances[62]|. Once a statistically significant and meaningful model
is established, it obviates the need for further experimental data to predict
retention times for new analytes, significantly streamlining the analytical
process.

Over the past decade, the domain of retention predictions via QSRR mod-
els has witnessed significant methodological advancements [2, 63]. QSRR
modelling establishes a correlation between the chemical structure of com-
pounds and their chromatographic retention times, achieved through a va-
riety of chemometric and computational methods. These encompass both
linear and nonlinear statistical models, machine learning algorithms, and
the calculation and selection of molecular descriptors |2, 63].

Initial studies, such as those by Put et al. [64], utilized Uninformative Vari-
able Elimination (UVE) coupled with Partial Least Squares (PLS) for the
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descriptor selection process. This was followed by the work of Ukié et al. [65]
and Chen et al. [66], who demonstrated the superior performance of the full
PLS model over UVE-PLS in terms of reducing prediction errors. VolSurfb
and 3D molecular descriptors combined with gonane topological weighted
fingerprint (GTWF') were used for QSRR modelling based on PLs for steroid
identification|18|. Further advancements included the employment of Ge-
netic Algorithms (GA) in conjunction with PLS for more refined variable
selection, as employed by Golmohammadi et al. [67], despite not optimiz-
ing GA parameters. Traditional methodologies, such as Stepwise Multi-
ple Linear Regression (MLR), were applied in predicting retention factors
for specific compounds, highlighting the challenges of underperformance or
overfitting in cases with limited data [68]. A significant leap was made
by Zuvela et al. [69], who conducted a comprehensive comparative analysis
of variable selection techniques in peptide QSRR model development em-
ploying nature-inspired optimization algorithms. These included Genetic
Algorithms (GA-PLS) [70], Particle Swarm Optimization (PSO-PLS) [71],
Artificial Bee Colony (ABC-PLS) [72], Firefly Algorithm (FA-PLS) [73],
and Flower Pollination Algorithm (FPA-PLS) [74], compared against Inter-
val PLS (iPLS) [75] and Sparse PLS (sPLS) [76]. Their findings indicated
that nature-inspired algorithms outperformed both iPLS and sPLS in pre-
dictive accuracy. Morcover, Perisic et al. [77] explored hybrid models that
integrate machine learning techniques with quantum chemical calculations
to enhance model performance through aggregated predictions. With the
advent of Artificial Intelligence (AI), novel QSRR studies have focused on
the graph properties of compounds [18]. Ju et al. [78] utilized a deep neural
network (DNN) pre-trained with weighted autoencoders and transfer learn-
ing for efficient prediction of compound retention times. This was further
advanced by Kwon et al. [79] and Kensert et al. [32|, who investigated the
efficacy of Graph Convolutional Networks (GCN) and transfer learning ap-
proaches to enhance molecule retention time (RT) predictions. However,
using GNN/GCN for QSRR retention time predictions can be challeng-
ing due to the need for large, diverse datasets, computational intensity,
complexity in capturing chemical interactions, and issues with model in-
terpretability and generalizability. Advanced statistical approaches, such as
Bayesian estimation and multilevel modeling[80, 81], have also been used for
chromatographic data analysis, offering a probabilistic framework for model
development that accommodates data uncertainty and variability [59, 82].
Finally, Bouwmeester et al. [60] constructed QSRR models using seven
machine learning algorithms-[60] built QSRR using seven machine learn-
ing algorithms including Bayesian Ridge Regression(BRR)[83], LASSO[84],
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ANN]I85], Adaptive Boosting(AB)|86], Gradient Boosting(GB)[87|, Ran-
dom Forest (RF)[88] and SVR(Linear and non-linear)[89, 90| across 36
metabolomic datasets, highlighting that no single algorithm universally ex-
cels, with performance varying by analyte type or experimental protocol.

EKd Workflow of QSRR Modelling

The complete workflow [91] of QSRR modelling can be divided into three
main steps(Figure 1.11), which are:

(1) Data collection, data preparation and preprocessing and data splitting
(2) Model Development that includes selection of modelling technique, molec-
ular descriptor selection, model training and validation

(3) Model testing and Applicability domain check

1.6.1 Data collection and preprocessing
Data collection:

The first step in QSRR is to collect a dataset of compounds that include
target properties, such as retention time, and molecular descriptors, which
are structure-derived features in a chromatographic system of interest. This
dataset should be representative of the compounds of interest. Retention
time can be obtained through experimental measurements. Molecular de-
scriptors can be experimentally determined or calculated through computa-

tional models or using some tools or software for example- RDKIt tool([92],
Chemaxon [93], ADMET Predictor[94],AlvaDesc[95] etc.

Data Preprocessing

Data preprocessing is a pivotal data mining approach that encompasses the
conversion of raw data into a comprehensible format [96]. Real-world data
frequently exhibits incompleteness, with missing attribute values, absence
of specific attributes of interest, or reliance on aggregate data. Additionally,
such data may be characterized by noise, incorporating errors or outliers,
as well as inconsistencies in codes or names. The application of data pre-
processing serves as an established method for addressing and resolving
these inherent issues. The data processing phase encompasses several key
procedures, including the identification and handling of missing values, the
encoding of categorical data into numerical representations as per require-
ments, feature scaling and data splitting.
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Figure 1.11: Schematic diagram showing QSRR workflow

Handling Missing value: This step involves detecting and managing miss-
ing data points in the dataset, such as missing molecular descriptor values.
Missing values can be imputed (filled in) or the corresponding records might
be removed to ensure the model is trained on complete and accurate data.
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Encoding categorical data into numerical:If the QSRR dataset includes cat-
egorical data (hypothetical example, types of stationary phases in chro-
matography), these categories are converted into numerical form since most
QSRR models require numerical input. This step is less common in QSRR
modeling, as the majority of input features (molecular descriptors) are in-
herently numerical.

feature Scaling: This involves standardizing or normalizing the range of
feature values, such as molecular descriptors, to ensure that no single de-
scriptor disproportionately influences the model due to its scale. Techniques
like StandardScaler, MinMaxScaler are some of the mostly used techniques
to adjust the features into a comparable scale, enhancing the QSRR model’s
convergence and performance[97].

e Standardization is a scaling method where the values are centered around
the mean with a unit standard deviation. The formula is given by:

T —
g

Lstandardized = (13)
where p is the mean of the dataset, o is the standard deviation of the
dataset, and = € R represents x represents an individual data point or a
variable within the dataset being processed..

e The MinMaxScaler scales the features within a specified range (typically
0 to 1), also known as data normalization. Selecting the target range
depends on the nature of the data. The formula is given by:

x — min(x)

(1.4)

T =
scaled max(x) — min(x)
where x represents an individual data point or a variable within the dataset,
min(z) and max(x) refer to the minimum and maximum values in the
dataset, respectively. Here, z € [min(z), max(z)] and Zscaled € [0, 1].

data splitting: The dataset is divided into training and testing sets (and
possibly a validation set) to enable the independent training and evaluation
of the QSRR model. This step is essential for assessing the model’s predic-
tive performance on unseen data.Typically 70-80% of the total dataset is
used in model training and rest of the dataset is used for testing purposes.
Randomization is commonly applied for the selection of the training and
testing datasets, with the data being shuffled randomly to ensure the model
generalizes effectively.
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1.6.2 Step 2: Model Development
Selection of modelling technique

This step includes model training and model validation including molecular
descriptor selection. After completing the data-cleaning process and iden-
tifying crucial features influencing the retention of specific molecules, we
proceed to employ prediction models, commonly referred to as regression
methods. The model is constructed using the training set and is validated
using model validation.

The choice of algorithms for model development is contingent upon
the fundamental objective and the characteristics inherent in the available
dataset. These methods can span from classical machine learning models to
cutting-edge artificial intelligence techniques. The selected algorithms may
vary, encompassing linear methods that seek to capture the linear relation-
ship between the target property and chosen descriptors as well as non-linear
methods, which excel at capturing non-linear dependencies based on the spe-
cific goals and dataset characteristics. Hyperparameter tuning marks the
important step in regression models and involves systematically adjusting
the model’s settings to find the optimal combination that minimizes error
and improves predictive accuracy [98]. Grid search and random search are
commonly used methods for parameter optimization in classical machine
learning. Grid search methodically tests a predefined range of hyperpa-
rameter values, with fixed step sizes influenced by domain knowledge, com-
putational resources, preliminary results, and hyperparameter sensitivity,
determining the granularity of the search and impacting both the thorough-
ness and computational cost [99]. Random search samples hyperparameter
values from a defined distribution, offering a faster but potentially less ex-
haustive exploration. Each of these methods balances between exploration
of new parameters and exploitation of known good parameters to efficiently
optimize model settings[100]. Outlined below are descriptions of some of
the most frequently employed machine learning algorithms([101, 102]).

e MLR(Multiple Lincar Regression): MLR is a lincar regression method
that models the relationship between a dependent variable and multiple
independent variables. It estimates coefficients to create a linear equation
that predicts the dependent variable based on the independent variables.

e Lasso regression: Lasso regression is a linear regression method that uses
shrinkage. It Performs L1 regularization, i.e., adds a penalty equivalent to
the absolute value of the magnitude of coefficients and encourages sparsity
by shrinking some coefficients to zero, effectively selecting important fea-
tures. It reduces model complexity and overfitting resulting from simple
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Linear regression|[103].

P
L1 regularization (Lasso) = /\Z 165 (1.5)
j=1

Here, X is the regularization parameter, and 6; represents the coefficients
of the features in the model. The symbol | - | denotes the absolute value.

SVR (Support Vector Regression): SVR is a regression method that uses
support vector machines to find a hyperplane that best fits the data points
in a continuous space and tries to maximise the margin between the data
points and the regression line. It handles both linear and non-linear rela-
tionships by using kernel functions which are a set of mathematical func-
tions that help in taking the data as input and transforming it into the
required form into a higher-dimensional feature space[104]|. Linear, Non-
Linear, Polynomial, Radial Basis Function(RBF) and Sigmoid are some of
the kernels. Among all, RBF is the mostly used kernel.

RF(Random Forest): RF is an ensemble method that constructs multiple
decision trees using bootstrap samples of the data and random feature
subsets. The trees vote to make predictions, and the final prediction is
based on the majority vote. RF reduces overfitting and provides robust
predictions [105].

GBR (Gradient Boosting Regression): GBR is an ensemble method that
combines multiple weak regression models sequentially. Each model cor-
rects the errors of the previous model, gradually improving the prediction
accuracy. It builds a strong predictive model by minimizing the residual
errors [40].

ANN (Artificial Neural Network): ANN is a machine learning model in-
spired by the structure of the human brain. It consists of interconnected
nodes (neurons) organized in layers. Signals flow through the network, and
each neuron applies a non-linear activation function to make predictions.
ANN is effective for complex, non-linear relationships[106].

DNN(Deep Neural Network): Deep learning, a subset of machine learning
that in turn falls under the broader category of artificial intelligence (AI),
serves as a foundational technology for automating tasks and improving
accuracy in Al applications. Distinguished from traditional machine learn-
ing, deep learning exhibits the capability to handle complex and unstruc-
tured data(images and text) without the need for extensive preprocessing.
This autonomy in feature extraction diminishes the reliance on human
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experts. Employing processes like gradient descent and backpropagation,
deep learning continually refines itself to achieve precise predictions. DNN
is characterized by multiple hidden layers positioned between the input
and output layers [44]. This architecture (Figure- 1.12) enables DNNs to
grasp intricate patterns and construct hierarchical representations of data.
The training of DNNs involves backpropagation, facilitating the resolution
of intricate tasks. MLP which stands for Multi-Layer Perceptron, is a type
of artificial neural network. It is a class of feedforward neural networks
where information moves in one direction—from the input layer through
one or more hidden layers to the output layer[107]|. It can be DNN based
on increased number of hidden layers.
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Figure 1.12: Schematic diagrams of deep learning neural network (DNN).
(a) The overall structure of DNN. (b) Concept of weight coefficient and
activation function. [10]

e CNN (Convolutional Neural Network): Figure-1.13 They belong to the
category of discriminative deep architectures, demonstrating satisfactory
performance in handling two-dimensional data characterized by a grid-like
topology, as exemplified in images and videos [11]

e Stacking: Stacking is an ensemble learning technique that involves using
a combination of different base learners(Figure 1.14), often heterogencous
ones, in parallel. These weak learners make predictions independently, and
their predictions are then used as features for a meta-learner. The meta-
learner is trained to learn how to best combine these input predictions to
generate a final output prediction. Typically, Linear Regression, Random
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Figure 1.13: Architecture of CNN used for image recognition as an

example|11|

Forest, decision trees, or neural networks are employed as meta-models in
stacking architectures, with the choice depending on the specific require-
ments of the task, such as the need for interpretability or prediction power.
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Figure 1.14: Architecture of Stacking|12]
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Molecular descriptor calculation and selection:

Given multiple types of molecular descriptors, it becomes important to se-
lect only key features which carry important information about the target
property and should be selected to be used while modelling. Hence, feature
selection methods in QSRR aim to identify the most relevant molecular de-
scriptors or features that contribute significantly to the retention behaviour.
It is important to note that the choice of feature selection method depends
on various factors, such as the size of the descriptor pool, the sample size,
the complexity of the retention behaviour, and the specific goals of the
QSRR modelling study. Different methods may yield different subsets of
features and varying model performance [3]. Hence, comparing and validat-
ing the results obtained from different feature selection techniques is often
recommended. Here is a summary of the feature selection methods com-
monly used in QSRR modelling (Fig 1.15 )[3]. Figure 1.16 explains some
advantages and disadvantages of all feature selection methods.

. Selecting the best Learning é
Filter Perf
Alfeatures  m==Fp o pcet of features e algorithms erformance
Wrapper Selecting the _be_st subset of features
V2NN
Set of all Generate a Learning
—_> subset —_> algorithms > Performance
features
\.\:‘:\\ Jf/ y

Embedded Selecting the best subset of features

S,

Learning

Set of all a Generate a
algorithms

+ Performance
features subset

Figure 1.15: Pictorial representation of multiple descriptor selection meth-
ods

1. Filter method: Filter method: Analyses each descriptor individually to
assess its correlation with the target variable (retention time). Statisti-
cal tests such as t-tests or correlation analysis are used to evaluate the
significance of the relationship. Descriptors with high correlation or sig-
nificant p-values are selected as relevant features. Such a method should
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Figure 1.16: Important points of every multiple descriptor selection
methods|3]

be used when the dataset is small, and there is a need for a quick and
simple feature selection method. Feature selection using filter methods
are computationally efficient and can provide insights into the individual
relationships between descriptors and the target variable. These meth-
ods include techniques such as correlation-based filter(CFS)[108, 109],and
ReliefF-based algorithms [110] etc. The CFS algorithm works by first
calculating the correlation between each feature and the target variable.
Then, it computes the correlation between each pair of features. Next,
it selects the subset of features that has the highest correlation with the
target variable and the lowest correlation with each other [111].The subset
evaluation phase involves computing the merit of a feature subset. This is
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done using a heuristic that combines the average correlation of the features
with the target (denoted as 7;f) and the average inter-feature correlation
(777) [112]. The merit score formula,

M(S) b Tef

VEk+k-(k—1)- 755

balances relevance and redundancy by promoting high relevance to the tar-
get while penalizing feature overlap. In the search strategy phase, features
are added incrementally through a greedy forward selection process|113],
choosing features that maximize the subset merit. The process concludes
when adding additional features no longer improves the merit score, in-
dicating that further additions are either redundant or irrelevant to the
target variable.

. Wrapper methods: Wrapper methods use an external model to evaluate
the performance of different feature subsets. These methods typically in-
volve a search algorithm that iteratively evaluates different combinations
of descriptors using a performance metric (e.g., cross-validation error or
R-squared). Examples of wrapper methods include sequential forward and
backward selection [114], genetic algorithms|115], and recursive feature
elimination[116].

These methods provide a thorough search of the feature space, consider-
ing the performance of the external model as the selection criterion. RFE
for instance, operates by iteratively selecting a subset of features from the
initial set in the training data. It does this by fitting the chosen machine
learning algorithm, assessing feature importance, and discarding the least
significant features. The model is then refitted, and this cycle continues
until the desired number of features is reached [117]. Wrapper methods
can be computationally expensive, especially when the number of descrip-
tors is high. In such cases, the search process may become infeasible or
time-consuming and hence, should be avoided when there is a very large
dataset and the feature space is vast.

. Embedded methods: Embedded methods incorporate feature selection
within the model-building process. They aim to find the optimal feature
subset while simultaneously training the predictive model. Examples of
embedded methods include LASSO (Least Absolute Shrinkage and Selec-
tion Operator) and Random Forest, which apply regularization techniques
to penalize irrelevant or redundant descriptors during model training. Such
methods can handle large descriptor sets effectively and automatically pe-
nalize irrelevant or redundant features during model training.
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Model Validation

There are multiple methods of model validation techniques. A few of them
are LOOCV(Leave One Out Cross Validation), LMOCV (Leave Multiple
Out Cross Validation), and Kfold cross-validation. Other types of model
validations are Y-randomization and bootstrapping|102, 118|. Each method
has its strengths and weaknesses, and the choice depends on the specific
dataset and the goals of the analysis. LOOCV (Leave-One-Out Cross-
Validation) is a cross-validation method where the dataset is split into
training and testing sets, where each observation is used as the testing
set once, while the rest are used for training[119]. This process is repeated
for every observation, and the performance metrics are averaged to evalu-
ate the model. LMOCV (Leave-Multiple-Out Cross-Validation) is similar to
LOOCYV, but it leaves a specific number of observations out for testing in-
stead of just one. It is useful when the dataset is large and leaving out
every single observation for testing is computationally expensive [120]. In
K-Fold Cross-Validation|45], the dataset is divided into k equally (or nearly
equally) sized folds or subsets. In each of the k iterations, a different fold
is used as the validation set, and the remaining k£ — 1 folds are combined to
form a training set. This method aims to utilize all available data for both
training and validation, ensuring that every observation acts as part of a
validation set exactly once and part of a training set k—1 times|[121]. K-Fold
Cross-Validation is widely used due to its balance between computational
efficiency and the thoroughness of the evaluation.

1.6.3 Step 3: Model Testing and Applicability do-
main check

Model Testing

The models, which have been trained and validated, undergo testing using
unseen test data to assess their generalization performance. Various evalua-
tion metrics are employed to check the performance of all developed models.
These quantitative measures serve as tools to evaluate the effectiveness of
prediction models, providing insights into how well the models perform in
tasks related to retention time prediction. The choice of performance met-
rics depends on the nature of the problem and the goals of the model. Some
common performance metrics used in machine learnings[122]| are MSE(Mean
Squared error), RMSE(Root mean squared error), MRE(mean relative er-
ror)/ MAPE(Mean absolute percentage error), MAE(Mean Absolute Er-
ror), and R?(Coefficient of determination). Their mathematical formula is
as such:
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(1.7)
MRE/MAPE = % 3 % (1.8)
i=1 i
1 n
MAE = =S |y — 6 1.
- ; lyi — 9il (1.9)

2?;1 (yi — ?7)2
where y; and g; are the ground truth and the predicted value, respec-

tively, for sample 1,7 is the mean(average) of all the observed values (y;) of
the dependant variable in the dataset and n is the total number of sample.

Applicability domain

Applicability Domain (AD) defines the limitations of QSRR models based
on structural and response criteria. Reliable predictions are limited to
structurally similar chemicals used in model development. Query chemicals
within the model’s scope are considered interpolated, while those outside
are extrapolations. AD ensures higher reliability for predictions within its
boundaries, which is crucial for model accuracy. Molecular descriptors also
influence AD. Query chemicals differing from the training set’s structural
limitations are outliers in that chemical space [130]. There are several meth-
ods that have been proposed to define the model’s applicability. They are
summarized as in Table 1.2.
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Table 1.2: Summary of Applicability Domain Calculation Methods

AD Approach

Description

Reference

Range-based

Involves using the range of indi-
vidual descriptors used for model
development. Molecules exceed-
ing these ranges are excluded from
the model’s AD. Variants include
PCA Bounding Box, which consid-
ers principal component values.

[34, 123,
124, 125)

Convex Hull

Encloses the training space in
the smallest possible convex area.
Molecules outside this area are
excluded. Not wused in high-
dimensional data sets due to limita-
tions.

[34,
124]

123,

Distance-based

Includes methods like centroid dis-
tance (where distance from the cen-
troid is calculated) and kNN-based
strategies (where distances from k
nearest neighbors are used). These
methods define thresholds beyond
which molecules are excluded from

the AD.

34,
124,
126

123,
125,

Probability Density
Function (PDF)

Utilizes kernel methods to estimate
the density of points in the descrip-
tor space, setting a threshold to de-
termine AD. Variants include fixed,
optimized, and variable Gaussian
kernels, as well as adaptive and tri-
angular kernels.

[127, 128

kNN with Variable
Thresholds

Combines kNN distance measures
with adaptive kernel methods for
density estimation. Molecules closer
to training data than a wvariable
threshold are included in the AD.

[129]
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Reversed-Phase Liquid Chromatography (RPLC) is a key technique for
separating and analyzing substances in mixtures, fundamentally relying on
the interactions between analytes in the mobile phase and a typically hy-
drophobic stationary phase. These interactions determine the retention time
of analytes through the chromatographic column. The method development
in liquid chromatography stands as a basic aspect of analytical chemistry,
especially within pharmaceutical sciences, drug analysis, bioanalysis, and
medicinal chemistry. The core of method development in liquid chromatog-
raphy is to establish optimal conditions for the effective separation of ana-
lytes, which depends on various experimental parameters like chromatogra-
phy mode, stationary phase type, and mobile phase characteristics, includ-
ing organic modifiers, additives, pH as well as temperature and pressure.
Given the resource-intensive nature of traditional trial and error in method
development—marked by significant time and cost—there’s a growing in-
terest in using In-silico methods to create predictive models that correlate
compound properties with chromatographic retention time. Quantitative
Structure-Retention Relationships (QSRR) models represent this approach
by predicting retention times based on molecular structure, thereby simpli-
fying method development and boosting the efficiency of RPLC analyses.
In this direction, this thesis delves into diverse QSRR strategies to improve
retention time prediction models, considering experimental variables and
their impact on compound retention times, by taking pH variations as one of
the example. The profound influence of pH on RPLC analyses underscores
the complexity of determining accurate retention times, affecting not only
operational efficiency but also the cost-effectiveness of the chromatographic
process. Minor pH adjustments can significantly shift the ionization state of
analytes altering their interactions and consequently, their retention times.
This necessitates extensive method development efforts. The ultimate goal
is to offer advancements in separation methods, thereby supporting pharma-
ceutical and biochemical research through unique and practical analytical
strategies by investigating multiple ways to handle varying retention times
of a compound with multiple pH. In order to explore the intricate interplay
between pH and retention mechanisms for small molecules in RPLC, three
main questions (below) have been addressed:

Objective 1

How to predict retention time at specified condition individually
and select the key features responsible for predictions?

The literature offers a wide array of algorithms and regression methods for
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modelling retention time predictions. Various strategies and chemical fac-
tors, ranging from basic to advanced statistical methods, machine learning,
and other computer-based techniques, have been utilized to predict reten-
tion time of a compound in a chromatographic system. These approaches
leverage chemical structure details from the simplest to the most complex.
Yet, no method has emerged as perfect, and there is a lack of a definitive
starting point for users beginning QSRR modeling to manage varying re-
tentions across different pH levels. Hence, the first objective of the thesis
was to investigate various categories of molecular descriptor selection meth-
ods as well as multiple types of prediction models to streamline the QSRR
modelling process from start to end that can be tried and that can work in
case of small molecules in RPLC at multiple pH(Chapter 4.1)

E¥] Objective 2

Is it feasible to develop a QSRR model that simultaneously pre-
dicts retention times across all pH levels effectively, while account-
ing for the interrelationships among them?

The second objective of this thesis involves a shift from the conventional
approach of constructing individual retention prediction models for distinct
pH levels. While this method helped identify which descriptor groups were
linked to retention time changes at different pH levels, it proved to be time-
consuming and unable to utilize the insights from the interrelationships
between targets effectively. Hence, the second objective of the thesis was
to determine whether it is feasible to model retention times across all pH
levels simultaneously in a way that incorporates the relationships between
targets(Chapter 4.2).

PX] Objective 3

What strategies can be implemented to overcome the challenges
posed by scarce dataset availability in QSRR modeling, thereby
enhancing the accuracy and efficiency of multi-target predictions?

Analyzing analytes using various separation techniques, including RPLC,
presents a substantial challenge for computational research due to smaller
data availability. These experiments require a significant amount of time to
generate and validate high-quality data, often necessitating numerous repe-
titions. As a result, collecting enough data for analysis in machine learning
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or Al-driven studies as used in QSRR modelling, which demands extensive
data, becomes a daunting and prolonged task.

In light of this, the third objective of the thesis was to investigate an alterna-
tive strategy to overcome the obstacles presented by limited data availability
in QSRR modeling(Chapter 4.3).

In summary, the significance of this research lies in its potential to advance
the understanding and application of QSRR modeling in chromatography.
By focusing on the effects of pH on retention times and leveraging QSRR for
predictive purposes, this thesis aims to develop a methodological framework
that can be applied to a wide range of analytical challenges. This approach
promises to improve the efficiency, cost-effectiveness, and reliability of chro-
matographic analyses, thereby supporting the broader goals of analytical
chemistry in achieving precise, accurate, and efficient analytical outcomes.
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Preamble

This chapter explores the different datasets used in the study. It covers five
points:

Data Source and Availability, Data Structure: gives a summary of
the data’s structure and its format.

Feature Description: Provides an overview of the variables or features
included in the dataset. It contains specifics on the data types for each
characteristic as well as information about their meaning and importance.

Target Variable: explains the target variable’s characteristics correspond-
ing to every dataset.

Software and Tools: Describes the particular libraries and modelling
packages used in the data collection.
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EF] Summary of Datasets

There are four retention time datasets used in this study for QSRR mod-
elling (Table 3.1). These datasets are abbreviated as: Datasetl- small
dataset- LPAC, and Dataset 2 -metlin data or SMRT dataset, Dataset3-
ACN, Dataset4-Riken. It’s important to note that the labels LPAC and
ACN for the datasets-1 and dataset-3, have been assigned by us to facili-
tate easier discussion and precise referencing throughout the thesis. These
are not the actual and conventional names published.

It can be seen from Table 3.3, and 3.4 that the multiple targets to be

Table 3.1: Summary of Datasets Used in the Thesis, tR - Retention Time,

PC- Physicochemical, IB- Image based descriptors

Feature | DataSet-1 DataSet-2 DataSet-3 DataSet-4

Chapters | 4.1, 4.2, 4.3 4.3 4.3 4.3

Names LPAC Metlin/SMRT| ACN RIKEN

Purpose | single target, | QSRR mod- | single target, | Pre training
multitar- eling for 77K | multitar- for transfer
get, transfer | compounds get, transfer | learning
learning learning gsrr | model
based qsrr

Source Data in | Nature Com- | Analytical Analytical
Brief[131] munication Chemistry[132] Chemistry[32]

13]

Data 97 rows, 239 | 77K rows, | 130 images 750 rows, 226

Struc- columns 226 columns columns

ture

Feature PC, IB PC, IB 1B pPC

Descrip-

tion

Target tR at five pH | tR at one pH | tR at five pH | tR at one pH

Variable

Tools RDKit, RDKit RDKit, RDKit

and Chemicalize Chemicalize

Software

predicted are highly correlated. Advanced machine learning techniques rely
heavily on related responses because they enable models to transfer insights
from one target to another while minimising the need for large amounts
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of data and computational power. This leads to an optimisation of learn-
ing processes. FEffectively managing these correlations also requires using
models that either take into account the combined distribution of targets or
constrain the prediction of one target based on the predictions of other. In
order to improve prediction accuracy and model dependability, strategies
like graphical models [133], Random forests [134], and structured neural
networks [135] are especially useful since they can identify and take ad-
vantage of inter-target interactions. These modelling methods emphasise
how crucial it is to choose the appropriate model architectures and learning
frameworks in order to maximise the benefits and address the challenges in
highly correlated multi-target scenarios.
Description of Molecular descriptors

There were two types of molecular descriptors used in this thesis. 1) Physic-
ochemical descriptor 2) Image based descriptors

3.2.1 Physicochemical descriptors

Due to the extensive list, descriptions are kept concised. Table 3.2 summa-
rizes the physicochemical descriptors used in this thesis.

3.2.2 Image based descriptors-MIA

Multivariate Image Analysis descriptors/Image-based descriptors for chem-
ical compounds are a relatively newer approach that utilizes the power of
visual representation to capture structural information of molecules for re-
tention time predictions (Example of input image is shown in Figure 4.3.7

The images demonstrate a strong association with retention times and
serve as a method for encoding chemical properties[136]. The differences
in pixel positions reflect changes in the structure within a related group,
thereby accounting for the variance in retention times observed within the
series[137].

3.2.3 DataSet-1 LPAC dataset

The dataset is derived from Reversed Phase Liquid Chromatography exper-
iments for small pharmaceutical compounds to build QSRR models with
varying pH. This in-house dataset having five retention times of all chem-
ical compounds being studied, which help in analyzing QSRR modelling
approaches in Chapter 4. The distribution of retention times of compounds
at all five pH are shown in Figure 3.2 and the correlation among the tar-
gets are shown in Table 3.3 This dataset was used in the study chapter
4 1,4 24 3. Other information is available in Table 3.1.
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Table 3.2: Molecular Descriptors from RDKit

Descriptor

Description

MolWt

Molecular weight

EState  VSA (1-10)

Electrotopological state indices
capturing electronic and surface
area aspects

fr (specific groups)

Presence of specific chemical
groups or motifs

Min/Max(EStateIndex,
sEStatelndex)

Ab-

Minimum and maximum electro-
topological state indices

PEOE_VSA (1-14)

Electronic distribution based on
van der Waals surface areas

SlogP VSA (1-12), MolLogP

Hydrophobicity indicators based
on LogP values and surface areas

VSA _EState (1-10)

Electronic environment’s influ-
ence on surface areas

logD

Distribution coefficient at specific
pH

Asymmetric.atom.count,
Atom.count

Count of atoms, including asym-
metric ones

BalabanJ, BertzCT, Chi in-
dices, Ipc, Kappa

Topological and connectivity in-
dices

FpDensityMorgan (1-3)

Fingerprint density indicating

complexity

HallKierAlpha, Size, shape, and atom count in-

Heavy.atom.count, Heavy- | dicators

AtomMolWt

Hetero.ring.count, Hydrogen | Specific atom or feature counts

bond counts, NHOHCount,

NOCount

Num (various types) Counts of ring types and struc-
tural motifs

Polarizability, qed, | Polarizability, drug-likeness,

Ring.count, Rotat- | structural, and surface area

able.bond.count, TPSA descriptors

SMR._ VSA (specific indices)

Molar refractivity based surface
areas

Data distribution
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I=

OH

Figure 3.1: Example(3aminobenzoic acid) of an image used as input in CNN

model

LPAC pH 2.7

Frequency

(17.01, 22.31] (22.31, 27.61]

Retention Time (Min)

[1.11, 6.41] (641, 11.71]  (11.71,17.01]
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LPAC pH 3.5

= N N
[¢)] o (&3]

Frequency
)

[1.04, 6.14] (6.14,11.24]  (11.24,16.34]  (16.34,21.44]  (21.44, 26.54]
Retention Time (Min)

LPAC pH 5.0

Frequency
S

o N M O

[1.02,6.72] (6.72,12.42] (12.42, 18.12] (18.12, 23.82] (23.82, 29.52]
Retention Time (Min)

LPAC pH 6.5

Frequency

[,7.4] (7.4, 13.8] (13.8,20.2] (20.2, 26.6]
Retention Time (Min)
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LPAC pH 8.0

Frequency
= =y N N
o (4] = (4]

(S,

[0.94, 7.44] (7.44, 13.94] (13.94, 20.44] (20.44, 26.94]
Retention Time (Min)

Figure 3.2: Target distributions of Dataset1(LPAC)

Table 3.3: Correlation among targets for dataset1l(LPAC)

Conditions tR_pH2.0) tR_pH3.5 tR_pH5.0) tR_pH6.5 tR_pHS8.0
tR_pH2.0 1.00 0.98 0.92 0.85 0.84
tR_pH3.5 1.00 0.98 0.92 0.85 0.84
tR_pH5.0 0.92 0.96 1.00 0.97 0.96
tR_pH6.5 0.85 0.90 0.97 1.00 1.00
tR_pHS8.0 0.84 0.89 0.96 1.00 1.00

e Data Source and Availability: The source of the dataset is the pub-
lished article of our own in the journal Data in Brief[131].

e Data Structure: The structure of the dataset is tabular and consists
of 97 rows(compounds) and 229 columns(including five targets(retention
times at five pH), and molecular descriptors). SMILE structures were used
as input for calculating the molecular descriptors.

e Data format varied when used in the Single target approach of QSRR(Chapter
4.1) and Multitarget approach of QSRR(Chapter 4.2).
In the Single target approach- Feature values varied at every pH corre-
sponding to the target pH value. The method of calculation is given in the
supplementary file of Chapter 4.1, also in paper [19].
In the multitarget approach of QSRR, all features were constant at every

pH, and hence, a constant set of data matrics with multiple target column
was used to build one MT-QSRR model.
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e Feature Description: Molecular descriptors consisted of physicochemi-
cal descriptors having constitutional, topological and geometrical descrip-
tors having 1D, 2D, and 3D information about the compounds and image
descriptors.

e Target Variable: Retention times at five different pH(ph 2.0, pH 3.5, pH
5.0, pH 6.5 and pH 8.0) were used as the target variable(Figure 3.2).

e Tools and Software: The rdKit package available in Python was used
for the calculation of both physicochmical and image based molecular de-
scriptors. Chemicalize was used to draw the structures and gather the
values of the logD at all pH.

3.2.4 DataSet-2 SMRT

The dataset is derived from Reversed Phase Liquid Chromatography exper-
iments for small pharmaceutical compounds. The dataset is comparatively
bigger than the LPAC dataset, which helped build QSRR models in Chap-
ter 4.3. The chemical taxonomy of the data has been shown in Figure 3.3
and the distribution of retention time in the complete dataset is shown in
Figure 3.4

Organic acids and derivatives

Organic nitrogen compounds
QOrganic oxygen compounds
Benzenoids
Others
Organosulfur
compounds

Organoheterocyclic compounds

Figure 3.3: Chemical taxonomy of dataset2(METLIN) [13]

e Data Source and Availability: The source of the dataset is the pub-
lished dataset in [13]. It is freely available to download.
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Data Structure: The structure of the dataset is tabular and consists of
77k rows(compounds), 225 columns(Descriptors), and one target column
for retention time(unit - minute).

Feature Description: Similar to datasetl, dataset 2 also consisted of
same physicochemical and image based descriptors.

Target Variable: Retention times at one pH(pH 2.7) . Target distribu-
tion is shown in Figure 3.4.

Tools and Software: The rdKit package available in Python was used
for the calculation of molecular descriptors.

SMRT Dataset

3000

2500

2000

1500

Frequency

1000

500

Retention Time (Min)

Figure 3.4: Target distribution for dataset2(Metlin)

3.2.5 DataSet-3 ACN

e Data Source and Availability: The source of the dataset is the pub-
lished dataset and freely available to download[132].The data comes from
the liquid chromatography experiment performed at temperature 25 degree
celsius, with Acetonitrile(ACN) as mobile phase. Out of all( nine pH), we
took ACN data at five different pH which are close to the LPAC dataset
that is our own inhouse dataset.

e Data Structure: Five target columns for retention time of 130 com-
pounds, and 130 images(2D))

o Feature Description: Similar to datasetl, dataset 2 also consisted of
same physicochemical and image based descriptors.
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e Target Variable: Retention times at five pH (pH 2.5, pH 3.3, pH 4.9, pH
6.8, pH 8.9). Data distribution is shown in Figure 3.5 and the correlation

among them is shown in Table 3.4

e Tools and Software: The rdKit package available in Python was used
for the calculation of image based molecular descriptors.

ACN pH2.5

40

Frequency

(4.39,8.19]  (8.19,11.99] (11.99, 15.79] (15.79, 19.59] (19.59, 23.39] (23.39, 27.19]
Retention Time (Min)

[0.59, 4.39]

ACNpH 3.3

Frequency

[0.58,4.38]  (4.38,8.18]  (8.18,11.98] (11.98,15.78] (15.78,19.58] (19.58,23.38] (23.38, 27.18]
Retention Time (Min)

ACN pH 4.9

Frequency

[0.59,4.39] (4.39,8.19] (8.19,11.99] (11.99, 15.79] (15.79, 19.59] (19.59, 23.39] (23.39, 27.19]
Retention Time (Min)
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ACN pH 6.8

Frequency

[0.58, 4.88] (4.88,9.18] (9.18,13.48]  (13.48,17.78]  (17.78,22.08]  (22.08,26.38]  (26.38,30.68]  (30.68, 34.98]
Retention Time (Min)

ACN pH 8.9

Frequency

[0.59, 4.99] (4.99,9.39] (9.39, 13.79] (13.79,18.19]  (18.19,22.50]  (22.59,26.99]  (26.99, 31.39]
Retention Time (Min)

Figure 3.5: Target distributions of Dataset3(ACN)

Table 3.4: Correlation among targets for dataset3(ACN dataset)

Conditions tR pH2.5 tR_pH3.3 tR pH4.9) tR pH6.8 tR pHS8.9
tR_pH2.5 1.00 0.97 0.90 0.72 0.61
tR_pH3.3 0.97 1.00 0.91 0.73 0.63
tR_pH4.9 0.90 0.91 1.00 0.90 0.81
tR_pHG6.8 0.72 0.73 0.90 1.00 0.95
tR_pHS8.9 0.61 0.63 0.81 0.95 1.00

3.2.6 DataSet-4 RIKEN

e Data Source and Availability: The primary RIKEN dataset was pub-
lished in Nature Methods, as cited in Tsugawa et al., 2019 [138]. The
dataset was subsequently downloaded and partitioned similarly as by Kensert
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et al. for their graph neural network (GNN)-based QSRR modeling [139,
32].

Data Structure: The structure of the dataset is tabular and consists
of 852 rows(compounds), 219 columns of molecular descriptors, and one
target column for retention time)

Feature Description: Similar to datasetl and dataset 2, this dataset is
consisted of similar physicochemical descriptors.

Target Variable: Retention times at one pH(pH 2.7). Distribution is
shown in Figure 3.6.

Tools and Software: The rdKit package available in Python was used
for the calculation of physicochemical descriptors.

Riken Dataset

100

Frequency

0
[1.52, 2.44] (2.44, 3.36] (3.36, 4.28] (4.28,5.2] (5.2,6.12] (6.12, 7.04] (7.04, 7.96] (7.96, 8.88] (8.88, 9.8] (9.8, 10.72]
Retention Time (Min)

Figure 3.6: Target distribution of dataset4(RIKEN)
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CHAPTER 4.1. SINGLE TARGET QSRR

'BRY Preamble

The use of different regression techniques to predict retention times in
reversed-phase liquid chromatography (RPLC) is covered in detail in this
chapter. It focuses on building Quantitative Structure-Retention Relation-
ship (QSRR) models for five pH levels (pH 2.7, 3.5, 5.0, 6.5, and 8.0) utilising
a single-target approach. Along with other conventional machine learning
techniques, stacking method with MLR as meta learner was innovatively
used for predictions. The goal is to improve the QSRR modelling procedure
by the incorporation of several modelling techniques. We aim to identify the
key molecular descriptors that affect retention times at different pH levels
using broad categories of feature selection techniques. Strong and consistent
processes are ensured by the modelling strategy’s adherence to the OECD
requirements. This inquiry is intended to function as a starting point for
any QSRR modelling project, which may then be customised as per nature
of the targets.

This work has been published in the journal "Molecules" Here is the cita-
tion:

Kumari, Priyanka, et al. "Quantitative structure retention-
relationship modeling: Towards an innovative general-
purpose strategy." Molecules 28.4 (2023): 1696.
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FRW] Abstract

Reversed-Phase Liquid Chromatography (RPLC) is a common liquid chro-
matographic mode used for the control of pharmaceutical compounds dur-
ing their drug life cycle. Nevertheless, determining the optimal chromato-
graphic conditions that enable this separation is time-consuming and re-
quires a lot of lab work. Quantitative Structure Retention Relationship
models (QSRR) are helpful for doing this job with minimal time and cost by
predicting retention times of known compounds without performing experi-
ments. In the current work, several QSRR models were built and compared
for their adequacy to predict the retention times. The regression mod-
els were based on a combination of linear and non-linear algorithms such
as Multiple Linear Regression, Support Vector Regression, Least Absolute
Shrinkage and Selection Operator, Random Forest, and Gradient Boosted
Regression. Models were built for five pH conditions, i.e., at pH 2.7, 3.5,
6.5 and 8.0. In the end, the model predictions were combined using stack-
ing and the performances of each models were compared. The k-Nearest
neighbor-based application domain filter was established to assess the re-
liability of the prediction for further compound prioritization. Altogether,
this study can be insightful for analytical chemists working with RPLC to
begin with the computational prediction modeling like QSRR to predict the
separation of small molecules.

ERE] Introduction

Liquid chromatography (LC) is widely used in the context of identification
and assay of analytes present in a mixture. Several modes such as normal
phase liquid chromatography (NPLC), reversed-phase liquid chromatogra-
phy (RPLC) or hydro-philic interaction liquid chromatography (HILIC) are
available. All these modes are based on the same principle where analytes
are present in a liquid mobile phase and are passed through a column con-
taining solid stationary phase under high pressure. The retention time (tR)
observed is the time taken by the analyte to travel across the column and
is dependent on the difference of interaction of the analyte with mobile and
stationary phases at varied conditions. Several experimental parameters
may influence these interactions leading to a separation of the compounds.
Among these, the composition of the mobile phase (i.e., pH, organic mod-
ifier, gradient elution) and the stationary phases must be selected. Given
the multiple possibilities, finding an optimal condition for such separation
is generally performed on a trial-and-error basis and largely depends on the
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researcher’s prior knowledge. This, in turn, becomes time and resource-
consuming and represents a significant bottleneck of LC analysis in many
domains [140]. Quantitative Structure-Retention Relationships (QSRRs)
modeling was proposed as an alternative solution to optimize the method
development phase[36, 141].

QSRR models are computational models that establish a statistically
significant relationship between a chromatographic retention parameter and
molecular descriptors, which are numerical quantities carrying physico-chemical
information of the molecules [142]. Such prediction models could be applied
to any type of separation analysis irrespective of the chromatographic tech-
niques or even the modes of a particular technique. Hence, its application
range covers many interesting systems such as TLC [142], GC [143], IC [65],
RP-LC [47, 49|, and HILIC chromatography modes [144].

QSRR model development not only enlarges the range of applications
but also increases the understanding of the separation mechanisms. There
are several ways of QSRR modeling including the models based on mech-
anistic equations [122] or based on machine learning methods. The latter
are quite popular because of their efficiency and the availability of multi-
ple algorithms. The support vector (SVR) and Partial Least Square (PLS)
models are the most popular options [140, 60, 89, 69, 145, 146, 43|, but
other types of regression algorithms such as Gradient Boosting Regression
(GBR), Random Forest, Neural networks etc., have been successfully ap-
plied [40, 147, 148, 149].

Most of the recent machine learning algorithms can be severely limited
in accuracy and applicability by the size and nature of the dataset, num-
ber and type of descriptors, etc. However, the LC datasets are generally
small because of the time and resources needed to build it. Therefore, most
modelling strategies imply a feature selection step to avoid overfitting and
ensure sparsity of the models since; sparse models being generally more ro-
bust. Hence, to achieve it multiple strategies of descriptor selections have
been used and shown to have performing differently on different datasets.
A feature selection comparison study proposed by Goodarzi et al. showed
that models built on descriptors selected by ant colony optimization algo-
rithm coupled with SVR regression could be an excellent alternative for
retention prediction modeling [89]. Zuvela, Petar, et al used a PLS regres-
sion model built on molecular descriptors selected by a genetic algorithm
(GA), particle swarm optimization (PSO), artificial bee colony (ABC), fire-
fly algorithm (FA), and flower pollination algorithm (FPA) [69], whereas
Krmar, Jovana, et al compared a combination of linear (MLR) and non-
linear model (SVM) based on a preselected feature set [150]. Pastewska,
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Monika, et al. and Ulenberg, Szymon, et al. used Genetic algorithm cou-
pled with MLR(Multiple Linear Regression) for [151, 152]. At the same
time, there are models which are based on Bayesian approach that involves
using prior knowledge and represented as probability distributions to make
retention time predictions. The prior knowledge is combined with experi-
mental data to produce a posterior probability distribution, which provides
a prediction of the retention time. The choice of mechanistic descriptors
and the form of the prior distributions can have a significant impact on
the accuracy of the predictions made by the model[132, 153, 154]. Since
QSRR models are computational models, prediction discrepancies are fre-
quent because of overfitting which, in turns, question the reliability of their
practical use on new untested chemical compounds. Therefore, it is a good
practice to review the model’s validity as per Organization for Economic
Cooperation and Development [155]. Although few research studies have
checked applicability domain [147, 156, 157, 158], it is still very rare where
all QSRR models are accompanied with such validations.

When looking at the literature, the proper well-structured strategy to
get started with the structure-derived retention modeling, i.e., choice of de-
scriptor set, and the selection of a specific regression algorithm is not clearly
defined yet. Most studies are based on the researcher’s previous experience
or the most cited methods in the literature pool. Hence, a comprehensive
generalized overview of the practical strategy when there is a limited dataset
which is the most frequent scenario for such separation studies, would bene-
fit to the field of analytical chemistry. Consequently, we propose a strategy
that might be used in a variety of cases because of its conception (use of
linear, nonlinear algorithms, use of diverse feature selection tools, and ap-
plicability domain of the use of selected model). Looking at the current
time where deep learning approaches are dominating the ML space, apply-
ing them on small dataset is not feasible. Hence, this approach is versatile
and useful even on small datasets.

IR Material and Methods

4.1.4.1 Dataset Collection

The dataset used in this study was built in-house [159] and consists of re-
tention time observed for 98 small pharmaceutical compounds reported in
minutes. List of small molecules in the dataset came from [? 160, 161]. The
compounds were tested for their druglikeliness(following Lipinski’s rule) us-
ing SwissADME tool [162] and more than 90% of the compounds followed all
rules of Lipinski’s representing the usefulness of the trained model for other
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druglike molecules too. Moreover, the compound selection was done as such
that apart from RPLC they could be relevant for other chromatographic
modes such as ionic (IC) and hydrophilic interaction (HILIC). Hence, the
strategies developed for one mode can be expandable on another. The data
was acquired in RPLC mode using a Waters XSelect HSS T3 (100x2.1 mm,
3.5um) column at 25°C, with flow rate 0.3 ml/min at five different pH
conditions- 2.7, 3.5, 5.0, 6.5, and 8.0 with a gradient elution of 0-95% of
methanol in 20 minutes time.

4.1.4.2 Molecular Descriptors and their Calculation

Molecular descriptors play an important role in achieving accurate reten-
tion prediction. They form the firm basis for any QSRR model. For regres-
sion models a set of 1D and 2D descriptors covering physical, chemical and
structural properties were calculated for every molecule in the dataset using
their SMILE structure taken from PubChem database [163]. The molecu-
lar descriptors in this article are calculated taking the ionization state of
the compound at the pH of interest into account with the weighted aver-
age where the weights are the percentage of distribution of the microspecies
at the considered pH. (Described with example in Supplementary file
S1(Appendix) in appendix). The ionization states were obtained from
Chemaxon software and the descriptor values were calculated using RdKit
library. An additional descriptor, logD was added in the final molecular
descriptor set. The value of this descriptor was calculated by Chemaxon at
the value of the pH of interest. Thus, a total of 229 molecular descriptors
were computed for each molecule at each pH condition (names of descriptors
are mentioned in Supplementary file Table S2 in appendix).

4.1.4.3 Data cleaning and preprocessing

There are five datasets (varying with ph-2.7, 3.5, 5.0, 6.5, 8.0) used in this
study. Each dataset consists of 97 rows and 239 columns initially. All
compounds with retention times below 2 minutes at all pH were removed.
Zero variance descriptors were also removed. Filtered feature names are
mentioned in Table S2(Appendix). Since our dataset had features with
values of different ranges hence, the final dataset was standardized before
QSRR modeling. The first step involved mean centering and in second
step data values were divided to standard deviation making the variance of
variable to 1 and mean 0. Final dataset had 67 compounds for modeling
and 10 compounds in external test set at each pH.
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4.1.4.4 QSRR modeling with feature selection

The choice of regression techniques for correlating structural descriptors
with the analyte’s experimental retention time plays crucial role in con-
structing best and efficient QSRR models. There are no best algorithms
defined for such retention predictions. One type of algorithm can work bet-
ter for one problem but fail to achieve the same level of accuracy on another.
The performance of such regression models depends also on quality of the
dataset. Out of many available descriptors, there is a high chance of some
redundant, noisy or irrelevant features in the starting dataset that can cre-
ate problems in retention prediction: the curse of dimensionality, overfitting
problems, high training time for model construction, and poor generaliza-
tion ability of built models are amongst a few of them [164]. Therefore, a
more systematic strategy adapted for QSRR methods is required to deter-
mine the possible preliminary, intermediate, and final steps to achieve the
absolute accuracy of the best selected QSRR models.

/ 10-FCV+out of sample validation \

/ Regression models coupled with Applicability Domain
features selection PP Y
w0 Filter + Wrapper + Embedded g
|
Z : § Q.
1] MLR_CFS € o In
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RF 2
N )

Figure 4.1.1: Workflow describing the steps of QSRR Modeling

Consequently, a well-organized strategy is proposed here (Figure 4.1.1).
Five machine learning algorithms-Multiple Linear regression (MLR), Least
Absolute Shrinkage and Selection Operator (LASSO), Support Vector Re-
gression (SVR), Random Forest (RF) and Gradient Boosting Regression
(GBR). These algorithms were coupled with three feature selection method
(i) filter (correlation-based filter) (ii) wrapper (Recursive Feature Selection
methods, RFE) and (iii) embedded methods were compared for their pre-
diction abilities using small molecule data sets.
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4.1.4.5 Combining multiple predictions using Stack-
ing

At the end multiple predictions from single were combined using stacking
algorithm. Model stacking is an ensemble method that uses a meta learner
to club the predictions from single learners and then combine them to get
the final predictions [34, 165]. Two level model architecture (Figure 4.1.2)
was used to build stacking regressor with a hypothesis that combining indi-
vidual model’s predictions would increase the prediction performance. At
level 1, all base learners are built and optimized to get the best individual
predictions. At level 2, the meta learner combines the predictions coming
from level-1 models. Predictions made on external test data was used to test
the stacking model. The simplest and most widely used algorithm (MLR)
was chosen as meta regressor.

All models were built using 10-Fold cross validation and RMSE was used
as performance metric. The model with top ranking (based on ranking over
all data sets with sorted RMSE) was selected as the best algorithm for
retention prediction of small molecules in RPLC.

Base Learner Meta Learner

.................
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Figure 4.1.2: Architecture of Stacking used in this study

Algorithms

As shown in figure 4.1.2, five algorithms used at level-1. LASSO regression
is a type of linear regression that uses shrinkage by applying penalty equal
to the absolute value of the magnitude of coefficients (L1 regularization)
[166]. The LASSO procedure encourages simple, sparse models (i.e. models
with fewer parameters). This particular type of regression is well-suited
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for models showing high levels of multicollinearity. SVR with radial basis
function kernel (RBF) was used to check the nonlinear dependencies. SVR
provides the flexibility to define how much error is acceptable in the model
and will find an appropriate line (or hyperplane in higher dimensions) to
fit the data. The objective function of SVR is to minimize the coefficients
more specifically, the L2-norm of the coefficient vector [167]|. The error term
is handled in the constraints, where one set the absolute error less than or
equal to a specified margin, called the maximum error, € (epsilon).

RF and GBR both are ensemble learning methods and predict by com-
bining the outputs from individual trees (Tree based regressions) [168, 169].
They differ in the way the trees are built: the order and the way the results
are combined. The main objective of RF which represents bagging, is to
create several subsets of data from training samples chosen randomly with
replacement. Every subset data is used to train their individual trees re-
sulting an ensemble of different models. Average of all the predictions from
different trees are used for predictions. In contrast to random forest regres-
sion, in GBR the learners are learned sequentially with early learners fitting
simple models to the data and then analyzing data for errors. Consecutive
trees (random sample) are fit and at every step with the goal to improve
the performance from the prior tree by applying different weights. Hence,
in turn this process converts weak learners into better performing model.

4.1.4.6 Hyperparameter Optimization

To customize and get most out of QSRR models, hyperparameters were
configured using grid search that allowed models to be customized for spe-
cific task on all the datasets. Optimization was done using 10-Fold cross
validation and RMSE was used as performance metric. Grid Search works
by defining a search space or hyperparameter values in the form of a grid
and evaluate each and every position in that grid. The hyperparameters set
with least RMSE were selected to build the prediction models. Grid search
built in caret package itself was used for optimized parameter search.

4.1.4.7 Applicability domain

K-Nearest Neighbors (KNN) method has been used to calculate the AD
of models. By this method we calculate the distance of query compounds
from a defined point within the descriptor space of the training data [170].
In this method, the average Euclidean distances of training molecules are
calculated from their k nearest training neighbors. Average distance value
corresponding to a user-defined percentile is considered as threshold. Those
test compounds that have average distance from their k closest training
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neighbors greater than this threshold are reported to be out of the scope
of the model’s applicability and vice versa. In the present study, a k=5
number of nearest neighbors and a 95th percentile was selected to compute

the AD.

4.1.4.8 Model Validation

Model validation step which accounts for the fourth principle of OECD,
ensures the predictability, and reliability of the QSRR model to evaluate
the credibility of the model’s predictions on any new set of data. In the
current study, the predictive abilities of QSRR regression models were as-
sessed using 10-fold cross validation and external validation test data. In
10-fold cross validation the compounds in the dataset were randomly di-
vided into 10 partitions of equal size. Nine parts were used for training
while the last tenth was used as test set. The process was repeated ten
times in such a way that each sample was used exactly once as the test
data in each cycle. There are many performance comparison metrices avail-
able in the literature to compare the generalization performance of fitted
regression models for example- mean absolute error (mae), percentage mean
absolute error(%mae), root mean square error(rmse), percentage root mean
square error(%rmse), R? for evaluating the predictive ability of quantitative
structure-retention relationships (QSRR) models [171] but, in the current
studyRoot Mean Squared Error (RMSE) and R? are used for the same. The
reason being that these two are considered an excellent general-purpose er-
ror metric for numerical predictions in most of the QSRR studies reported
in the literature.

4.1.4.9 Tools and Software used

RDKit library in Python version 2021.09.5 [172] and Chemicalize were used
for calculation of molecular descriptor set. Statistical evaluation of the
data: preprocessing, feature selection and regression prediction has been
performed using Caret package in R version 3.6 [173]. GGplot2 available in
R was used for plotting observed versus prediction plots and MS excel was
used for plotting bar plots [174]. Applicability Domain toolbox was used
for the applicability domain calculation for prediction models [84].

IR Results and discussion

In this study a simple, clear and well-defined strategy (Figure 4.1.1) for
QSRR modelling is proposed which can be referred to use when the new
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test molecule structures are known. Seven diverse machine learning al-
gorithms coupled with three methods of feature selections were evaluated
for their retention time prediction abilities. The regression algorithms and
feature selections were chosen based on the fundamental difference in their
working mechanism so that the strategy could give a holistic view of the per-
formances of variety of methods suitable for such predictions. The selected
regression algorithms were a combination of linear and nonlinear methods
based on single modelling and ensembles too. Ensemble models were a com-
bination of methods that take advantage of bagging or boosting. The molec-
ular descriptor dataset used for all regression models were varied according
to the method of feature selections applied on the dataset. Since linear re-
gression modelling could not handle multicollinearity issue hence, they were
coupled with feature selection before proceeding for regression prediction.
These comparative methods provide the insights about the applicability of
varied models with feature sets for users when there will be insufficient or
complete lack of domain knowledge or when there will be a need to support
expert knowledge to achieve higher prediction performances with given set
of descriptors. The dataset associated with each step are as such: prepro-
cessing and feature selection led us to have three types of datasets at each
pH: [140] data where features were selected using filter method (e.g.-CFS)
[36] data where features were selected using wrapper method (eg. RFE)
and [141] data with all features remaining after preprocessing. All datasets
were used for regression modeling and their predictive performances were
compared in 10-fold cv and on the external test set.

4.1.5.1 Diversity of the dataset

It is expected that more diverse the dataset the better the trained mod-
els and their generalization performance on new test set. The diversity
of the dataset was checked based on molecular weight and their chemi-
cal taxonomy. The molecular weight of the compounds varied from 46 to
456 g/mol. ClassyFire3 |175] was used to obtain a chemical taxonomy of
molecules in the dataset using their smile structure(Supplementary file
S3(Appendix)). Majority of molecules were classified into eight Classy-
Fire’s groups on the level of superclass, namely: benzenoids (40.0%) organohete-
rocyclic compounds (29%), organic acids and derivatives (17%), homoge-
nous non-metal compounds (5%), nucleosides, nucleotides and analogues
(4%), organic oxygen compounds (2%), phenylpropanoids and polyketides
(2%) and rest other compounds (1%) such as lipids and lipid molecules.
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4.1.5.2 Comparison of feature selection methods

Our data was a high-dimensional QSRR data sets i.e., less data points than
number of features. Hence, it was a prerequisite to apply a dimensionality
reduction algorithm to make the models computationally less expensive and
to improve their prediction performances. In this study there were three fea-
ture selection methods used that were coupled with regression prediction.
(1) Filter methods: In this method variables were chosen regardless of the
model building hence, these are robust and effective in terms of overfitting
and computation time respectively. These methods work by estimating a
relevance score based on a user-defined threshold to select the best-scoring
features such as the correlation with the predictive dependent variable [176].
(2) In wrapper method, which is comparatively computationally expensive
and prone to overfitting, exists as a wrapper around the predictive model
algorithms and uses the same model to select the best features based on
some performance measures for example RMSE in this study [176]. (3) The
embedded Method is a mix of both filter and wrapper methods. Here, the
feature selection process is embedded in the learning or the model build-
ing phase and is done with some penalty on unfavorable features. In other
words, these algorithms have an intrinsic strategy of feature selection and
overfitting prevention [177, 178, 92]. In this study, all three categories of
feature selection methods were analyzed for their performances in accor-
dance with their use in regression models. From Tables 4.1.1, 4.1.2, 4.1.3,
4.1.4, 4.1.5 the algorithm with feature selections embedded (RF and GBR)
and wrapper method- RFE performed comparatively better at all pH. It is
also interesting to note that the filter method (CFS) and wrapper (RFE),
when coupled with non-linear regression methods, perform better than when
coupled with linear methods. This could be understood in terms of mul-
ticollinearity in the dataset with features. Multicollinearity creates model
instability. Better performance of embedded feature selection method could
be justified by two arguments: firstly- they consider the interaction between
features giving much closer and detailed information about the data pattern
and secondly there is no issue of multicollinearity since they apply penalties
on correlated features.

4.1.5.3 Important Features

Every microspecies of molecules exist in dynamic equilibrium during the
separation process and their retention times varies with changing pH. There-
fore, the weighted average of their features is expected to give a more infor-
mative and descriptive feature set. Good accurate QSRR models at multiple
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Models CcvV External Test
RMSECV R? RMSE R?

MLR_CFS 0.17 0.71  0.25 0.50
SVR_CFS 0.15 0.78  0.22 0.64
MLR CFS 0.14 0.83  0.22 0.70
SVR_RFE 0.13 0.83 0.17 0.80

Lasso 0.13 0.84 0.20 0.70
RF 0.13 0.83 0.19 0.76
GBM 0.13 0.81  0.18 0.72
Stack 0.13 0.82 0.25 0.80

Table 4.1.1: Prediction performances of all models at pH 2.7

Models CV External Test
RMSECV R? RMSE R?

MLR_CFS 0.15 0.79 0.34 0.41
SVR_CFS 0.17 0.72  0.25 0.53
MLR_ RFE 0.14 0.81  0.30 0.58
SVR_RFE 0.13 0.89 0.21 0.70

Lasso 0.13 0.82 0.22 0.66
RF 0.14 0.81 0.21 0.70
GBM 0.15 0.80 0.24 0.50
Stack 0.12 0.87 0.18 0.77

Table 4.1.2: Prediction performances of all models at pH 3.5

Models CvV External Test
RMSECV R? RMSE R?

MLR_CFS 0.15 0.81 041 0.42
SVR_ CFS 0.19 0.78  0.26 0.63
MLR_RFE 0.15 0.82  0.26 0.64
SVR_RFE 0.14 0.85 0.19 0.83

Lasso 0.13 0.87 0.23 0.71
RF 0.14 0.87 0.22 0.75
GBM 0.14 0.85 0.23 0.69
Stack 0.12 0.87 0.21 0.75

Table 4.1.3: Prediction performances of all models at pH 5.0
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Models CV External Test
RMSECV R? RMSE R?

MLR CFS 0.20 0.76  0.31 0.58
SVR_CFS 0.23 0.73  0.35 0.44
MLR_RFE 0.16 0.87  0.29 0.63
SVR_RFE 0.16 0.88  0.19 0.84

Lasso 0.16 0.81 0.28 0.71
RF 0.15 0.87  0.20 0.84
GBM 0.15 0.88 0.15 0.90
Stack 0.13 0.90 0.18 0.85

Table 4.1.4: Prediction performances of all models at pH 6.5

Models Ccv External Test
RMSECV R? RMSE R?

MLR _CFS 0.21 0.77  0.26 0.71
SVR_CFS 0.22 0.76  0.29 0.64
MLR_RFE 0.21 0.83  0.22 0.79
SVR_ RFE 0.17 0.87  0.15 0.91

Lasso 0.15 0.89  0.30 0.70
RF 0.15 0.86  0.17 0.88
GBM 0.16 0.86  0.15 0.89
Stack 0.14 0.92  0.12 0.93

Table 4.1.5: Prediction performances of all models at pH 8.0
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pH can give us information about the most relevant descriptors for the re-
tention times prediction [179]|. Better prediction performance of nonlinear
models over linear models inferring those nonlinear patterns of molecular
descriptors predict retention time relatively well. The following steps were
followed to make the maximum inference about the selected features: All
the features selected using the filter method and wrapper method and the
top 20 features used by prediction models (embedded feature selections)
were compared. Mutually inclusive features from all the models were se-
lected as the most essential and representative features for retention time
predictions. These selected features are listed in Table Supplementary
file S4(Appendix). LogD, MolLogP and PEOE VSAG are the most se-
lected features by all the models at every pH. Apart from these, there were
other features like- NHOHCount, VSA Estate are also among the other
selected features. The study has been done in reversed-phase liquid chro-
matography, where the difference in lipophilicity of the compounds causes is
the main factor affecting the retention of the molecules. Hence, the selection
of descriptors related to lipophilicity exemplifies better feature selections.
LogD and MolLogP which are the pH dependent distribution coefficients
and octanol-water partition coefficients respectively for every microspecies
of a molecule i.e, neutral and ionized both. PEOE _VSA| which represents
the partial atomic charge of the molecule, ranges from 1 to 14 based on the
partial charge distribution. In PEOE _VSA parameter- PEOE denotes Par-
tial Equalization of Orbital Electronegativities which is a charge calculation
method and VSA signifies-Van der Waals Surface Area. It is interesting to
note that out of 14; it is PEOE _VSAG6 which denotes Van der Waals sur-
face ar-ea having the atomic partial charge is in the range of -0.10 to -0.05,
that was selected maximally [180]. “NHOHCount” gives the molecule’s NHs
and OHs count whereas “polarizability” is a measure of electric dipole or
clectronic charge dispersion in response to an external clectric field. These
descriptors can, in principle, distinguish between slight differences in a local
region of two globally similar molecules. The use of such information, as
given by logD, LogP and the PEOE VSA descriptors, seems necessary to
construct a robust and accurate in silico model from structural information
of test compounds. These descriptors are a parameterized representation of
the hydrophobicity displayed in all modes of RPLC for separation of varied
kinds of analytes.
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4.1.5.4 Predictive performance of the different al-
gorithms on all datasets

Performance differences between the different QSRR models were evaluated
in terms of RMSE and R? on all five datasets. For each data set, all com-
pounds are used in a nested 10CV approach to assess the generalization
performance. To validate the model, a separate test set of 10 molecules
was used. Every model performance on test set was compared at each
condition and reported. Grid search method was used tuning parameters.
Tuned parameters for each model at every pH is listed in file Supplemen-
tary file-S10(Appendix). The detailed CV results for RMSE and R?
for each dataset are shown in Tables 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5, respec-
tively. Mean rank over all data sets (all pH) when the performance was
sorted on RMSE was calculated to find the best suitable model for reten-
tion time prediction. From the Figure 4.1.3, it is evident that Stacking is
the best algorithm and hence, can be used for retention time prediction
for small molecules in RPLC setup. Linear models such as MLR (CFS,
RFE) and LASSO are not performing very well. Figure 4.1.3 shows how
stacking reduces the RMSE of models over other single models. Note that
the ensemble methods like RF and GBM performed comparatively better
than single models at lower pH i.e., at pH 2.7 and 3.5 emphasizing the fact
that ensembling is a better way to fit nonlinear relations in a model. The
SVR (nonlinear RBF kernel + RFE) model followed after them, performing
well for data sets at extreme pH conditions i.e., at 2.7, 6.5 and 8.0. Stack-
ing performance was comparatively similar to GBM, RF and SVR_RFE
at pH 2.7. Apart from one pH, this algorithm performed consistently well
throughout the given pH range. The minimum error of prediction was as
little as 0.02. The highest prediction error was observed at pH 2.7. These
observations support the fact that except in a few circumstances, out of
all algorithms, stacking is most likely to show better generalization per-
formance. More explanatory discussion about the performance of feature
selection coupled with regression models can be provided using observed
versus prediction score plots. The closer the fitted line is to the identity
line, the better the model. The predicted and their corresponding experi-
mental retention times for stacking model at all pH are plotted in Figure
4.1.4 and for the rest all models are plotted in Supplementary files S5,
S6, S7, S8, S9(Appendix. Residuals i.e., the difference between pre-
dicted and experimental values for the stacking model plotted at all pH to
get a closer look at the predictions (Figure 4.1.6). The residual distributions
for all datasets validated the superiority of the stacking model. Note that,
to the author’s knowledge, the stacking algorithm has never been applied
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before for retention time prediction in RPLC.

4.1.5.5 Applicability Domain Check

It is impossible to anticipate the whole universe of compounds when building
a single QSRR model. Hence, there is a need to define the model limitations
with respect to its structural domain and response space which can further
be used to evaluate the ambiguity in the prediction of a given molecule
relying on the structural similarity of molecules used in the development
of the QSRR model. This structural boundary to determine the subspace
of chemical structures for reliable property prediction is defined as appli-
cability domain which is also the third OECD principle [170]. The query
chemicals falling under the defined boundaries of the model are considered
within the applicability domain and hence, their predictions will be consid-
ered reliable. The predictions of the other molecules which are outside the
applicability domain won’t be trusted. In cases like this study, where several
QSRR models have been built for retention prediction of small molecules,
the knowledge of applicability domain helps to compare the reliability of
prediction by each QSRR model.

A KNN-fix method (section- applicability Domain in material and meth-
ods) at a distance of 95% confidence interval was used to define the appli-
cability domain of the QSRR model concerning its structural domain and
response space. It is observed that stacking outperformed the rest of the
single models; hence, the study of this section was focused on the stack-
ing models only. The error of predictions of all QSRR models for each
compound were compared with the distances among features (all features)
calculated using the KNN-fix method [181]. It can be seen in Table 4.1.6,
Figure 4.1.5 and Supplementary file-S11(Appendix), that the error of
prediction at all pH was bad for compound Miconazole which turned out to
be out of the applicability domain since its calculated distance was higher
than the threshold at every pH.

Prediction performance and hence, the regression line and residual plot
was better when plotted (Figures 4.1.5 and 4.1.6) after removing Miconazole
from the external test set. Hence, it can be inferred that the retention time
prediction of miconazole or any new test compound similar to this cannot
be considered reliable. The calculated threshold could serve as a very good
measure for filtering new test compounds for retention prediction. Detailed
analysis of such behaviour of Miconazole was out of the scope of this study.
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IR Conclusion

Chromatographic separation of small molecules is a complex process and
the development of new separation methods may be a long and costly pro-
cess. QSRR proved to be an alternative solution enabling the selection
of pre-optimal conditions based on in silico computations. However, such
computational modeling approaches become tricky with increasing number
of chromatographic parameters. It is very challenging to use one type of
algorithm over others since non-linear relationships between retention prop-
erties and the molecular descriptors may be present. The current study
attempts to simplify the prediction modeling steps by taking a holistic ap-
proach that could be applied to any QSRR modeling for similar chemical
compounds. Since structures of compounds play a vital role in deciding
separation patterns, the type of molecular descriptors and the way they
have been calculated is crucial. The influence of change in pH on structure-
derived molecular descriptors gave a deeper and better understanding of
molecules being studied and their retention pattern in the RPLC mode.
The method of feature selection also affects the retention prediction per-
formances. Stacking could be an excellent approach to combine predictions
coming from different models and get better performances. QSRR model-
ing using a multitarget approach could be an advanced and more convenient
way to deal with retention predictions with many experimental conditions.
We expect that the current study will provide the initial guiding points for
a practical and effective method for analytical chemists working with LC
platforms to get an optional working condition and the way to improve the
predictive confidence of studies.
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EWR] Preamble

Building upon the groundwork laid in the previous chapter, which focused
on a single-target approach, it becomes apparent that this approach is sub-
optimal when considering the intricate relationships among multiple diverse
targets. That method did not consider the relationships among targets in
the modeling process, resulting in potential information loss. Addition-
ally, our attempt to model each target separately in the previous chapter
proved to be time and resource-intensive. In response to these challenges,
we introduce a multitarget approach in the current chapter to overcome the
limitations of conventional single-target modeling in RPLC. We explored
various methods for predicting retention times across multiple experimental
condition variations simultaneously log transformed retention times at pH
2.7, pH 3.5, pH 5.0, pH 6.5, and pH 8.0).

This work has been published in the journal "Journal of Pharmaceutical
and Biomedical Analysis."

Kumari, Priyanka, et al. "A multi-target QSRR ap-
proach to model retention times of small molecules in
RPLC." Journal of Pharmaceutical and Biomedical Anal-
ysis 236 (2023): 115690.
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EW¥] Abstract

Quantitative structure-retention relationship models (QSRR) have been utilized
as an alternative to costly and time-consuming separation analyses and associated
experiments for predicting retention time. However, achieving 100% accuracy in
retention prediction is unrealistic despite the existence of various tools and ap-
proaches. The limitations of vast data availability and time complexity hinder the
use of most algorithms for retention prediction. Therefore, in this study, we exam-
ined and compared two approaches for modelling retention time using a dataset
of small molecules with retention times obtained at multiple conditions, referred
to as multi-targets (five pH levels: 2.7, 3.5, 5, 6.5, and 8 at gradient times of 20
minutes of mobile phase). The first approach involved developing separate models
for predicting retention time at each condition (single-target approach), while the
second approach aimed to learn a single model for predicting retention across all
conditions simultaneously (multi-target approach). Our findings highlight the ad-
vantages of the multi-target approach over the single-target modelling approach.
The multi-target models are more efficient in terms of size and learning speed com-
pared to the single-target models. These retention prediction models offer two-fold
benefits. Firstly, they enhance knowledge and understanding of retention times,
identifying molecular descriptors that contribute to changes in retention behaviour
under different pH conditions. Secondly, these approaches can be extended to ad-
dress other multi-target property prediction problems, such as multi-quantitative
structure Property relationship studies (mt-QS(X)R).

Keywords: Reverse Phase Liquid Chromatography, multi-target QSRR, Ran-
dom Forest, molecular descriptors, Regression chain, Multitask learning, problem
transformation, algorithm adaptation

EWXE] Introduction

In the field of analytical chemistry, chromatographic separation has emerged as
a powerful technique for separating and analysing complex mixtures. Extensive
studies are conducted using various analytical techniques to gain a deeper under-
standing of the analytes present in a given sample, among which chromatography
plays a prominent role. Retention time, a fundamental chromatography param-
eter, is a critical indicator of an analyte’s behaviour within the chromatographic
system and holds vital information for its separation and identification. It is often
determined through a trial-and-error process, which can be time-consuming and
expensive, especially when retention times need to be determined at multiple con-
ditions. In the case of Reverse Phase Liquid Chromatography(RPLC), a widely
studied type of chromatography, retention time(tR) can be influenced by various
factors. These factors include pH, column type, mobile phase composition, and
other variables encountered in various chromatographic techniques. As a result,
accurately determining the retention time requires conducting multiple experi-
ments to account for these variables effectively. This can become cost-prohibitive,
particularly in high-throughput screening applications. An alternative way of re-
tention evaluation is computational methods using quantitative structure retention
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relationship models(QSRRs) [182, 122]. QSRR is an advanced approach that es-
tablishes a statistical relationship between various attributes, such as chemical,
physical, and physicochemical properties, and the data associated with the struc-
ture of molecules, commonly known as structure-derived descriptors [183]. By
carefully selecting appropriate molecular descriptors and utilizing statistical mod-
elling methodologies, a QSRR model can be developed that is both statistically
robust and stable [184].

The field of QSRR has undergone significant advancements, progressing from
basic linear regression models to sophisticated machine learning algorithms, in-
cluding algorithms like GA-PLS[185], Bayesian Ridge Regression, Extreme Gra-
dient Boosting Regression, Support Vector Regression etc.,[186]. Traditionally,
each study in QSRR has employed a single task or single-targeting approach,
wherein a separate model is constructed for each response or target in regression
studies. In recent studies [187, 150], researchers have delved into mixed Quanti-
tative Structure-Retention Relationship (QSRR) models. However, these models
predominantly depend on descriptors for target prediction, employing multiple al-
gorithms and feature engineering. However, this approach overlooks the fact that
a single molecule can elicit different responses under varying chemical environ-
ments and experimental conditions during separation. Consequently, this creates
challenges related to multitasking. None of the previous studies has addressed this
issue in retention prediction, where multiple experimental targets or responses are
considered in the data, thereby neglecting the correlation between these targets.
The time and cost required for modelling can vary significantly depending on the
number of targets. Employing single-target approaches in QSRR models would
not be time and cost-effective when multiple targets need to be predicted. Con-
versely, multi-target models would be more suitable in such cases.

While multitasking models have been utilized in other fields for activity prediction[188,
189], lipophilicity [190], toxicity[191], brain penetration[192|, and more, the chro-
matography field has primarily overlooked their potential application. Some stud-
ies have explored multi-output regression in fields like real-time train arrival time
prediction[193], ecological modeling[194], gas-phase kinetic rate constants predic-
tion of chemicals[134], and chemometrics to infer concentrations of several ana-
lytes from multivariate calibration[195]. However, to our knowledge, none of the
previous works has addressed the challenge of incorporating target relationships,
including various retention times in varied conditions, into retention prediction
models. Therefore, in this study, we aimed to explore different approaches to
QSRR modelling for a comprehensive analysis.

In the literature, two methods of multi-target modelling have been reported
[196]: (1) the problem transformation method and (2) the algorithm adaptation
method.

e Problem transformation method: The problem transformation method in-
volves converting the original multi-output regression problem into one or more
single-output regression sub-problems, which can be solved using traditional
single-output regression algorithms. Several techniques fall under this approach,
including the Independent Model (IM), where each output variable is modelled
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independently using separate single-output regression models. The input fea-
tures train each model separately, independently predicting each output variable.
Another technique is the Transformation-Based (TB) approach, where the multi-
output regression problem is transformed into a series of single-output regression
problems by combining the input features with transformation functions. Sep-
arate single-output regression models are then trained for each output variable
using these transformed features. An example of this approach is the chaining or
regressor chain method [197].

Algorithm adaptation method: The algorithm adaptation method involves
modifying existing single-output regression algorithms to handle multiple output
variables directly. This is a Multi Task Learning (MTL), where a single model
is trained to predict multiple output variables jointly by optimizing a standard
objective function that considers all the output variables simultanecously. The idea
behind this approach is that the model can leverage the dependencies between
the output variables to improve overall prediction performance.

To summarize, relying on a single-target approach-based model may not be
sufficient for retention prediction models in real-world scenarios. Although creating
separate models for each response variable is an option, it can be time-consuming
and less accurate.

Therefore, multi-output-multi-target prediction models, known as the "mt-
QSRR modelling" approach, can be a more efficient alternative [198]. The prac-
tical utility of mt-QSRR models can be effectively extended and comprehended
within the context of analytical method development, particularly for emerging
pharmaceutical products. In such scenarios, where the "analytical quality by de-
sign" framework is followed [199], the implementation of the design of experiments
(DoE) becomes imperative to establish a design space. This design space ensures
that the chromatographic method exhibits desirable properties, including robust-
ness in the face of experimental parameters[200]. However, conducting numerous
laboratory experiments to identify optimal experimental conditions for the DoE
can be time-consuming and resource-intensive. To address this challenge, the ini-
tial screening phase can be conveniently performed in silico utilizing one mt-QSRR
model, even if their accuracy may not be exceptional. By employing these models,
a range of parameters can be selected, significantly streamlining the subsequent
experimental optimization DoE[168|. This allows for the identification of the most
favourable separation and robustness conditions through practical experimenta-
tion not only in analytical chemistry but in other pharmaceutical and biomedical
analysis as well [201, 202, 21]

In this study, we have compared the model performance of QSRR models
based on single-target learning over multi-target learning(mt-QSRR) using reten-
tion data gathered for five pHs. Multi-target learning approach offers several
advantages over single-target retention prediction|203, 204], including consider-
ing interdependencies between targets, reducing computational burden by using
a single model, improving model interpretability, and training on larger datasets
to enhance generalization and reducing overfitting|205, 206]. Multi-target QSRR
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Figure 4.2.1: Different approaches of mt-QSRR models were implemented in
this study. Red dotted box: Sequential multiple-output prediction methods
with a single-target approach. Blue dotted box: Multi-output simultaneous
prediction using a single model approach. Green dotted box: Modeling
methods that consider the relationship of the target variable.

models(mt-QSRR) can significantly advance quantitative structure retention pre-
diction and holds promise for applications in drug discovery, environmental anal-
ysis, and other fields where accurate and efficient retention times are critical for
chromatographic separations.

E¥X] Materials and methods
4.2.4.1 Problem definition

For a given data set P containing feature and target couple (x, y) with x € X, the
input vector and y € Y =Y} x ... x Y, the target vector. Denote with y; € Y;
the i'th component of y.

Hence, the mt-QSRR model can be defined as:

In single-target approach: A learner learns from a data set P = {(x, y;)}, with
yi € Y; a scalar variable, a function f; : X — Y; such that >3, pLi(fi(x), i)
is minimized, with L; some loss function over Y;.

In multi-target approach: A learner learns from a data set P = {(x, y;)}, with
y € Y an n-dimensional vector, a function F: X — Y such that 3, s L(F(x).y)
is minimized, with L. a loss function over Y . In this study, we have checked if the
multi-target learner performs better than a single-target learner by checking for
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any (x, y), drawn randomly from the population, on average, L(F(x), y) < >,
Li(fi(z), yi)-

4.2.4.2 Dataset

The dataset used in this study was taken from [207], which consists of retention
time observed for small pharmaceutical compounds reported in minutes. The data
were acquired in RPLC mode at five different pH conditions- 2.7,3.5,5.0,6.5,8.0
with a gradient elution of 0 to 95 % of methanol in 20 minutes. The column,
flow rate and temperature specification are mentioned in [207, 19]. The dataset
encompasses compounds with a diverse range of molecular weights, spanning from
46.005 to 454.611 g/mol. The efficacy and usefulness of a model rely heavily on
the dataset it is trained on. Therefore, during the data collection process, we
prioritised including a diverse range of molecules with varying pKa. This allowed
us to capture different trends in retention times as the pH of the analysis increased.
Four distinct types of data trends were observed, as depicted in Figure (1-3) in
the supplementary file.

The training data included various molecule types, with the majority falling
into Cases 1 and 3 with 37 and 33 % of total compounds, while Case 2 with 26
% and a smaller portion belonged to Case 4 with 4% of the total number of com-
pounds used for modelling (Figure 3 in supplementary file). The retention time
showed a strong correlation(in terms of r) across five different pH conditions(Figure
4 supplementary file). Therefore, employing a modelling strategy that considers
multiple experimental responses simultaneously and leverages the correlation be-
tween the modelled endpoints becomes crucial.

This study used observed retention times at five pH conditions as targets for
QSRR modelling. The targets, all with a gradient time of 20 minutes, are denoted
as follows- tR_ 2.7 for pH 2.7, tR_3.5 for pH 3.5, tR_5.0 for pH 5.0, tR_6.5 for
pH 6.5, and tR_8.0 for pH 8.0.

4.2.4.3 Molecular descriptors

In this study, we employed constitutional, topological, and geometrical descriptors
as numerical characteristics to analyze the chemical structures. A total of 225
descriptors were calculated using the RDKit software, which was then utilized to
develop models for predicting compound retention based on their physicochemical
properties.

Some of these descriptors were aligned with the parameters used in LSER
theory, a concept initially applied in retention prediction models [2, 62]. LSER
theory focuses on the linear solvation energy relationship, which relates solute
retention to its solute-solvent interactions. These descriptors capture the specific
solvation effects and improve the accuracy of retention prediction models. The
remaining descriptors were included to provide additional meaningfulness to the
model and enhance its predictive capabilities. The RDKit package, specifically
version 2015, was utilized to compute these descriptors derived from the chemical
structures [92].
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4.2.4.4 Data cleaning and preprocessing

Compounds with less than 2 minutes retention times were classified as non-retained
and removed from the dataset. Before modeling, the training data was standard-
ized using a zero mean and unit variance approach. Additionally, the descriptors
of the test molecules were standardized using the mean and standard deviation of
the training samples.

4.2.4.5 QSRR Modelling

Considering the given data description, our objective was to predict multiple con-
tinuous targets (responses) for new test samples based on a set of independent
variables. Two approaches were used in this study (Figure 4.2.1) to predict the
retention times: the single-target and multi-target regression approaches, which
are explained in section 4.2.4.1.

Input: [X,y], X € R"*™,y € R"*?
Output: y,y € R"*P
X + X;
y < Initialize empty list to store ¥;
for ¢ in range p do
y < yli];
yi < RegressionModel(X,y);
y-append(y;)
end
return y

Figure 4.2.2:  Algorithml: Pseudoalgorithm for DirectMultioutput
Regressor(single-target approach used for Modell)

The problem transformation and algorithm adaptation methods for retention
predictions were employed to check this differentiation. The problem transfor-
mation method converts the multi-output regression problem into one or more
single-output regression sub-problems. Two ways of modelling were tested for this
method- IDM and RC(Regressor Chain) methods corresponding to Modell and
Model2, respectively (shown as a red dotted box). On the other hand, the al-
gorithm adaptation method involves modifying existing single-output regression
algorithms to handle multiple output variables directly.

Both the RC(Model2) and MTL(Model3) models can handle target correla-
tions but not the Independent model(Modell) that utilizes a multioutput regres-
sor function to build the model. The pseudo algorithms for the three methods are
described in Figure 4.2.2, 4.2.3 and 4.2.4, respectively:
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Input: (X, y], X € R"*™ y € R"*?
Output: y,y € R"*?
X +— X;
y < Initialize empty list to store ¥y;
for 7 in range p do
y < yli;
yi + RegressionModel(X,y);
y.append( ¥;);
X = concatenate [X,y;];
end
return y

Figure 4.2.3: Algorithm?2: Pseudoalgorithm for RegressorChain
method(single-target approach used for Model2)

This study focuses on applying a single-target approach (Modell and Model2)
and a multi-target approach (Model3) approaches to deal with the challenges asso-
ciated with predicting the retention time of small molecules based on multivariate
data. The high number of descriptors relative to the compounds used for modelling
introduces the possibility of multicollinearity. To address this issue, we employ spe-
cific algorithms, with a focus on random forest (RFR)) regression method [208, 134],
which allows for the analysis of multivariate and megavariate data while mitigating
the risk of overfitting. By utilizing random forest for retention time prediction, we
effectively prevent overfitting and create a robust and reliable model that general-
izes well to unseen data. This is achieved through the ensemble nature of the ran-
dom forest, coupled with feature randomization, bootstrapping, regularization, and
out-of-bag (OOB) error estimation. In our analysis, we developed three models us-
ing the sklearn library in Python. For Model 1, we utilized a multioutput wrapper
around RFR (Random Forest Regressor). Model 2, on the other hand, employed a
regressor chain around RFR. Lastly, for Model 3, we directly used the RFR func-
tion available from the sklearn.ensemble module. All models were constructed us-
ing the hyperparameter values as such: n_estimators=100, min _samples_split=2,
min samples leaf=1, min weight fraction leaf=0.0, max features=1.0. We
employed the variable importance calculation for the features to determine the
significant molecular descriptors, an inbuilt default function within the RFR, al-
gorithm. This allowed us to identify the descriptors that had the most impact on
the predictive performance of the models.

4.2.4.6 Model Validation and evaluation

The developed mt-QSRR model underwent rigorous validation procedures to en-
sure its accuracy and reliability. Both internal and external validation methods
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Input: [X, y],X € Rnx:nry e R?IXP
Output: y,y € R"*?

X + X;

for i in range p do

y < RegressionModel(X,vy);

end
return y

Figure 4.2.4: Algorithm3: Pseudoalgorithm  for  Algorithm
adaptation(multi-target approach used for Model3)

were employed, following a similar approach as outlined in [19], in order to min-
imize prediction errors across multiple target compounds. For the external vali-
dation, a dataset comprising ten compounds was carefully selected based on their
diverse trends in observed retention time and chemical nature. This selection en-
sured that the model’s performance was evaluated across a wide range of chemical
properties, enhancing its applicability and robustness. By assessing the model’s
predictive capabilities on this external dataset, its generalizability and ability to
handle various compound types were thoroughly assessed. Internal validation, on
the other hand, was conducted using a 10-fold cross-validation technique. This
method involved dividing the dataset into ten subsets of roughly equal size. The
model was trained on nine subsets while utilizing the remaining subset for test-
ing. This process was repeated ten times, each subset serving as the test set once.
By performing cross-validation, the model’s performance was assessed on multi-
ple iterations, enhancing the credibility of its predictive capabilities. To evaluate
the performance of the mt-QSRR model quantitatively, external validation per-
formance measures were calculated. These measures were expressed in terms of
the average root mean square error (aRMSE), as shown in equation 4.2.1, and the
average cocfficient of determination (aR?), as shown in equation 4.2.2. These per-
formance metrics provided a comprehensive assessment of the model’s predictive
accuracy and its ability to explain the variance in the observed retention times
across multiple target compounds. By averaging the performance metrics over all
the individual models, a consolidated evaluation was obtained, enabling a com-
parative analysis between single-target and multi-target prediction approaches.
Furthermore, the individual model with the best performance was selected, and
its predictions were compared against the corresponding observed values. This
visual representation of the model’s performance allowed for a more intuitive un-
derstanding of its predictive capabilities.
Formulas for calculating RMSE and R? for multi-target regression approach:
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s9
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aRMSE = 2 = Z (Y(” ”) (4.2.1)

] (4.2.2)
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In the above-mentioned equations, Y and Y are the observed and predicted
retention times of unseen test data, n is the number of test molecules, and d is the
number of targets which is five pH conditions in this study.

4.2.4.7 Significance test for performance differences

To assess whether the differences in performance are statistically significant, we
employed the corrected Friedman test [209, 210]. The Friedman test is a non-
parametric test for multiple hypotheses testing. The algorithms were ranked ac-
cording to their performances for each dataset separately. The best-performing
algorithm was ranked 1, the second 2, and so on. In the situation where there
were equal ranks, average rank was used. The Friedman test is based on two
assumptions: The n K-variate random variables are mutually independent, i.e.,
the results within one row do not influence the results within the other rows (Ta-
ble 4.2.2 and 4.2.3). The second hypothesis is that the data can be meaningfully
ranked. Friedman’s test statistic is:

19 K
—_— 2 J—
T_nK(K—I—l) kE=1Rk 3n(K +1),

where K is the number of models, Ry = Z:L: 4 Ri is the sum of the ranks for
model k over the n parameters. Under the null hypothesis, the statistic 7" has an
asymptotic Chi-squared distribution with K —1 degrees of freedom. At the a level
of significance, the null hypothesis is rejected if Ty > x% _ 1:1—q» Where X% 11-a
is the (1-a) quantile of the Chi-squared distribution with K —1 degrees of freedom.

E¥X] Results and discussion

4.2.5.1 Data characterization

The multivariate dataset considered in this study comprised the experimental re-
tention times(in minutes) of diverse small pharmaceutical compounds having var-
ied molecular weights and retention times. The high correlation of retention values
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across all pH levels (Figure 4 supplementary file) underscores the importance of
employing QSRR models that leverage this relationship for predicting retention
times.

4.2.5.2 Multi-target QSRR modelling and valida-
tion

This study focuses on studying pH’s influence on the retention behaviour of small
molecules in RPLC. Here, we attempted to develop an mt-QSRR model for simul-
taneous prediction of multiple targets that are retention times ( retention times at
five pH of diverse pharmaceutical compounds). All the targets were experimentally
observed as the dependent variables, and the considered compounds’ molecular de-
scriptors were calculated computationally as the predictor variables. The optimal
model was established by utilizing a training set of 61 compounds. For the most
effective model, a set of the top five descriptors was identified using Gini impor-
tance, also called mean decrease impurity. While additional descriptors do make
a contribution, their importance is comparatively lower. The leading descriptor
among them is "MolLogP," which signifies the octanol-water partition coefficient.
Other noteworthy descriptors include "LogD," "VSA-Estate5," "SMR-VSA3," and
"QED." The model was validated internally using a 10-fold CV and externally with
the test set (n = 9). The parameters used for RFR for the mt-QSRR models were
as such: n_estimators = 100, max_depth = None, min__samples _split = 2,
min_samples leaf = 1,min_weight _fraction leaf = 0.0 , mazx_features =
1.0,max_leaf mnodes = None. Modell and Model2 represented prediction from
MultiOutput regression and regressor chain methods, and Model 3 as the Algo-
rithm Adaptation method. The performance measures of three mt-QSRR models
are given in (Table 4.2.1, 4.2.2 and 4.2.3). Table I displays the performance re-
sults based on the average root mean square error (RMSE) computed across all
the targets using equations 1 and 2. The models captured 66-85 per cent of the
variance in the test data( Table 4.2.3 and Figure 4.2.5 ). A high variance explained
by a model implies that the majority of the information present in the data has
been encompassed. Moreover, all the developed mt-QSRR models exhibited sig-
nificantly low RMSE values (< 0.1) for both observed and predicted log values of
the target in the test data (Table 4.2.2).

The regressor chain method (Model 2) performed poorly in comparison, sug-
gesting that the effectiveness of chaining methods depends on the specific case. If
the initial model’s error is high, it may continue to increase with each subsequent
target prediction. RMSE provides a measure of the average error in forecasting the
dependent variable. The comparable RMSE values between the training and test
sets indicate the usefulness of the algorithm adaptation method (model3-MTL)mt-
QSRR model. Algorithm adaptation methods have been particularly advantageous
in scenarios where the tasks exhibit notable commonalities. They utilize an in-
ductive transfer approach for enhancing generalization in machine learning by
leveraging the domain-specific knowledge present in the training data of related
tasks. Better performances of this method can be considered effective for simulta-
neous prediction of multiple retention times due to the regularization it enforces
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Figure 4.2.5: Plots of Observed retention time (tR) Vs. Experimental re-
tention time (tR) from Model 3 (tR is back transformed in Minutes) for (a)
pH 2.7, (b) pH 3.5, (¢) pH 5.0, (d) pH 6.5, (e) pH 8.0. Blue points: train,
orange points: test, fit line: blue dotted, Regular line: Black dotted

by demanding an algorithm to excel in correlated retention times with given five
pHs, surpassing the regularization achieved by uniformly penalizing complexity
to prevent overfitting. Significantly, the mt-QSRR model, which predicts multi-
ple retention times simultancously, demonstrates comparable performance to the
single-target QSRR models, highlighting the significance of evaluating performance
disparities (see 4.2.5.3). Additionally, the time needed for modelling consistently
remained lower for mt-QSRR compared to predicting individual targets separately.
In the single-target approach, each step had to be repeated multiple times based
on the number of targets, whereas this repetition is unnecessary in the mt-QSRR
modelling approach.

The newly introduced mt-QSRR model exhibits the potential to efficiently gen-
erate variations in retention time for diverse chemical compounds across multiple
pH values. This offers the advantage of reduced effort and time.
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‘ Parameters ‘ Modell ‘ Model2 | Model3 ‘

RMSE-train | 0.15 0.15 0.14
RMSE-test 0.15 0.17 0.15
R2-train 0.74 0.74 0.77
R2-test 0.7 0.71 0.78

Table 4.2.1: Performance measures of each model based on combined pre-
diction(average) of log tR

Parameters | Modell [rank| | Model2 [rank| | Model3 [rank]
tR_2.7 0.09 [2] 0.09 [2] 0.09 [2]
tR_3.5 0.06 [1] 0.12 [3] 0.08 [2]
tR_5.0 0.17 [2] 0.16 [1] 0.18 [3]
tR_6.5 0.20 [2] 0.24 [3] 0.18 [1]
tR_8.0 0.22 2] 0.25 [3] 0.20 [1

Table 4.2.2:  Analysis of models for mt-QSRRs based on RMSE for indi-
vidual targets

Parameters | Modell [rank| | Model2 [rank| | Model3 |rank]
tR(2 7) 0.75 [3] 0.77 [2] 0.79 [1]
tR(3.5) 0.82 [2] 0.63 [3] 0.85 [1]
tR(5.0) 0.73 [2] 0.76 [1] 0.71 [3]
tR(6.5) 0.77 [2] 0.70 [3] 0.81 [1]
tR(8.0) 0.72 [2] 0.66 [3] 0.76 [1]

Table 4.2.3: Analysis for models for mt-QSRR based on R? for individual
targets

3 2 1 3 2 1

EModeB IjModel3
Model2 Modell Model2 Modell

Figure 4.2.6: Average rank of the models based on the RMSE (left) and R?
(right).
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Figure 4.2.7: Per-model rank based on the RMSE (left) and R? (right).

4.2.5.3 Comparison of the models

The comparison of the models based on their RMSE and R? are presented in
Figure 4.2.6. On the axis, the algorithms are plotted according to their average
rank across analyses. Note that for each analysis, the best model is ranked 1
and the worse is ranked 3. The corresponding radar plots are presented in Figure
4.2.7 as an alternative visualization of the ranks of the models for each analysis
separately. In the radar plots, the lower the area in the coloured lines, the better.
Overall, Figures 4.2.6 and 4.2.7 show that Model 1 and Model 3 perform better
than Model 2 based on the RMSE, and Model 3 performs best based on the R2.
Hence, we recommend Model 3 for similar analyses. We used the Friedman test to
detect whether the differences in performances of mt-QSRR models are statistically
significant. The Friedman test concluded that the difference in the performance
of these algorithms is not statistically significant (p-value > 0.05).

E¥X] Conclusion

This study has successfully developed multiple multi-target QSRR (mt-QSRR)
models involving a comparison between two modelling approaches: single-target
and multi-target regression. The primary goal was to predict the retention times
(tR) of a diverse range of structurally small molecules under various reversed-phase
liquid chromatography (RPLC) conditions. The retention time prediction capabil-
ities of the mt-QSRR model were assessed using three distinct methods. However,
despite employing these diverse strategies, no statistically significant distinctions
were observed in their predictive performance. The performance of the mt-QSRR
models within our dataset indicated a reduction in efficiency as pH levels increased.
Particularly, the regressor chain method exhibited higher root mean square error
(RMSE), suggesting that retention prediction errors accumulate as they progress
from lower to higher pH levels. One of the notable advantages of multi-target
models is their interpretability in terms of the relationship between features and
retention time variations with pH. Unlike single-target models, where descriptor
importance varies per target specificity, the mt-QSRR model provides transparent
insights into the pertinent input variables for predicting specific groups of response
variables. Based on their performance, the optimal mt-QSRR model identified in
this study highlighted five pivotal structural features: MolLogP, VSA-Estate5,
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LogD, SMR-VSA3, and QED. These descriptors encompass the molecular parti-
tion coefficient, molecular surface area, distribution coeflicient state index, and
drug-likeness. These attributes are crucial in accounting for the diverse retention
times observed for the considered small molecules across varying pH levels. In sum-
mary, our findings underscore the potential of mt-QSRR models as a more effective
and efficient predictive strategy compared to constructing separate models for each
target. Adopting the mt-QSRR approach holds the promise of streamlining efforts
and reducing time and computational costs while simultaneously assessing the ef-
fective separation of molecules within the RPLC setup. Lastly, it is imperative to
acknowledge that the test set encompasses a limited number of molecules, leading
to an incomplete representation of the explored chemical space. As a result, the
outcomes presented in this study are preliminary in nature.
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EXR] Preamble

In this section, we delve into a sophisticated method that employs artificial intel-
ligence to predict the retention times in Reversed-Phase Liquid Chromatography
(RPLC). Our exploration is driven by the challenge of scarce data in RPLC and
seeks effective alternative solution.

We conduct an in-depth analysis to evaluate the impact of image-based descriptors
and to assess how they measure up against traditional physicochemical descrip-
tors. Furthermore, we scrutinize Quantitative Structure-Retention Relationship
(QSRR) modeling techniques, contrasting single target models and multitarget
models, as well as exploring the role of Transfer Learning. This examination fol-
lows on from the initial strategy outlined in Chapter 4.1, Chapter 4.2 and leading
up to the refined strategy presented in this section.
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EXEF] Abstract

QSRR is a valuable technique for retention time predictions of small molecules.
This aims to bridge the gap between molecular structure and chromatographic be-
haviour, offering invaluable insights for analytical chemistry. Given the challenge
of simultaneous target prediction with variable experimental conditions and the
scarcity of comprehensive datasets for such predictive modellings in chromatogra-
phy, this study introduces a transfer learning-based multitarget QSRR approach to
enhance retention time prediction. Through a comparative study of four models,
both with and without the transfer learning approach, the performance of both
single and multitarget QSRR were evaluated based on Mean Squared Error (MSE)
and R? metrices. Individual models were also tested for their performance against
benchmark studies in this field. The findings suggest that transfer learning based
multitarget models exhibit potential for enhanced accuracy in predicting reten-
tion times of small molecules, presenting a promising avenue for QSRR modeling.
These models will be highly beneficial for optimising experiemntal conditions in
method development by better retention time predictions in Reversed-Phase Liq-
uid Chromatography (RPLC). The reliable and effective predictive capabilities of
these models make them valuable tools for pharmaceutical research and develop-
ment endeavours.

EXE] Introduction

In the field of analytical chemistry, the precise prediction of retention times is
indispensable because it underpins the successful execution of various analytical
methods and techniques, allowing researchers to obtain reliable and meaningful
data. However, traditional experimental methods involve running multiple ex-
periments under different conditions to obtain retention time data and hence,
can be cumbersome and expensive. Quantitative structure retention relationship
(QSRR) modelling, comes with a solution to address these challenges|62, 211].
They offer accurate and cost-effective alternatives to traditional experimental ap-
proaches by leveraging the relationship between a compound’s molecular structure
and its retention times[62, 2]. Through these techniques, valuable insights can be
gained into molecular behaviour in chromatographic systems, advancing analyt-
ical chemistry across diverse fields [182, 212].Conventional methods, like single-
target retention prediction, encounter difficulties when confronted with intricate
scenarios, often requiring significant time and resources. Therefore, the impera-
tive lies in the development of resilient and adaptable QSRR models, capable of
swiftly and accurately predicting retention times. While QSRR models are great
for single target predictions(one model for predicting retention time at one condi-
tion), they struggle with prediction of multiple retention times under a multitude
of conditions at once. Such models which are also known as multitarget QSRR
models, has not been fully explored in scientific studies. Multitarget QSRR has
the potential to simultaneously correlate retention times of small molecules ob-
served at varied experimental parameters (EPs) such as variations in mobile phase
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compositions(pH, solvent, strength, buffer concentrations etc.) and molecular de-
scriptors (MDs) with the chromatographic behaviour of molecules[213, 187]. A
major hurdle in developing such models is the lack of comprehensive data. To
establish dependable and resilient models, researchers necessitate extensive and
diverse datasets that encompass a broad spectrum of compounds and experimen-
tal settings[211, 214]. However, obtaining such datasets can be challenging. Data
collection is resource-intensive, and available datasets may not be diverse enough
for multitarget predictions|215].

Researchers have been finding ways around this data scarcity. One method is
data augmentation, where by artificially increasing the size and diversity of the
dataset, the models can capture a broader range of retention time variations.[216].
While data augmentation increases the quantity of data, it doesn’t necessarily
improve the quality of the original data. If the original dataset contains errors
or biases, simply augmenting it may amplify these issues and this can affect the
accuracy of target predictions. Hence, along with this transfer learning could be
a promising solution[14], where knowledge from related arcas is applied to fill in
data gaps, making it possible to build more robust models even with limited data.
These innovative approaches open new doors for QSRR modeling, making it more
versatile and effective in predicting retention times under various conditions.

4.3.3.1 Transfer learning approach

Transfer learning (TL) in deep learning consists of transferring the knowledge
learned from a source domain Dy to a target domain D; [14, 217]. A domain can
be defined as D = {X, P(X)} where X is the feature space and P(X) represents
the marginal distribution for X = [z!, 22, ..., 2"] where z° represents a feature of
X. If we learn a task T, = {Y, f(.)} where Y denotes a label space and f(.)
denotes a decision function. TL aims to improve the learning of a decision func-
tion in D; for a different but related task T; by using f(.). Transfer learning in
machine learning focuses on applying knowledge from a source domain to improve
performance in a target domain, categorized mainly into homogenecous and het-
erogencous strategies. Homogeneous transfer learning addresses differences in the
marginal and conditional distributions within the same domain to better adapt
models to new tasks[14]. Methods include correcting disparities in either marginal
or conditional distributions, or both, to normalize these differences and enhance
model accuracy (|218], [219]). Heterogeneous transfer learning, conversely, aims at
aligning the input spaces of the source and target domains under the assumption
of similar domain distributions [220]. When these distributions are not equivalent,
further adaptation techniques are employed to adjust the models appropriately.
Within these broader categories, transfer learning can also be segmented by the
type of information transferred: instances and features. Instance-based transfer
learning involves reweighting source domain instances to align with the target do-
main’s marginal distribution[221]. This approach is particularly effective when the
conditional distributions between the domains are consistent([218], [219]). Feature-
based transfer learning, on the other hand, includes two main strategies (Figure
4.3.1. The first is asymmetric feature transformation, where features from the
source are reweighted or transformed to closely match those of the target domain,
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facilitating smoother model adaptation [222]. The second strategy involves identi-
fying a common latent feature space that reduces marginal distribution differences
and finds predictive structures beneficial across domains [223]. These strategies
collectively enhance the applicability of models across varied domains by lever-
aging existing knowledge and reducing the necessity for extensive domain-specific

data collection and model training.
: : T :

<>
(a) (b)

Figure 4.3.1: (a)The symmetric transformation mapping (TS and TT) of
the source (XS) and target (XT) domains into a common latent feature
space. (b) The asymmetric transformation (T'T) of the source domain (XS)
to the target domain (XT) [14]

4.3.3.2 Single target and multitarget prediction

In a feed-forward neural network, the primary role of the final layer is to synthesize
the features extracted from preceding layers to produce the output[224]. This
process can be mathematically represented as follows:

g — hL — O'(WL X hL—l +bL)

Here, L signifies the layer index, with W being the weight matrix that con-
nects the units from layer L —1 to layer L, and b” represents the bias term for layer
L. The function ¢ denotes the activation function, which could be ReLU[225],
LeakyReLU[226], Tanh[227], or any other suitable activation function[228, 229].
For single target prediction architectures, the output layer h’ consists of a single
unit. This design implies that the network aims to predict a single response vari-
able, such as the retention time of a compound in QSRR modeling. The network’s
structure is optimized to focus on accurately predicting this singular outcome based
on the input molecular descriptors.

Conversely, multitarget networks are designed with N units in the output layer,
represented by a vector h” of size N. This configuration allows the network to pre-
dict multiple response variables simultaneously. For example, in QSRR modeling,
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this could mean predicting the retention times of a compound under various exper-
imental conditions[213]. Each unit in the output layer corresponds to a different
target variable, enabling the network to capture and predict a broader spectrum of
chromatographic behaviors based on the same set of input molecular descriptors.

EXR] Materials and methods
4.3.4.1 Data sets

In this research, we focused on pH variation as a key experimental parameter, with
the goal of predicting retention times at various pH levels using QSRR modeling.
Within this context, models predicting the retention time of small molecules in
reversed-phase liquid chromatography (RPLC) at a single pH level are defined as
single-target prediction models. In contrast, models capable of predicting reten-
tion times across multiple pH levels are classified as multitarget prediction models.
The METLIN(SMRT) data set downloaded from its Figshare repository[13]. The
retention time of nearly all molecules falls within two distinct intervals: 0-2 min-
utes and 8-25 minutes. Molecules with low retention times (Retention time < 2
minutes) were excluded from the SMRT dataset, resulting in a total of approxi-
mately 77 thousand molecules. The other data sets (RIKEN|[139, 32|, LPAC[131]
was used for testing purposes. The LPAC dataset, containing only 96 compounds,
poses a data scarcity issue, making it challenging for any advanced QSRR mod-
elling. Therefore, obtaining their retention time requires exploring approaches
such as transfer learning.

The SMRT and Riken datasets had only one experimentally observed retention
time consequently, we employed it in our study exclusively for single-target pre-
diction modelling. Conversely, the LPAC datasets offered five retention times to
be predicted(at pH 2.0, pH 3.5, pH 5.0, pH 6.5 and pH 8.0) hence, this was used
for multitarget modelling as well.

4.3.4.2 Molecular Descriptor calculation

Physicochemical descriptors were used to compare the two approaches(Transfer
learning and without transfer learning, single target and multitarget retention
prediction approaches). Physicochemical descriptors were calculated using RDKit
package, version 2015[92].

EXX] Model Architecture

In recent developments within the field of analytical chemistry, particularly in
retention time prediction for small pharmaceutical compounds, our study has in-
corporated advanced deep learning techniques to enhance the accuracy and effi-
ciency of compound separation processes in reversed-phase liquid chromatography
(RPLC). By focusing on traditional molecular physicochemical data, we aim to
enhance the prediction of retention times for small pharmaceutical compounds,
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employing a multi-layer perceptron (MLP) to address this complex challenge. The
general workflow of the model architecture is shown in Figure 4.3.2. At the heart
of our approach is an MLP consisting of four hidden layers, with configurations
of 1000, 500, 200, and 100 units, respectively. The adoption of the LeakyReLU
activation function (Equation 4.3.1) in each layer is a key feature, designed to
prevent the issue of dying units commonly associated with the ReLLU function.
By allowing a small, negative slope for negative inputs, LeakyReLLU mitigates the
vanishing gradient problem, facilitating more effective learning.
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Figure 4.3.2: The architecture of QSRR modelling based on Transfer Learn-
ing approach
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To further enhance the model’s ability to generalize, a dropout layer precedes
the output layer, reducing the risk of overfitting.

LeakyReLU (z) = maz(0, z) 4+ negative_slope x min(0, z) (4.3.1)

4.3.5.1 Training and Fine-Tuning

The MLP model was initially pre-trained on the extensive SMRT dataset. This
foundational training phase was crucial for establishing a robust baseline from
which the model could be fine-tuned to adapt to specific characteristics of smaller
datasets. The fine-tuning process involved model selection based on mean squared
error loss, adjusting the model for either single target or multitarget prediction
modes. In the single target mode, the model treats each target variable indepen-
dently, enhancing the specificity of predictions. Conversely, in multitarget mode,
all retention times are predicted simultaneously, offering a comprehensive view of
the data’s predictive landscape.In the single target settings, the loss was computed
individually for each target, and then the averaged loss was reported and used,
whereas, in the Multitarget modelling, the loss was directly computed using the five
targets simultaneously by measuring the squared L2 norm between each element
in the input and target. As illustrated in Figure 4.3.3, the Multi-Layer Perceptron

Table 4.3.1: Summary of Model Abbreviations

Category Abbreviation | Description
Single Target | M1 WTL No TL
models

M2 TL With TL
Multi Target | M3 WTL No TL
models

M4 TL With TL, physicochemical

descriptors

models tested | M5-WTL No TL
on SMRT data

M6 TL With TL

(MLP) was initially trained using the SMRT dataset, which is notably large. This
size advantage allows for its division into training, validation, and testing subsets,
allocated 80%, 10%, and 10% of the total data(randomly), respectively. Such dis-
tribution ratios are standard practice for datasets of substantial size, particularly
when the model requires tuning of hyperparameters. The primary purpose of the
training and validation sets is to facilitate model selection, which involves deter-
mining the optimal number of hidden layers, the number of neurons in each layer,
and the dropout rate to prevent overfitting[230, 231|. To assess the performance
of the most effective model configuration, it underwent a re-training process. This
process involved combining the training and validation sets for a comprehensive
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training phase, followed by an evaluation on the separate test set to measure its
predictive accuracy. Subsequent to this initial training phase, the model under-
went fine-tuning adjustments for application to smaller datasets. Model selection
also involved the intricate process of deciding which layers to freeze or unfreeze
and setting the appropriate dropout rates. This decision-making process utilized
leave-one-out cross-validation (LOOCV) on 80% of the dataset to ensure the se-
lection of the most effective model configuration. Ultimately, the performance of
the model configuration that excelled in the LOOCV process was evaluated on a
test set, comprising 20% of the original dataset, to validate its effectiveness and
generalization capability. In this study, five models were constructed, with their
respective abbreviations detailed in Table 4.3.1. Through this meticulous approach

Train

80% -
Model

SMRT Validation Selection Performance 100%  Weight on
. 10% . Assessment 100% Data

Test

10%

TRANSFER LEARNING

i s T

80% Tl’% Model
o J Selection
Smaller . Bk
| erformance
Dataset
20% Test Assessment
—0—

Figure 4.3.3: A simple schematic overview of model training using physico-
chemical descriptors

of transfer learning enhanced multitarget QSRR, this study seeks to enhance the

efficiency of compound separation processes thereby advancing the capabilities of
RPLC methodologies

4.3.5.2 Evaluation metrics

Three commonly used metrices were used for assessing the performance of predic-
tive models:

1. The Mean Squared Error (MSE) is calculated as the sum of the squared dif-
ferences between the predicted (§;) and actual (y;) values, divided by the total
number of samples (N):
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N .

)2
i=1

2. The Mean Absolute Percentage Error (MAPE) or Mean Relative Error (MRE)

is a measure of the average magnitude of errors in a set of predictions, relative
to the actual values.:

N
1 lyi — il
MAPFE/MRE = — e

3. The Coefficient of Determination (R?) evaluates the proportion of the variance in
the dependent variable (y) that is predictable from the independent variable ().
It is calculated as 1 minus the ratio of the sum of squared errors of the predicted
values to the total sum of squares:

N (.
RZ—1_ > i1 (9 — yi)?
- N -
D imi (v — )2
In these equations, y; represents the ground truth value, §; represents the pre-

dicted value, §j denotes the mean of the ground truth values, and N is the total
number of samples.

(4.3.2)

4.3.5.3 Model Interpretation with SHAP values

Interpreting models is crucial for accurate predictions. Often, complex models,
such as deep neural networks, provide better predictions but are difficult to inter-
pret. In this study, to improve the interpretation of transfer-learned models, we’ve
used SHAP values for the best performing models. SHAP values give each feature
a score, indicating its importance for a particular prediction. Thus, if,

e f(z): This represents the prediction made by the model for an input x and,

e E[f(x)]: The expected value (mean) of the predictions across all possible inputs.
Often, it is approximated by the average of the model’s predictions over a sample
or the training set, mean(model.predict(X)).

Then, based on the SHAP theory, the relationship between SHAP values and
the model output can be expressed as:

f(z) = E[f(x)] + Z(SHAP values for each feature)

The SHAP values essentially explain the deviation of f(x) from its expected
value E[f(x)]. Hence, to get the SHAP values the equations can be written as
such:

flz) = Elf(x)] = Z(SHAP values for each feature)

Here, the sum of SHAP values for all features explains the difference between
the actual prediction f(x) and the expected prediction E[f(x)]. Thus, it is possible
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to derive when computing the mean SHAP value for each feature on all observations
how each feature impacts the model’s predictions overall. The Python’s shap
package has been used to calculate the SHAP(SHapley Additive exPlanations)
values[232] for every features to plot the summary.

EXX] Results and Discussion

This study introduces a variety of strategies for QSRR modeling, facilitating the
selection of approaches for predicting the retention time of new test molecules.
These methods aim to enhance the accuracy and generalizability of QSRR models,
particularly when dealing with datasets that are insufficient or include multiple
targets to be predicted.

4.3.6.1 Model Performances

This study involved physicochemical descriptors as input to construct the DNN
models to investigate their respective impacts on retention time predictions through
four different strategies(Table 4.3.1, 4.3.2). It’s worth noting that physicochemical
descriptors are widely employed in retention time prediction due to their abil-
ity to encapsulate comprehensive compound information. Multiple deep learn-
ing architectures such as 1D and 2D CNNs [233, 234, 235], and Graph Neural
Networks (GNNs), including Graph Convolutional Networks (GCNs) and Rela-
tional Graph Convolutional Networks (RGCNs),have been {requently used in re-
cent past[32, 236]. GNN models offer advanced capabilities for QSRR modeling by
capturing the intricate molecular topology and features directly from graph rep-
resentations of compounds. However, these models are associated with very high
computational complexity and are resource intensive. In comparision to physic-
ochemical descriptors, GNN-based models would require high computational re-
sources for training due to the complex operations on graph structures, especially
for large molecular datasets and multiple targets. Additionally, the preprocessing
of molecules into graph representations and the tuning of network parameters for
optimal performance can be more complex and time-consuming.

In our investigation, we assessed the flexibility of DNN model architectures
based on physicochemical features, tailoring them to single and multi-target predic-
tion tasks with comparative analyses by employing transfer learning approaches in
situations of scarce data availability. Our analysis delineated distinct performance
trajectories for each modeling approach Table 4.3.2. For the LPAC dataset, Model
M4 (Multitarget with Transfer Learning) demonstrated the best performance in
terms of accuracy, as indicated by the lowest MSE (15.15) and the highest R?
value (0.66) among all models. The implementation of TL resulted in significant
accuracy improvements: a decrease in MSE by 42.89 min (from 59.08 to 16.19) and
45.68 min(from 60.83 to 15.15), and an increase in R?, from -0.35 to 0.64 and from
-0.38 to 0.66 for Single Target and MultiTarget models, respectively.This suggests
that the application of Transfer Learning significantly enhanced the model’s pre-
dictive accuracy and its ability to explain the variance in the dataset. A decrease
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of MSE from 16.19 to 15.15 min from M4(Multitarget with Transfer Learning) to
M2(Singletarget with Transfer Learning) emphasizes the suitability of Multitarget
approach of QSRR, which inherently handles more complex prediction tasks by
predicting multiple outputs simultaneously. Overall, the Multi-target models ben-
efit significantly from the transfer learning approach, resulting in lower MSE and
higher R? values, showcasing the superiority of transfer learning in these cases. On
comparision of M1 with M3 and M2 with M4, it can be clearly seen that multitarget
model perform better than Single target settings. Predicted versus observed reten-
tion times for each cases are plotted( Figure 4.3.4). It can be clearly observed that
transfer learning approach has benefitted the predictions for targets especially at
higher pH. In Figure 4.3.4, Models M2 and M4, which incorporate Transfer Learn-
ing given their closer alignment with the identity line, indicate a higher prediction
accuracy compared to M1 and M3. Model M1 exhibits the greatest deviation from
the ideal, with points scattered far from the line, indicating lower predictive ac-
curacy. Model M3, while better than M1, still shows substantial deviation. After
comparing the best performing model(M4) for every targets it can be seen that
Target 5(retention time at pH 8.0) has less scattered points and closeness to the
identity line.

4.3.6.2 Time comparison

As evidenced by Table 4.3.2, the computational time was marginally affected be-
tween M1 to M2 and M3 to M4, demonstrating that TL’s advantages in model
accuracy do not substantially impact modelling efficiency. When comparing Single
Target to MultiTarget models, MultiTarget models provide better time savings,
highlighted by quicker execution times over Single target modelling which is 0.05
minutes by M3. This analysis underscores the benefits of applying TL in enhanc-
ing model performance without compromising on time efficiency, and suggests a
balanced consideration between Single Target and MultiTarget approaches based
on dataset characteristics and computational constraints.

LPAC
Models MSE R’ Time (Min)

Single target Models

M1 phys WTL 59.08 -0.35 0.14

M2 phys TL 16.19  0.64 0.13
Multitarget Models

M3 Phys WTL 60.83 -0.38 0.05

M4 Phys TL 15.15  0.66 0.09

Table 4.3.2: Model performances.(Model abbreviations are elabo-
rated in Table 4.3.1)
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4.3.6.3 Performance comparison on test data with
benchmark studies

In our study, we compared the performance of our models against established
benchmarks cited in Kensert et al.[32|. The results are highlighted in Table 4.3.3.
It is important to note that M5 and M6 for SMRT dataset are same, because the
data used for building the base model overlaps with the data employed for evaluat-
ing the model (transfer learning approach when other datas are used). The values
in the table and Figure 4.3.5, show that the M5 M6 model achieves good re-
sults across both examined datasets. Specifically, for the SMRT dataset, M5 M6
achieves a Mean Relative Error (MRE) of 0.07 and an R? score of 0.78 which is
similar to other models in the list like RF, AB, and comparable to other mod-
els including MLP in benchmark study and GCN, RGCN, SVM. For the RIKEN
dataset, it records a comparable MRE of 0.14 and an R? of 0.75. These figures not
only put M5 on a competitive footing with, but in some cases, ahead of, advanced
models like Random Forest (RF), Support Vector Machine (SVM), and Gradient
Boosting (GB). Similarly, the M6 TL model showcases notable performance on
Riken datasets with MRE of 0.14 with a good R? of 0.85, positioning it superi-
orly in comparison to various other models. These values mark the M6 model,
which utilizes a Transfer Learning approach, as a standout, particularly for the
RIKEN dataset. When comparing M5 and M6 (Figure 4.3.5 (b), (c)) for RIKEN
dataset—where M6 utilizes Transfer Learning while M5 does not, analysis of the
coefficient of determination (R?) indicates that M6 TL outperforms M5 WTL.
This comparison highlights the efficacy of Transfer Learning in improving model
performance.

Overall, models M5 and M6 exhibit strong and comparative predictive perfor-
mance when compared to benchmark models. Their low MRE values indicate
their ability to make accurate predictions, while the high R? scores demonstrate
their efficacy in explaining the variance in the data. M6, in particular, stands
out with its remarkable R? score of 0.85 on the RIKEN dataset, surpassing the
performance of many other models. This implies that transfer learning holds great
promise for applications in the field of analytical chemistry, potentially outperform-
ing established models and providing valuable insights. Further investigations and
real-world applications of these models are certainly needed.

4.3.6.4 Model Interpretation based on SHAP sum-
mary plots

Understanding the feature importance is critical for optimizing RPLC methods and
can provide insights into the molecular characteristics that are most influential un-
der different chromatographic conditions. This knowledge is valuable for method
development in RPLC, allowing for better prediction of retention times and more
efficient separations. SHAP values are crucial in this analysis. Summary SHAP
plots Figure 4.3.6 and corresponding selected features and their rankings(Table
4.3.4) illustrate the interpretation of the transfer learnt multitarget QSRR mod-
els for every target(Modeld). It presents the importance of the top 20 molecular
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Table 4.3.3: Comparison of Model Performances with Benchmarks

Models SMRT RIKEN
MRE | R? | MRE | R?

GCN 0.04 | 089 ] 0.14 | 0.76
RGCN 0.04 | 089 ] 0.14 | 0.79
MLP 0.05 | 0.84 | 0.10 | 0.56
RF 0.07 | 0.78 | 0.19 | 0.69
SVM 0.06 |0.82] 0.18 | 0.76
AB 0.07 [ 0.76 | 0.19 | 0.68
GB 0.15 | 0.40 | 0.19 | 0.70
M5-WTL 0.07 |0.78 | 0.14 | 0.77
M6-phys-TL | 0.07 | 0.78 | 0.14 | 0.85

RIKEN M2_phys_TL

11
—— predicted-true

Predicted tR

6
True tR

(c) Plot for M6(Model TL) on Riken
dataset

Figure 4.3.5: Plot for Predicted vs. Observed retention time(min);X-axis-
Observed and Y-axis - Predicted retention time

descriptors in terms of average impact on model output magnitude (the effects on
predicted retention time). Lower SHAP values indicate lower effect of the descrip-
tor while higher SHAP values indicate high effects of the descriptor. From the
plots, it can be observed that specific features, like fr methoxy, IpC, fr_ether,
HallkierAlpha, TPSA remain consistently important across all pH levels. These
features play a fundamental role in retention mechanism in liquid chromatogra-
phy, regardless of the pH. However, the study also identifies features like TPSA
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and MolLogP whose importance varies with pH levels. This variability suggests
that certain molecular interactions, such as ionization and lipophilicity, may be
more relevant under specific conditions. For instance TPSA, where the ioniza-
tion state of the molecule is affected by the pH, which would directly influence
the molecule’s interaction with the aqueous phase and MolLogP, as a measure of
lipophilicity, might be more influential at pH levels where the analyte’s lipophilic
components are less ionized and more likely to interact with the hydrophobic sta-
tionary phase.The study also notes varying trends in the importance of features
like SlogP VSA5, NumHDonors, and RadiusOfGyration in the LPAC dataset,
indicating that the solute’s physicochemical properties, such as lipophilicity, hy-
drogen bonding capability, and molecular size, differently affect retention times at
varying pH levels.

Important point to note here is, that these findings, derived from SHAP summary
plots, offer general insights into the factors influencing RPLC retention times dif-
ferentially with varying targets. A more detailed chemical analysis and domain-
specific expertise would be required for precise interpretations, which falls beyond
the scope of this study.
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FEWd Conclusion

In conclusion, this study provides valuable insights into the field of retention time
prediction modelling for analytical chemistry. We explored the application of dif-
ferent strategies, including the utilization of physicochemical descriptors and the
power of deep learning and transfer learning methodologies in Single target and
multi target settings, to enhance the accuracy and generalizability of QSRR mod-
els. Our analysis was conducted on two distinct datasets utilizing four different
models. One of the key findings of this study is the significance of transfer learning
in the context of QSRR modelling. It was observed that the application of trans-
fer learning consistently improved the performance of QSRR models, resulting in
lower Mean Squared Error (MSE) and higher coefficient of determination (R?)
values. For analytical chemists working on multi-target retention time prediction
settings can be a better approach that can provide insight about the molecule’s
interplay at varying targets. Such models can enhance model performance while
reducing training time. Moreover, our study showed a good and comparable per-
formance of models with other benchmark studies in the field and demonstrated a
strong predictive performance with the Transfer Learning approach, in particular,
outperformed many other classical ML based models, suggesting its potential for
applications in data-driven tasks in analytical chemistry.

This study also highlights the significance of understanding molecular features in
QSRR modeling for RPLC, offering crucial insights in terms of SHAP values for op-
timizing these models. It emphasizes the importance of certain features that main-
tain their significance across different pH levels, while also pointing out how the
relevance of other features can vary under diverse conditions. This highlights the
complex relationship between the molecular characteristics and their chromatog-
raphy response, suggesting the need for advanced analytical tools and specialized
knowledge to develop more accurate and efficient QSRR models. Furthermore, the
model performances underline the importance of aligning QSRR modeling strate-
gies with the specific objectives and the characteristics of the dataset, such as the
availability of molecules for training and testing.

By increasing our understanding of chromatographic processes and supporting the
search for new QSRR modeling techniques, this research aims to improve the pre-
dictability and operational efficiency of method development in RPLC.

EXEK] Transfer Learning Multi-Target QSRR
Modeling: Analysis based on MIA descrip-
tors

4.3.8.1 Background

Multivariate Image Analysis descriptors/Image-based descriptors for chemical com-
pounds are a relatively newer approach that leverages the power of visual represen-
tation to capture structural information of molecules for retention time predictions.

121



CHAPTER 4.3. TRANSFER LEARNING ENHANCED MTQSRR

The images demonstrate a strong association with retention times and serve as a
method for encoding chemical properties[136]. The differences in pixel positions
reflect changes in the structure within a related group, thereby accounting for the
variance in retention times observed within the series[137].

4.3.8.2 Image data processing

In this work, image based descriptors were used to compare the two approaches(Transfer
learning and without transfer learning in combination to single target and multi-
target retention prediction approaches). SMILE structure was used for every com-
pound to generate the 2D images(Example in Figure 4.3.7) using rdkit.Chem[92].
The 2D-generated images were colored and used as such for CNN models, with-
out any modification. Retention time prediction using image-based descriptors

I=

0 OH

Figure 4.3.7: Example(3aminobenzoic acid) of an image used as input in
CNN model

involves several steps, from the generation of molecular images to the training of
deep learning models. Below is a more detailed explanation of how these descrip-
tors are used for retention time predictions:

Data Preparation

Start with a dataset of chemical compounds for which experimental retention times
are known. For each compound, a molecular representation in the form of a 2D
molecular graph was generated. Making images carefully is very important in this
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study. So, RDKit was specifically chosen to ensure that all images were repro-
ducible and consistent, while also acting to minimize the level of diversity that
could be introduced through the manual drawing of molecules. RDKit enables the
representation of molecules as objects derived from SMILES strings, with specific
algorithms[237, 238, 239] applied to establish their 2D layouts for visual represen-
tation. This involves the Chem module for processing chemical information and
the Draw module for the graphical depiction of molecules, where atoms, bonds,
and optional annotations are illustrated on a digital canvas.

Image Representation

Convert the molecular representations into image-like formats. This involved cre-
ating 2D graphs where atoms and bonds are represented as pixels, converting
circular fingerprints into binary images.

4.3.8.3 Model Training:

In case of image data processing for QSRR modelling(Figure 4.3.8), the CNN was
pre-trained on the SMRT dataset(Architecture is shown in Figure 4.3.9). Due to
the relatively big size of the SMRT dataset, it is possible to split it into train, vali-
dation and test sets (70%-15%-15% respectively) . The first two are used for model
selection. In this case, it consists of choosing the number of hidden layers, the num-
ber of units for each hidden layer and the dropout percentage of the dropout layer.
The performance assessment for the best-performing model on the validation set
was then obtained by re-training from scratch on the train-validation set, by merg-
ing the train and test set and then computing the evaluating metrics on the inde-
pendent test set. Then, the model was fine-tuned on the other smaller datasets.
Model selection, where the frozen /unfrozen layer selection and dropout percentage
are determined, was performed using leave-one-out cross-validation (LOOCYV) on
85% of the dataset. Finally, the performance of the best model obtained during
LOOCYV was assessed on the remaining and independent test set containing 15%
of the original dataset. The model selection when fine-tuning the model on the
smaller datasets was performed using 5-fold cross-validation. Those changes in
splitting ratios were caused by the increase of computational requirements when
training CNNs with 2D images. Hyperparameters and unfrozen layers for the best
performing models, for each dataset, found during cross-validation for the MIA
descriptors are shown in Table 4.3.5. Four models were developed for the compar-
ision of different approaches of QSRR settings. Details of models can be found in
Table 4.3.6.

4.3.8.4 Results and Discussion

The results presented in the tables provide a detailed overview of the performance
of various Quantitative Structure-Retention Relationship (QSRR) models that in-
corporate Multivariate Image Analysis (MIA) descriptors, with a focus on both
single and multi-target models, and the impact of applying Transfer Learning (TL).
The models are evaluated based on Mean Squared Error (MSE), R-squared (R?)
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Figure 4.3.8: A simple schematic overview of model training using MIA
descriptors

values, and computation time (Time(Min)) across two different datasets, labeled
"Small" which is LPAC dataset and "ACN" dataset.

1. MSE and R? Values: The MSE and R? values offer insights into the models’
accuracy and predictability. Lower MSE values and higher R? values are de-
sirable, indicating more accurate predictions and a model that accounts for a
greater proportion of the variance observed in the data, respectively. For single
target models, M8 _MIA TL shows an improvement in the R? value in the Small
dataset, indicating a positive effect of TL on model predictability. However, this
model also exhibits a higher MSE, suggesting a discrepancy in prediction accu-
racy. In the multi-target QSRR modelling, both models M9 MIA WTL and
M10 MIA TL reflect less favorable outcomes, with negative R? values in the
Small dataset and modest improvements in the ACN dataset. These results imply
challenges in the models’ ability to accurately predict across multiple targets.

2. Time Analysis: The computational time (Time(Min)) required for model predic-
tions is crucial, especially when processing large datasets or in applications where
speed is of the essence. Single Target Models: There’s a noticeable decrease in
prediction time when applying transfer learning (M8 MIA TL), compared to
no TL (M7_MIA WTL), particularly in the ACN dataset. This suggests that
TL not only impacts the predictive performance but also efficiency. Multi- Target
Models: Similarly, M10 MIA TL demonstrates a reduction in prediction time
compared to M9 _MIA WTL, indicating that TL might offer computational ef-
ficiency gains in multi-target settings as well.
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Figure 4.3.9: A Schematic architecture of CNN model used in this study

Dataset ‘ Learning rate ‘ weight decay ‘ unfrozen layers
5-output models
LPAC le-3 0.05 3, 4, FC and batch normalization
ACN le-3 0.05 3, 4, FC and batch normalization
Single-output models
LPAC le-3 0.01 4, FC and batch normalization
ACN le-3 0.01 4, FC and batch normalization
RIKEN le-3 0.01 FC and batch normalization

Table 4.3.5: Hyperparameters and unfrozen layers for each MIA descriptors
dataset

4.3.8.5 Conclusion

The results, while not entirely favorable in terms of MSE and R? values, pro-
vide important insights into the application of transfer learning and the use of
MIA descriptors in QSRR modeling. The varied performances across single and
multi-target models underscore the complexities of modeling retention times and
the potential of transfer learning to improve model fit in certain conditions. The
model performances suggest that transfer learning, when applied to models utiliz-
ing MIA descriptors, has the potential to enhance the explanatory power of these
models, as evidenced by the improvement in R? values in certain cases. However,
the effectiveness of transfer learning seems to vary depending on the target and
the specific nature of the dataset used for modelling.

Despite the innovative approach of incorporating MIA descriptors in QSRR mod-
els, the results indicate that achieving high accuracy and model fit remains chal-
lenging. The presence of high MSE and negative R? values in several models
suggests that the relationship between MIA descriptors and retention times may
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Table 4.3.6: Summary of Model Abbreviations with MIA descriptors

Category Abbreviation Description
Single Target models M7 WTL No TL
M8 TL With TL, MIA descriptors
Multi Target models M9 WTL No TL
M10_TL With TL
Small ACN
Models MSE R? Time(Min) | MSE R?  Time(Min)

Single target Models

M7 MIA WTL 43.40 -0.06 7.99 36.82  -0.56 6.43
M8 MIA TL 73.39 -0.74 5.96 18.35 0.24 5.19

Multitarget Models

M9 MIA WTL 61.46 -0.71 0.28 27.63 -0.17 0.13
M10_MIA TL 52.21 -0.37 0.09 16.21 0.33 0.15

Table 4.3.7: Model performances for Multivariate Image descriptors
(MIA)

be complex and not fully captured by the current modeling approaches. Hence,
all these findings highlight the need for further exploration into optimizing the use
of MIA descriptors and transfer learning within QSRR models. Future research
could focus on refining the descriptors, exploring alternative modeling techniques,
and expanding the dataset like data augmentation which very much possible in
case of image data, to improve model performance. Thus, while the results do not
showcase high prediction accuracy, they do provide valuable information into the
potential and limitations of applying transfer learning based on MIA descriptors
in QSRR modeling. These inferences pave the way for future research aimed at en-
hancing the predictive capabilities of QSRR models in both single and multi-target
settings.
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CHAPTER 5. GENERAL DISCUSSION

General discussion

In the growing field of Quantitative Structure-Retention Relationship modelling,
researchers have many methods to choose from. These methods help predict the
retention times of compounds in chromatographic processes. This multifaceted
area of study, rich in technique and application, aims to bridge the gap between
molecular structure and chromatographic behaviour, offering invaluable insights
for analytical chemistry. The selection of an optimal QSRR modelling approach,
however, poses a significant challenge due to the complexity of molecular inter-
actions and the intricate nature of chromatographic systems. In this direction,
this thesis aims to explore three different QSRR modelling methods, which are ex-
plained in Chapter 4. These include the Single Target QSRR approach (Chapter
4.1), the Multitarget QSRR approach (Chapter 4.2), and the Transfer Learning-
based QSRR approach (Chapter 4.3). The study highlights two critical elements
of QSRR modelling: the selection of modelling algorithms and the importance of
molecular descriptors. It examines the characteristics and challenges related to
their use in this thesis, providing insights that can help in providing the reference
point to choose the appropriate approach and their application for the specific
problem at hand.

5.1.1 The choice of modelling algorithms

The thesis provides a critical assessment of various algorithms employed across
the single and multitarget QSRR scenarios, including classical machine learning
algorithms like MLR, SVR, Lasso, GBR, RF, Stacking and advanced artificial in-
telligence algorithms like DNN. The analysis revealed that algorithm choice signif-
icantly affects prediction accuracy. For example, Stacking, an ensemble technique,
stands out by combining predictions from multiple models to make a final predic-
tion in single target QSRR models(Chapter 4.1). This method effectively leverages
the strengths of various algorithms, improving accuracy, especially when dealing
with scarce structural data. By integrating different perspectives on the data,
stacking provides a more refined prediction than any single model could. However,
despite its potential to enhance retention time prediction accuracy, it can intro-
duce significant setbacks. The added complexity of combining various base models
with a meta-model complicates interpretation, making it challenging to extract
clear scientific insights, a critical aspect in chromatography studies. Additionally,
the increased computational demands for training and deploying stacked models
may not align with the constraints of laboratories requiring rapid analysis or those
with limited computational resources and expertise at times. On the other hand
use of another ensemble algorithm like RF, is a good choice for predicting multiple
targets altogether i.e, evident from the results of Chapter 4.2. The reason could be
it’s algorithm adaptability from single-target prediction (STP) to multiple-targets
prediction (MTP) settings where the key difference lies in how the cost of node
splits is calculated and how predictions are made.
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Table 5.1: Comparison of DNN vs. Classical ML: Algorithms

Aspect DNN Classical ML
Computational Capable of handling large, com- | More efficient on less powerful
Resources plex datasets but require signif- | machines, suitable for limited
icant computational power for | resources
training and inference.
Data Require- | Can learn from large, high- | Perform well with smaller
ments dimensional datasets effectively | datasets but may struggle with

but require large amounts of
data to generalize.

high-dimensional or complex

data structures.

Model Complex-
ity

Able to model highly complex
relationships in data with a risk
of overfitting; complexity makes
tuning challenging.

Simpler models have lower risk
of overfitting and are easier to
tune but are limited in cap-
turing complex, non-linear rela-
tionships.

Interpretability Often seen as "black boxes" due | Comparatively higher inter-
to complex structures. pretability, decisions are easier
to understand.
Development Development, tuning, and vali- | Generally faster development
Time dation can be time-consuming. | cycles with simpler models.

STP calculates the node cost using the sum of squares of the differences between
observed and predicted values. The prediction for a test sample is the weighted
average of responses across all trees.

MTP, uses the sum of squared Mahalanobis distances for its node cost, taking
into account the covariance among multiple target variables. Predictions for a
test sample involve averaging over the multivariate responses|240].

In the context of this thesis, the utilization of DNN, as discussed in Chapter
4.3, underscores the advancing role of Al in uncovering hidden patterns within
data, thereby providing efficient retention prediction methods. This thesis strate-
gically employs classical ML in Chapters 4.1 and 4.2 for modelling on the LPAC
dataset, while applying the more complex DNN-CNN models in Chapter 4.3. In
this chapter, a model initially trained on a larger dataset is adapted to smaller
datasets like LPAC for retention time prediction. The decision to select particu-
lar algorithms rests on understanding their strengths and limitations in handling
data. The use of DNNs in QSRR modelling offers significant advantages in terms
of automatic feature extraction, handling of high-dimensional and complex data,
and the ability to model non-linear relationships and target interactions. These
characteristics can lead to more accurate, robust, and generalizable models, ul-
timately enhancing our understanding and prediction of compound retention in
chromatographic systems. However, these models come at the cost of needing
significant computational power and a vast amount of data. These methods also
carry the risk of overfitting and may result in models that are hard to interpret.
On the other hand, classical Machine Learning (ML) approaches are valued for
their efficiency, especially when computational resources or data are scarce. They
are well-suited for smaller datasets and are characterized by their straightforward
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and comparatively better interpretable models. Despite these advantages, classical
ML techniques may not perform well when faced with the complexity or the sheer
volume of data that DNNs can manage. The table (5.1) encapsulates key distinc-
tions, guiding the choice between DNN and classical machine learning. Referring
to this comparison can be beneficial for addressing project-specific needs in QSRR
modelling. This approach highlights a strategic decision-making process in model
selection, balancing dataset size, computational demands, and interpretability re-
quirements.

5.1.2 The choice of Molecular Descriptors in QSRR
Approaches

The use of molecular descriptors significantly shapes the effectiveness and effi-
ciency of QSRR modeling techniques in analytical chemistry. These descriptors
serve as a fundamental component in the construction and optimization of mod-
els for predicting retention times, with each approach leveraging them in unique
ways to cater to specific research needs. This thesis utilizes physicochemical de-
scriptors(Chapters 4.1, 4.2, and 4.3) and explores the potential of image-based
descriptors(chapter 4.3).

Unlike Multitarget QSRR models that utilize a common set of descriptors for every
target, Single-Target QSRR capitalizes on the precision of molecular descriptors to
develop highly tailored models for individual targets. By focusing on target-specific
descriptors, the single-target QSRR approach ensures a high degree of model accu-
racy and specificity. This meticulous selection process, however, requires extensive
descriptor analysis and multiple model building for every new target, which can
be resource and time-intensive.

On the other hand, by selecting descriptors that capture the commonalities across
different chemical entities, Multitarget QSRR models can efficiently predict re-
tention times for multiple targets simultaneously through one model only. These
strategies require a meticulous selection of descriptors to prevent overgeneraliza-
tion, ensuring the models’ sensitivity to the fine distinctions between targets.
Transfer Learning introduces a novel perspective on the use of molecular descrip-
tors by adapting models developed for one set of targets to new, yet chemically
related, targets. This process involves identifying descriptors that are univer-
sally applicable across different datasets, enabling the transfer of learned patterns
through adjusted weights from pre-trained models. The success of this approach
heavily depends on the relevance and adaptability of the low-level and high-level
features to both the original and new datasets, highlighting the need for a strategic
descriptor selection process that maximizes cross-dataset applicability.

The interpretability of QSRR models, especially those employing advanced Al
techniques like deep learning, poses a significant challenge. While these models
can achieve high predictive accuracy, they are often considered "black boxes," offer-
ing little insight into how molecular descriptors influence retention times. The use
of SHAP (Shapley Additive explanations) can aid in interpreting the contributions
of different descriptors within such models, providing a deeper understanding of
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their roles. However, the application of SHAP in QSRR modeling demands consid-
erable computational resources for bigger data and specific knowledge to analyze
and interpret the results effectively. Therefore, it should be used in situations
where understanding the intricacies of descriptor contributions is essential, despite
the potential challenges in computational demand and interpretation.

5.1.3 Model performances

This thesis primarily employs physicochemical descriptors to construct Quanti-
tative Structure-Retention Relationship (QSRR) models. However, the models
sometimes fail to accurately predict retention times, a discrepancy that could arise
from multiple sources. A significant factor is the reliance on molecular descriptors
generated by online tools and software, such as Rdkit and ChemAxon’s Chemi-
calize. These platforms apply their predictive algorithms to compute descriptor
values. Therefore, any small error in these models could propagate and have a
significant impact on the QSRR models developed in this study. Additionally,
it’s quite possible that physicochemical descriptors are not sufficient to capture
the entire pattern of dependency of targets on molecular descriptors, necessitating
the inclusion of other types of descriptors, such as molecular fingerprints or graph
properties or a set of mixed descriptors.

Furthermore, this thesis also investigates the potential of image-based descrip-
tors in QSRR modelling, offering a new dimension of information on molecular
retention beyond what traditional physicochemical descriptors can provide. Ini-
tially, the integration of image-based descriptors resulted in reduced prediction
accuracy compared to models using only physicochemical descriptors, as noted
in Chapter 4.3. This reduction in accuracy may be attributed to the absence of
molecular conformation optimization for the specific environment employed in the
study. This capability for data augmentation with image-based descriptors which
was out of the scope of this study, can be particularly advantageous in scenar-
ios where the modelling is constrained by the availability of scarce datasets. By
generating synthetic images or modifying existing ones through techniques such
as rotation, scaling, and flipping, researchers can artificially expand the dataset,
potentially enhancing the model’s accuracy and robustness. This unique advan-
tage of image-based descriptors, allowing for the expansion and diversification of
training datasets, positions them as a valuable tool in QSRR modelling, especially
in exploratory studies or when conventional descriptors fail to capture certain
molecular features. However, the utilization of image-based descriptors should
be approached with caution. While they offer the potential for improved model
performance through data augmentation, the prioritization of accuracy and inter-
pretability remains paramount. Their use is most beneficial when balanced with
an understanding of the trade-offs involved, making them a complementary rather
than a replacement option for physicochemical descriptors in situations where the
small size of the dataset poses a challenge to model development and validation.
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5.1.4 Characteristics and Challenges of three ap-
proaches

In analytical chemistry, selecting between Single-Target QSRR, Multitarget QSRR,
or Transfer Learning approaches depends on the study’s specific goals, the char-
acteristics of the dataset, and various constraints. This selection is crucial for the
study’s success due to the multiple factors that influence variability in retention
times. A comparison of different methods for predicting retention times typically
reveals their unique strengths and weaknesses. All the points about the three
QSRR approaches discussed so far can be summarised as detailed in Table 5.2.
This comparison guides us in choosing the most appropriate approach for specific
use cases.

e The Single-Target QSRR approach, which creates individual models for each tar-
get (e.g. individual pH level), is advantageous for its simplicity and specificity. It
allows for tailored optimization and fine-tuning and hence, potentially enhancing
model accuracy and specificity for specific datasets for individual targets. How-
ever, this method can become time-consuming and less efficient as the number
of targets increases, leading to an exponential increase in the number of models
that may require significant resources to develop and maintain.

o Multitarget QSRR uses one model to predict retention times across different tar-
gets, making modelling more straightforward and efficient. It’s especially useful
for research involving a broad range of targets because it simplifies the process
and requires fewer computational resources than creating a separate model for
each target, as is done in Single-Target QSRR. However, implementing Multi-
target QSRR can be complex and challenging When dealing with a very large
number of targets. These can introduce noise into the model and can make it
harder for the model to learn the underlying patterns and hence, difficulty of the
model to differentiate between useful information and noise, especially when the
outcomes are very much related and influence each other. Despite the challenges,
Multitarget QSRR is valued for its efficiency and ability to maintain accurate
retention predictions for a variety of conditions simultaneously.

e Transfer Learning offers a versatile solution that is applicable to both Single-
Target and Multitarget QSRR approaches. Its strength lies in the ability to
leverage existing models trained on one dataset to make predictions for similar
molecules in a different dataset, which is especially useful in scenarios with insuf-
ficient data availability for model development. This approach can significantly
reduce the time and resources needed for model development. However, the ac-
curacy of transfer Learning may be affected if the training and target datasets
are significantly different, posing a limitation to its applicability.

Overall, each QSRR modeling approach presents a set of advantages that make
them suitable for different research needs. The selection of a modeling approach
should therefore consider the specific requirements of the study, balancing the
advantages against the potential limitations to achieve the most effective retention
time prediction.
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Table 5.2: Comprehensive Comparison of QSRR Modeling Strategies

Strategy Characteristics Challenges

Single-

Target e Tailors descriptors to spe- |® Time and resource-intensive

QSRR cific target, allowing for high | with an increasing number
customization and poten- of targets, requiring sepa-
tially higher accuracy. rate models.

e Simple to implement for |¢ May compromise perfor-
individual parameter vari- mance with more variables
ation, facilitating detailed and targets.
analysis. e Requires target specific de-

e Performance may be supe- tails of dataset, adding to
rior with diverse descriptors the complexity of specific
for different targets. modeling adjustments.

e High improvement potential
with refined target-specific
descriptors.

Multitarget

QSRR e Efficient for simultaneous |e Implementation complexity
predictions across multiple and advanced data prepro-
targets with a single model, cessing required.
saving time and resources. |e Could be less accurate for

e Maintains consistent de- specific target due to uni-
scriptors, simplifying the form descriptors.
modeling process. o Generalizability may affect

e Applicable to multiple tar- specificity and  overlook
gets with a simplified pro- target-specific molecular
cess and medium improve- behaviors.
ment potential.

Transfer

Learn- e Leverages existing models | Source and target data dif-
ing based for new data predictions, ferences can affect accuracy.
QSRR effective with limited data |e Requires careful source

availability.

e Offers flexibility, applicable
to both single-target and
multitarget scenarios.

e Useful for tasks with signifi-
cant data similarity, enhanc-
ing QSRR modeling capabil-
ities.

model selection, fine-tuning,
and potentially complex
implementation.

e Additional steps needed for
model adaptation and vali-
dation.
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5.1.5 Application of QSRR strategies

The methodologies discussed in this thesis have applications ranging from broad
to specific. In the course of this thesis, they have been utilized to predict the re-
tention of N-nitrosamines (NAs) under ten different conditions, aiming to identify
optimal separation conditions regarding matrice endogenous compounds to enable
the quality control of these impurities.

To achieve this goal, a single-target QSRR approach was combined with response
surface models and Multi Criteria Decision Analysis(MCDA), supported by de-
sirability indexes[207]. This strategy proved effective for many compounds and
indicated potential for further improvement for others. Based on these findings,
alternative approaches, including multi-target QSRR modeling and mechanistic
models can be explored. Such exploration will allow us to compare the effectiveness
of mechanistic and empirical models, determine their relative merits, and provide
a basis for assessing the strategies’ effectiveness and associated risk management.
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Overall Conclusion

In the dynamic field of analytical chemistry, scientists constantly face the challenge
of accurately analyzing an ever-growing variety of chemical compounds. Among
the various techniques available, Reversed-Phase Liquid Chromatography (RPLC)
is one of the techniques known for its versatility and effectiveness in separating
and quantifying these compounds. However, optimizing RPLC processes to achieve
precise, reliable results under varying conditions presents significant hurdles. These
challenges include dealing with the complexity of chemical mixtures, and the need
for time-efficient and cost-effective methods that maintain high accuracy. Through
the strategic application of QSRR, analytical chemists can overcome these pressing
challenges, paving the way for advancements in analytical techniques and method-
ologies.

This thesis successfully addresses the critical challenges in the field of analytical
chemistry, particularly in the optimization of RPLC separation methods. However,
the analytical landscape is characterized by the complexity of sample matrices,
changes in experimental conditions, and the need for the separation and identi-
fication of diverse compounds. Consequently, one-size-fits-all QSRR models may
not suffice. Hence, by thoroughly investigating various feature selection methods
and machine learning algorithms, and their combinations in multiple ways, this
research investigates the most effective strategies for retention time predictions
that can be applied to changes in experimental conditions.

Throughout the study, a comprehensive examination of molecular descriptor se-
lection methods ranging from filter, wrapper to embedded methods and regression
algorithms including many linear and non linear models have been tested to ad-
dress the first research question i.e, How can the best feature selection methods and
machine learning algorithms be identified for precise retention time predictions.
The research findings indicate that for selecting crucial features, the embedded
method proves to be more effective. Additionally, when predicting retention times
for a single target via single-target QSRR modelling, stacking emerges as the supe-
rior prediction method However, for scenarios involving multiple targets, models
like Random Forest stand out due to their algorithm adaptability and ability to
accommodate target relationships.

Building on the groundwork laid by the initial objective, the thesis progresses
to examine a QSRR model in multitarget settings. This model is designed to pre-
dict retention times at various pH levels, showcasing how retention time can vary
with different experimental conditions, using pH as a key example. The findings
of the second objective address the research question: "Can a QSRR model be
developed to accurately predict retention times across all pH levels, while also un-
derstanding the complex relationships between different targets?”. This part of the
research demonstrates the viability of creating a multi-target QSRR model that ef-
fectively captures the complex relationships between descriptors and targets. This
approach marks a significant advancement over traditional single-target models.
By utilizing insights from the dynamic interactions across different pH levels, the
model enhances both the efficiency and accuracy of retention time predictions,
offering a more comprehensive and effective method for understanding these rela-
tionships.
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In tackling the issue of scarce data, the third chapter addresses the research
question: "What strategies can be utilized to overcome the challenge of limited data
in QSRR modeling, thereby enhancing the accuracy and reliability of retention time
predictions in chromatographic analyses?” This section introduces an innovative
strategy aimed at improving the precision and dependability of QSRR modeling.
By employing transfer learning and other sophisticated Al techniques, the study
successfully navigates the hurdles associated with limited data availability. This
approach demonstrates how these methods can significantly refine retention time
predictions in chromatographic analyses. The evaluation of both single-target and
multi-target prediction methods, along with the application of transfer learning,
represents a notable progress in the field. It opens up new avenues for optimizing
QSRR models when dealing with limited datasets, offering better insights into ef-
fectively enhancing model performance under such conditions.

Collectively, the three chapters of this thesis offer an in-depth examination of
various methodologies for retention prediction in RPLC, each providing distinctive
insights and addressing specific challenges in this domain. Through a compara-
tive analysis, this work elucidates the suitability of these methods for retention
time prediction, aiming to enhance the understanding of their strengths and lim-
itations. This facilitates the development of more precise and reliable retention
prediction models for small molecules in RPLC, marking a significant advancement
in analytical chemistry. The contributions of this thesis extend beyond method-
ological innovations, such as the integration of single-target to multitarget models
and the application of transfer learning. It establishes a comprehensive framework
for QSRR studies, covering everything from feature selection to algorithm choice,
thus laying a groundwork for novices in the field. This research not only improves
the precision and applicability of QSRR models but also emphasizes the necessity
for adaptable and efficient analytical methods to meet the evolving demands of
chemical analysis. The advancements presented promise to refine RPLC retention
prediction for small molecules in pharmaceutical research. By exploring a range of
strategies, this thesis addresses contemporary analytical challenges and establish-
ing a foundation for future innovations. It enriches the existing body of knowledge,
thereby facilitating the development of more precise and efficient analytical tech-
niques in RPLC, and the continued exploration and advancement in the field.
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Perspective

Based on the discussions on the challenges of developing fully accurate retention
prediction models, a number of perspectives on future works emerges from this
research. These perspectives are summarized below:

Firstly, broadening the types of descriptors used in QSRR modeling represents
a crucial step forward. Investigating a wider array of molecular descriptors, such
as molecular fingerprints and graph-based representations, is essential for over-
coming current limitations and improving model performance. By incorporating a
more diverse set of descriptors, we can aim not only to enhance model accuracy but
also to deepen our understanding of molecular behavior. This effort emphasizes
the importance of innovative methodologies, including the development of hybrid
models that combine multiple descriptor types. These models use the best features
of each descriptor and hence, can give a detailed view of how compounds inter-
act, with the goal of greatly improving how accurately they can predict the targets.

Secondly, the advancement of our mechanistic interpretation of both single and
multi-target QSRR models, including those utilizing deep learning. Applying the
fifth OECD principle for QSRR modeling, enhancing our mechanistic insights will
not ouly improve the reliability of predictions but also contribute significantly to
the field of cheminformatics by providing clearer links between molecular structure
and chromatographic retention mechanisms.

A third future work would be to increase data size for model training. To fur-
ther enhance the performance and utility of QSRR models, expanding the scope
of data collection is essential. Specific methods or new ways of acquiring more data
under a variety of conditions can be explored. This effort involves incorporating
diverse variables, such as pH variations and gradient times, into experimental
designs, yielding a more complex and robust dataset. Such a comprehensive ap-
proach can facilitate the development of models that are precise and adaptable to
the complex realities of compound separation, paving the way for interdisciplinary
collaboration. In this direction ,’Generative AI’ which is a boom in the field of
AT at present, for instance, can offer a novel way to overcome data scarcity and
imbalance through the generation of realistic, synthetic molecular data [241].

A fourth and possible future work would be implementening more advanced Al
techniques to extend the usability and transferability of QSRR models. Utilizing
techniques like domain adaptive transfer learning [242| which could be an easy
extension of the study in Chapter 4.3, we can try to predict the retention times
of molecules in different chromatographic modes for example hydrophobic to hy-
drophillic and vice-versa.

A fifth potential perspective would be to integrate QSRR with DoE and AQbD
frameworks. Such combined approach offers an optimal design space, streamlining
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chromatographic method development. These models improve predictive capabil-
ities for new compound sets under unseen conditions by using computed reten-
tion times of pharmaceutical test analytes to calculate separation selectivity. The
flexibility offered by this integrated approach can be particularly advantageous in
routine work, where efficient separation of diverse compounds is required, illustrat-
ing the interconnectedness of these future directions in advancing QSRR modeling.

Lastly, the possible future extension of this research would be the creation of
a comprehensive website. Developing a comprehensive website could serve as a
centralized repository for QSRR studies, significantly aiding new researchers in
grasping foundational concepts, gathering pertinent literature, and determining
suitable research approaches. This platform would provide all necessary infor-
mation on QSRR aspects—Structure-Molecular Descriptors, Retention Time, and
Relationships—alongside retention time prediction tools, thus enhancing efficiency
and accessibility in QSRR research
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Supplementary Information
Title: Quantitative structure retention-relationship modelling: Towards an innovative general-purpose strategy
Authors: Priyanka Kumari®®*, Thomas Van Laethem?®, Philippe Hubert?, Marianne Fillet®, Pierre-Yves
Sacré?, Cédric Hubert®”
a. University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liege,
Belgium

b. University of Liege (ULiege), CIRM, Laboratory for the Analysis of Medicines, Liege, Belgium

S1: lllustration of molecular descriptor calculation with an example
There were two tools used for molecular descriptor calculation: [1] RdKit [2] Chemicalize

» Values of LogD was calculated using Chemicalize at each pH

Method of calculation of other descriptors:

Stepl: Smile strings of compounds into Chemicalize

Step2: Retrieve Smile strings of all microspecies and their distributions at all pH

Step3: Calculate molecular descriptors of every microspecies from RdKit

Step4: Calculate weighted average of molecular descriptors at each pH using formula below

YV V V

S MS * D

FVpp = ==t 2
’ I, D

Where , FVph = Weighted average, MS;= Descriptor value for microspecies and,

D; = %Distribution of microspecies, n = no. of microspecies , ph = Specific pH at which final value is
being calculated

Step-1

146



[b]Benzoic Acid (MS1) - C1=CC=C(C=C1)C(=0)0 [b]Benzoate(MS2)- MS1C1=CC=C(C=C1)C(=0)[0-]

100 ————
90 \ /’
é 70
2 60
= 50
S 40
=
Z 30
= 20 /
ol
0 2 4 6 ] 10 2 4

2.7 35 5 6.pH

Step2: Microspecies distribution calculation using Chemicalize

Condition MS1 MS2
pH2.50 0.97 0.03
pH3.50 0.79 0.21
pH5.00 0.11 0.89
pH6.50 0.00 1.00

pH8 0.00 1.00

Step3: Calculate molecular descriptors of every microspecies from RdKit

Microspecies PEOE_VSA7
MS1 12.13
Ms2 5.56

Step4: Calculate weighted average of molecular descriptors at each pH :

Final value of PEOE_VSA7
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[1] At pH2.7
= (12.13*0.97 + 5.56%0.03)/1
=11.76 +0.166

=11.92

[2] At pH 3.5
= (12.13*0.79 + 5.56%0.21)/1
=9.58 +1.16

=10.74

[38]AtpH S

=(12.13*0.11 + 5.56*0.89)/1
= 1.33+4.94

=6.27

[4] At pH 6.5

=(12.13*0.0 + 5.56* 1.0)/1
=5.56

[5] At pH 8

=(12.13*0.0 +5.56* 1.0)/1

=5.56

Final Value of molecular descriptors: -

Condition

Final Value

PEOE_VSA7
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pH 2.7 11.92
pH 3.5 10.74
pH5 6.27
pH6.5 5.56
pH 8 5.56

S2: Table: Name of features used to start QSRR modeling

VSA
EState_V MinEStateln | PEOE_VSA | SlogP_ | EStat
MolWt SA2 fr_ArN fr_quatN dex 10 VSA3 e6
VSA_
EState_V | fr_aryl_met MinPartialCh | PEOE_VSA | SlogP_ | EStat
logD SA3 hyl FractionCSP3 arge 11 VSA4 e7
Asymmetri VSA_
c.atom.cou | EState_V Molar.refract | PEOE_VSA | SlogP_ | EStat
nt SA4 fr_benzene FSP3 ivity 12 VSAS5 e8
VSA_
EState_V PEOE_VSA | SlogP_ | EStat
Atom.count SA5 fr_bicyclic HallKierAlpha MolLogP 13 VSA6 e9
EState_V Heavy.atom.co PEOE_VSA | SlogP_
BalabanJ SA6 fr C_O unt MolMR 14 VSA7
EState_V | fr_C_O_noC | HeavyAtomMo PEOE_VSA | SlogP_
BertzCT SA7 00 IWt NHOHCount 2 VSA8
EState_V Hetero.ring.co PEOE_VSA | SMR_
Chio SA8 fr_COO unt NOCount 3 VSA1
Hydrogen.bon | NumAliphati
EState_V d.acceptor.cou | cHeterocycle | PEOE_VSA | SMR_
ChiOn SA9 fr_CO02 nt S 6 VSA10
FpDensit
yMorgan Hydrogen.bon | NumAliphati | PEOE_VSA | SMR_
ChiOv 1 fr_ether d.donor.count cRings 7 VSA3
FpDensit
yMorgan NumAromati | PEOE_VSA | SMR_
Chil 2 fr_halogen Ipc cCarbocycles 8 VSA5
FpDensit NumAromati
yMorgan cHeterocycle | PEOE_VSA | SMR_
Chiln 3 fr_imidazole Kappal S 9 VSA6
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fr_Al_CO | fr_Ndealkyla NumAromati | Polarizabil | SMR_
Chilv (¢} tionl Kappa2 cRings ity VSA7
NumHAccept SMR_
Chi2n fr_Al_OH fr_NHO Kappa3 ors ged VSA9
fr_Al_OH NumHDonor
Chi2v _noTert fr_NH1 LabuteASA S Ring.count | TPSA
Rotatable.
MaxAbsEStatel | NumHeteroa | bond.coun | VSA_E
Chi3n fr_amide fr_NH2 ndex toms t Statel
VSA_E
fr_anilin | fr_Nhpyrrol | MaxAbsPartial | NumRotatabl | SlogP_VSA | Statel
Chi3v e e Charge eBonds 1 0
NumSaturate
fr_Ar_CO | fr_para_hyd | MaxEStatelnde | dHeterocycle | SlogP_VSA | VSA_E
Chidn 0 roxylation X S 10 State2
MaxPartialCha | NumSaturate | SlogP_VSA | VSA_E
Chidv fr_ Ar_N fr_phenol rge dRings 11 State3
fr_phenol_n
EState_VSA | fr_Ar_N | oOrthoHbon | MinAbsEStatel | NumValence | SlogP_VSA | VSA E
1 H d ndex Electrons 12 State4
EState_VSA | fr_Ar_O MinAbsPartial SlogP_VSA | VSA_E
10 H fr_pyridine Charge PEOE_VSA1l 2 State5
2% H Benzoids
B Homogeneous non-metal comp
M Lipid and lipid like molecules
M Nucleosides, nucleotides and analogues
m Organic acids amd derivatives
2%

4% 1% °%

m Organic oxygen comp

Organohetrerocyclic comp

Phenylpropanoids and Polyketides

S3: Figure :Chemical taxonomy of the molecules in the dataset
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S4: Table: Important features selected by each algorithm on data at each pH

pH Total Descriptors
2.7 5 MolLogP, logD , NHOHCount, fr_Ar_NH, PEOE_VSA6
3.5 3 MolLogP, logD, NHOHCount
5 4 Polarizability, MolLogP, logD, PEOE_VSA6
6.5 3 MolLogP,logD,PEOE_VSA6
8 3 MolLogP , logD, PEOE_VSA6
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$10: Parameters used by prediction models at all pH

Models at pH2.7:

SVR_CFS Sigma = 0.362 Cc=1
SVR_RFE Sigma = 0.048 C=1
Lasso Aplha=1 Lambda = 0.014
RF Mtry =73
GBM n. trees = 150, Interaction depth =2,
Shrinkage = 0.1 n. minobsinnode = 10
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Models at pH3.5:

SVR_CFS Sigma =0.122 c=1
SVR_RFE Sigma = 0.075 Cc=1
Lasso Aplha=0.1 Lambda = 0.048
RF Mtry =73
GBM n. trees = 150, Interaction depth =2,

Shrinkage = 0.1

n.minobsinnode = 10

Models at pH 5:

SVR_CFS Sigma = 0.353 c=1
SVR_RFE Sigma = 0.054 C=1
Lasso Aplha=0.1 Lambda = 0.058
RF Mtry =73
GBM n.trees = 150, Interaction depth =2,

Shrinkage = 0.1

n.minobsinnode = 10

Models at pH 6.5:

SVR_CFS Sigma =0.313 Cc=1
SVR_RFE Sigma = 0.042 C=1
Lasso Aplha=0.1 Lambda = 0.02
RF Mtry = 147
GBM n.trees = 150, Interaction depth =3,

Shrinkage = 0.1

n.minobsinnode = 10

Models at pH 8:

SVR_CFS Sigma =0.319 C=1
SVR_RFE Sigma =0.110 C=1
Lasso Aplha=0.1 Lambda = 0.024
RF Mtry = 147
GBM n.trees = 150, Interaction depth =2,

Shrinkage = 0.1

n.minobsinnode = 10
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