GODEAUX, LUCIEN (Liège, Belgique)

SUR LA SINGULARITÉ D'UN POINT DE DIRAMATION D'UNE SURFACE ALGÉBRIQUE MULTIPLE

Si l'on considère une surface algébrique contenant une involution cyclique d'oidre premier n'ayant qu'un nombre fini de points unis, nous avons montré⁽¹⁾ que l'on peut en prendre comme modèle projectif une surface F d'un espace S_r à r dimensions sur laquelle l'involution est déterminée par une homographie H, de période p, possédant p axes ponctuels dont un seul rencontre F, en un nombre fini de points: les points unis de l'involution.

Un point uni est dit de première ou de seconde espèce suivant que H détermine dans le plan tangent à F en ce point une homologie ayant ce point comme centre, vu une homographie non homologique.

La dimension r_0 de l'espace σ_0 axe de H rencontrant F, peut être choisie aussi grande que l'on veut et si l'on rapporte projectivement aux hyperplans d'un espace à r_0 dimensions les hyperplans unis pour H ne contenant pas σ_0 , on obtient une image Φ de l'involution sur laquelle les points de diramation correspondant aux points unis sont isolés.

Le problème est de déterminer la structure des points unis et des points de diramation.

Si O est un point uni de seconde espèce, il existe sur F un certain nombre de suites de points infiniment voisins successifs de O, points unis de seconde espèce pour l'involution sauf le dernier de chaque suite qui est uni de première espèce. C'est cette sorte d'arbre qui constitue la structure du point uni O.

Le point de diramation O', homologue de O, est singulier pour la surface Φ et est, au point de vue des transformations birationnelles, équivalent à un ensemble de courbes rationnelles dont le degré virtuel est inférieur à -1. C'est cet ensemble qui constitue la structure du point de diramation O'.

Les points unis de première espèce qui terminent les suites de points unis d'origine O donnent évidemment naissance à ces courbes.

On pourrait croire a priori que la singularité du point O' pour Φ est constituée par une suite de points infiniment voisins successifs de O' dont les multiplicités ne vont pas en croissant. Il n'en est rien comme le montre l'exemple qui va être développé. C'est ce qui fait d'ailleurs son intérêt. Nous avons indiqué cet exemple dans une communication faite au Congrès de l'Unione Matematica Italiana à Bari en septembre, 1971.

Une dernière remarque. Lorsque deux surfaces sont l'une projection de l'autre, deux courbes homologues seront désignées par le même symbole.

1. Commençons par rappeler quelques résultats exposés dans notre ouvrage sur les involutions cycliques cité plus haut.

Nous considérons donc une surface algébrique F dans un espace S, transformée en soi par une homographie H de période $p=2\nu+1$, possédant p axes ponctuels $\sigma_0, \sigma_1, \ldots, \sigma_{p-1}$ dont le premier seul rencontre la surface F, en un nombre fini de points. Nous supposons p premier. Nous désignerons par r_0 la dimension de σ_0 et par C les courbes de F sections de cette surface par les hyperplans passant par $\sigma_1, \sigma_2, \ldots, \sigma_{p-1}$. Rapportons projectivement les courbes C aux hyperplans d'un espace à r_0 dimensions. On obtient ainsi une surface Φ image de l'involution en ce sens qu'un point de Φ correspond à un groupe de l'involution. Le système |C| est dépourvu de points-base, par conséquent si n est l'ordre de la surface Φ , le degré de |C|, c'est-à-dire l'ordre de la suxface F, est égal à pn.

Soit O un point uni de seconde espèce, c'est-à-dire un point uni tel que le plan tangent à F en O rencontre en un point deux des espaces $\sigma_1, \sigma_2, \ldots, \sigma_{p-1}$. Il y a donc deux tangentes à F en O qui sont unies pour l'homographie H. Nous désignerons par O' le point de diramation homologue de O sur Φ .

Les courbes C passant par O, courbes que nous désignerons par C^1 , acquièrent en ce point une certaine multiplicité, les tangentes à ces courbes étant confondues avec a et b. Les courbes C^1 , que nous appellerons C^2 , assujetties à toucher en O une droite distincte de a et b, acquièrent en ce point une certaine multiplicité et ont comme tangentes a et b si p>3. Par ce procédé répété, on forme une suite de systèmes linéaires

$$|C^1|, |C^2|, \ldots, |C^{\nu}|$$

dont les multiplicités en O vont en croissant et dont les tangentes sont confondues avec a et b. Si l'on applique le procédé au système $|C^{v}|$, on obtient un système $|C^{v+1}|$ dont les courbes ont en O la multiplicité p et des tangentes variables.

Désignons par Γ les sections hyperplanes de Φ , par $\Gamma^1, \Gamma^2, \ldots \Gamma^{\nu}$ les courbes qui correspondent sur Φ respectivement aux courbes $C^1, C^2, \ldots, C^{\nu}$, par $\Phi_1, \Phi_2, \ldots, \Phi_{\nu}$ les surfaces dont les sections hyperplanes sont respectivement les courbes $\Gamma^1, \Gamma^2, \ldots, \Gamma^{\nu}$.

L'étude du comportement en O des courbes $C^1, C^2, \ldots, C^{\nu}$ peut être faite par les procédés indiqués dans notre ouvrage déjà cité. Nous ne reprendrons pas cette étude en détail pour ne pas allonger ce travail.

2. Nous allons considérer le cas d'une involution I d'ordre 31 et nous supposerons que dans le plan tangent à F en un point uni O l'homographie H détermine l'homographie d'équations

$$x_1': x_2': x_3' = x_1: \varepsilon x_2: \varepsilon^{23} x_3,$$

le point O étant donné par $x_1 = x_2 = 0$ et ε étant une racine primitive d'ordre 31 de l'unité.

Rappelons que les multiplicités des courbes $C^1, C^2, \ldots, C^{\vee}$ sont données par les solutions en nombres entiers positifs de la congruence

$$\lambda + 23 \mu \equiv 0 \pmod{31}$$
,

telles que $\lambda + \mu$ soit inférieur à 31. Ces solutions doivent être rangées en ordre croissant des sommes $\lambda + \mu$.

La solution donnant la somme $\lambda + \mu$ la plus petite est $\lambda = 1$, $\mu = 4$. Les courbes C^1 ont donc en O la multiplicité cinq, une tangente étant confondue avec a et les quatre autres avec b.

Dans notre ouvrage, nous avons introduit les notations suivantes: Nous désignons par $(\alpha, 1)$, $(\alpha, 2)$, ... les points infiniments voisins successifs de O situés sur une branche linéaire d'origine O, le point $(\alpha, 1)$ étant situé sur la droite a, par $(\beta, 1)$, $(\beta, 2)$, ... les points infiniment voisins successifs de O, situés sur une branche linéaire d'origine O, le point $(\beta, 1)$ étant situé sur la droite b. De plus, si le point (α, k) par exemple est uni de seconde pour l'involution I, il existe dans son domaine du premier ordre deux points unis : l'un est le point $(\alpha, k+1)$, l'autre sera désigné par $(\alpha, k, 1)$. Si ce point est à son tour uni de seconde espèce pour I, les points unis infiniment voisins seront désignés par $(\alpha, k, 2)$ et $(\alpha, k, 1, 1)$. Et ainsi de suite et de même pour les points de la suite β .

Avec ces symboles, on voit que les courbes C^1 ont un point quintuple en O et passent: une fois par les points $(\alpha, 1), (\alpha, 2), \ldots (\alpha, 26)$, quatre fois par $(\beta, 1)$, deux fois par $(\beta, 2)$, une fois par $(\beta, 3), (\beta, 4), \ldots, (\beta, 22)$, une fois par $(\beta, 2, 1), (\beta, 2, 2)$.

Tous ces points sont unis de seconde espèce pour l'involution, sauf les

derniers (a, 26), (\beta, 22), (\beta, 2, 2) qui sont unis de première espèce.

Aux domaines du premier ordre de chacun de ces points correspondent respectivement sur la surface Φ_1 une droite ρ_1 , une droite ρ_2 et une droite τ . On a la relation fonctionnelle

$$\Gamma\!\equiv\!\Gamma^1+\rho_1+\tau+\rho_2$$

et le point O' est triple pour la surface Φ , le cône tangent projetant de ce point l'ensemble de ces trois droites.

Les droites ρ_2 et τ se rencontrent en un point. On verra plus loin que ρ_1 rencontre τ mais ne rencontre pas ρ_2 . Dans ces conditions, les droites ρ_1 , ρ_2 et τ ont respectivement pour degrés virtuels -2, -2, -3.

Le degré du système |C| est égal à 31 (n-3) et la surface Φ_1 est d'ordre n-3.

3. Le système $|C^2|$ correspond à la solution $\lambda = 8$, $\mu = 1$. Ses courbes passent donc 9 fois par le point O et une fois par les points $(\beta, 1)$, $(\beta, 2)$, ..., $(\beta, 22)$, trois fois par le point $(\alpha, 1)$, deux fois par les points $(\alpha, 2)$, ..., $(\alpha, 10)$, une fois par les points $(\alpha, 11)$, $(\alpha, 11, 1)$, une fois par $(\alpha, 1, 1)$, ..., $(\alpha, 1, 5)$.

Ces points sont unis de seconde espèce pour l'involution sauf les points $(\beta, 22)$, $(\alpha, 1, 5)$ et $(\alpha, 11, 1)$ qui sont unis de première espèce. Aux domaines du premier ordre des deux derniers de ces points correspondent sur la surface Φ_2 respectivement deux droites ρ_3 et ρ_4 . On en conclut que la surface Φ_2 est la projection de la surface Φ_1 à partir d'un point O_1 intersection des droites ρ_1 et τ (dont l'existence avait été admise plus haut). Ce point est double bipla-

naire pour la surface Φ_1 , les plans tangents projetant de ce point les droites ρ_3 et ρ_4 , qui se rencontrent en un point.

Sur la surface Φ_2 , on a

$$\Gamma^1 \equiv \Gamma^2 + \rho_3 + \rho_4$$

et les droites ρ_3 , ρ_4 ont le degré virtuel égal à -2.

La surface Φ_2 contient en outre une droite ρ_2 projection de la droite ρ_2 existant sur la surface Φ_1 .

Le système $|C^2|$ a le degré 31 (n-5) et la surface Φ_2 est d'ordre n-5.

4. Les courbes C^3 correspondent à la solution $\lambda = 2$, $\mu = 8$. Elles passent donc dix fois par le point O et deux fois par les points $(\alpha, 1), (\alpha, 2), \ldots, (\alpha, 10)$, une fois par $(\alpha, 11)$ et $(\alpha, 11, 1)$, huit fois par $(\beta, 1)$, quatre fois par $(\beta, 2)$, deux fois par $(\beta, 3), \ldots, (\beta, 6)$, une fois par $(\beta, 7), (\beta, 7, 1)$, deux fois par $(\beta, 2, 1), (\beta, 2, 2)$.

Ces points sont unis de seconde espèce pour l'involution sauf les points $(\alpha, 11, 1)$, $(\beta, 7, 1)$ et $(\beta, 2, 2)$, qui sont unis de première espèce. Aux domaines du premier ordre de ces points correspondent sur la surface Φ_3 respectivement une droite ρ_4 , une droite ρ_5 et une conique qui correspond point par point à la droite τ de Φ_1 et que nous désignerons par le même symbole.

La surface Φ_3 est la projection de la surface Φ_2 à partir du point O_2' commun aux droites ρ_2 et ρ_3 . Ce point est triple pour la surface Φ_2 , le cône tangent projetant la droite ρ_5 et la conique τ . Il importe de remarquer que le point de Φ_1 infiniment voisin de O_1' a pour projection sur Φ_2 non le point O_2' mais le point commun aux droites ρ_3 et ρ_4 .

Sur la surface Φ_3 , on a la relation fonctionnelle

$$\Gamma^2\!\equiv\!\Gamma^3\!+\!\tau\!+\!\rho_5$$

et ρ_5 a le degré virtuel égal à -2.

La surface Φ_3 a l'ordre n-8, le système $|C^3|$ ayant le degré 31(n-8).

5. Le système $|C^4|$ correspond à la solution $\lambda = 9$, $\mu = 5$. Ses courbes ont donc la multiplicité 14 en O et passent quatre fois par $(\alpha, 1)$, trois fois par $(\alpha, 2), \ldots, (\alpha, 5)$, une fois par $(\alpha, 6), (\alpha, 6, 1), (\alpha, 6, 2)$, une fois par $(\alpha, 1, 1), \ldots, (\alpha, 1, 5)$. cinq fois par $(\beta, 1)$, trois fois par $(\beta, 2)$, deux fois par $(\beta, 3), \ldots, (\beta, 6)$, une fois par $(\beta, 7), (\beta, 7, 1)$ enfin une fois par $(\beta, 2, 1)$. $(\beta, 2, 2)$.

Ces points sont unis de seconde espèce pour l'involution, sauf les points $(\alpha, 6, 2)$, $(\alpha, 1, 5)$, $(\beta, 7, 1)$, $(\beta, 2, 2)$ qui sont unis de première espèce. Il correspond aux domaines du premier ordre de ces points, sur la surface Φ_4 , respectivement les droites ρ_6 , ρ_3 , ρ_5 et τ . La surface Φ_4 est la projection de la surface Φ_3 à partir d'un point O_4' commun à la droite ρ_4 et à la conique τ . Ce point est double biplanaire pour la surface Φ_3 , les plans tangents projetant de ce point les droites ρ_3 et ρ_6 .

Sur la surface Φ_4 , on a

$$\Gamma^3 \!\equiv\! \Gamma^4 + \rho_3 + \rho_4$$

et le degré virtuel de la droite ρ_6 est égal à -2.

Le système $|C^4|$ a le degré 31 (n-10) et la surface Φ_4 est d'ordre n-10.

6. Le système $|C^5|$ correspond à la solution $\lambda = 3$, $\mu = 10$. Les courbes C^5 ont la multiplicité 15 en O et passent trois fois par $(\alpha, 1), \ldots, (\alpha, 5)$, une fois par $(\alpha, 6)$, $(\alpha, 6, 1)$, $(\alpha, 6, 2)$, cinq fois par $(\beta, 1)$, deux fois par $(\beta, 2), \ldots$, $(\beta, 6)$, une fois par $(\beta, 7)$, $(\beta, 7, 1)$, trois fois par $(\beta, 1, 1)$, $(\beta, 1, 2)$, une fois par $(\beta, 1, 3)$, $(\beta, 1, 3, 1)$, $(\beta, 1, 3, 2)$.

Seuls les points $(\alpha, 6, 2)$, $(\beta, 7, 1)$, $(\beta, 1, 3, 2)$ sont unis de première espèce, les autres le sont de seconde espèce. Il correspond sur la surface Φ_5 aux domaines du premier ordre de ces points, respectivement des droites ρ_6 , ρ_5 et ρ_7 .

La surface Φ_5 est la projection de la surface Φ_4 à partir du point $0_4'$ commun aux droites ρ_3 et τ . Le degré du système $|C^5|$ est égal à 31(n-11), de sorte que la surface Φ_5 est d'ordre n-11. Par conséquent, le point O_4' est simple pour la surface Φ_4 , le plan tangent étant le plan $0_4'$ ρ_7 . Il en résulte que la droite ρ_7 est une courbe exceptionnelle et a donc le degré virtuel -1. Sur la surface Φ_5 , on a

$$\Gamma^4 \equiv \Gamma^5 + \rho_7$$
.

ce qui confirme que le degré virtuel de ρ_7 est -1.

Dans le passage de la surface Φ_4 à la surface Φ_5 , les droites ρ_3 et τ sont projetées de O_4' en des points de la droite ρ_7 . La droite ρ_6 qui sur Φ_4 rencontre la droite ρ_3 est projetée sur Φ_5 suivant une droite passant par le point de rencontre de p_3 et p_7 . Cependant, comme on va le voir, les droites ρ_3 et ρ_6 ne se rencontrent pas.

7. Les courbes C^6 correspondent à la solution $\lambda = 16$, $\mu = 2$. Elles ont donc en O un point multiple d'ordre 18 et passent six fois par $(\alpha, 1)$, quatre fois par $(\alpha, 2)$, trois fois par $(\alpha, 3)$, une fois par $(\alpha, 3, 1)$, $(\alpha, 3, 1, 1)$, $(\alpha, 3, 1, 2)$, deux fois par $(\alpha, 1, 1)$, ..., $(\alpha, 1, 5)$, deux fois par $(\beta, 1)$, ..., $(\beta, 6)$, une fois pas $(\beta, 7)$, $(\beta, 7, 1)$.

Le point $(\alpha, 3, 1, 2)$ est uni de première espèce pour l'involution et à son domaine du premier ordre correspond sur la surface Φ_6 une droite ρ_8 . Sur cette surface se trouvent également une droite ρ_5 et une conique qui correspond point par point à la droite ρ_3 et que nous désignerons par le même symbole ρ_3 .

La surface Φ_6 est la projection de la surface Φ_5 à partir du point 0_5 commun à ρ_3 et ρ_7 . Ce point est triple pour la surface Φ_5 , le cône tangent projetant de ce point la droite ρ_8 et la conique ρ_3 .

Sur la surface Φ_6 , on a

$$\Gamma^5\!\equiv\!\Gamma^6+\rho_3+\rho_8$$

et la courbe ρ_8 est de degré virtuel -2.

Le système $|C^6|$ a le degré 31 (n-14) et Φ_6 est donc d'ordre n-14.

8. Les courbes C^7 sont données par $\lambda = 10$, $\mu = 9$. Elles ont donc la multiplicité 9 au point O et passent cinq fois par $(\alpha, 1)$, quatre fois par $(\alpha, 2)$, trois fois par $(\alpha, 3)$, $(\alpha, 3, 1)$, $(\alpha, 3, 1, 1)$, $(\alpha, 3, 1, 2)$, une fois par $(\alpha, 1, 1)$, ..., $(\alpha, 1, 5)$, neuf fois par $(\beta, 1)$, trois fois par $(\beta, 2)$, $(\beta, 2, 1)$, $(\beta, 2, 2)$.

Sur la surface Φ_7 nous avons une droite ρ_3 correspondant au domaine du point $(\alpha, 1, 5)$, une droite ρ_8 correspondant au domaine de $(\alpha, 3, 1, 2)$ et une cubique gauche correspondant point par point avec la droite τ de Φ_1

et que nous continuerons à désigner par τ.

La surface Φ_7 est la projection de la surface Φ_6 à partir d'un point O_6' intersection de la droite ρ_5 et de la conique ρ_3 . Ce point est triple pour la surface, le cône tangent projetant de ce point la cubique gauche τ . Sur la surface Φ_7 on a

 $\Gamma^6 \equiv \Gamma^7 + \tau$.

Le degré du système $|C^7|$ est égal à 31(n-17) et la surface Φ_7 est d'ordre n-17.

9. Les courbes C^8 correspondent à la solution $\lambda=4$, $\mu=16$ et elles ont donc un point multiple d'ordre 20 en O. Elles passent quatre fois par $(\alpha, 1)$, $(\alpha, 2)$, trois fois par $(\alpha, 3)$, une fois par $(\alpha, 3, 1)$, $(\alpha, 3, 1, 1)$, $(\alpha, 3, 1, 2)$, neuf fois par $(\beta, 1)$, deux fois par $(\beta, 2)$, $(\beta, 2, 1)$, $(\beta, 2, 2)$, trois fois par $(\beta, 1, 1)$, $(\beta, 1, 2)$, une fois par $(\beta, 1, 3)$, $(\beta, 1, 3, 1)$, $(\beta, 1, 3, 2)$.

Au domaine du point $(\alpha, 3, 1, 2)$ correspond sur la surface Φ_8 la droite ρ_8 . On a également sur cette surface une conique τ et une droite exceptionnelle ρ_7 . Elle est la projection de Φ_7 à partir d'un point O_7 commun à la droite ρ_3 et à la cubique τ . Ce point est simple pour la surface, le plan tangent projetant la droite ρ_7 . Sur cette surface, on a

$$\Gamma^7\!\equiv\!\Gamma^8+\rho_7.$$

Le degré du système $|C^8|$ est égal à 31 (n-18) et Φ_8 est d'ordre n-18. On remarquera que les courbes τ et ρ_3 ont un point commun dont le domaine est équivalent à la droite ρ_7 .

10. Les courbes C^9 sont données par la solution $\lambda = 17$, $\mu = 6$. Elles ont donc la multiplicité 23 en O et passent sept fois par $(\alpha, 1)$, une fois par $(\alpha, 2)$, $(\alpha, 2, 1), \ldots, (\alpha, 2, 4)$, deux fois par $(\alpha, 1, 1), \ldots, (\alpha, 1, 5)$, six fois par $(\beta, 1)$, deux fois par $(\beta, 2, 1), (\beta, 2, 2)$.

Au domaine du premier ordre de $(\alpha, 2, 4)$ correspond sur la surface Φ_9 une droite ρ_9 . Il y a en outre sur cette surface une conique ρ_3 représentant le domaine du point $(\alpha, 1, 5)$ et une conique τ . Cette surface est la projection de la surface Φ_8 à partir d'un point O_8 commun aux droites ρ_7 et ρ_8 . Ce point est triple pour la surface Φ_8 , le cône tangent projetant de ce point la conique ρ_3 et la droite ρ_9 . Cette droite rencontre donc la conique ρ_3 en un point. Sur la surface ρ_9 , on a

$$\Gamma^8 \equiv \Gamma^9 + \rho_3 + \rho_9$$
,

ce qui implique que le degré virtuel de ρ_9 est égal à -2.

La surface Φ_9 est d'ordre n-21.

11. Les courbes C^{10} correspondent à la solution $\lambda = 11$, $\mu = 13$. Elles ont donc en O la multiplicité 24 et passent six fois par $(\alpha, 1)$, une fois par $(\alpha, 2)$, $(\alpha, 2, 1), \ldots, (\alpha, 2, 4)$ et une fois par $(\alpha, 1, 1), \ldots, (\alpha, 1, 5)$, six fois par $(\beta, 1)$, une fois par $(\beta, 2)$, $(\beta, 2, 1)$, $(\beta, 2, 2)$, trois fois par $(\beta, 1, 1)$, $(\beta, 1, 2)$, une fois par $(\beta, 1, 3)$, $(\beta, 1, 3, 1)$, $(\beta, 1, 3, 2)$.

Aux domaines des points $(\alpha, 1, 5)$, $(\alpha, 2, 4)$, $(\beta, 2, 2)$, $(\beta, 1, 3, 2)$ correspondent respectivement sur la surface Φ_{10} quatre droites ρ_3 , ρ_9 , τ , ρ_7 . Cette surface est donc la projection de la surface Φ_9 à partir du point O_9 commun aux coniques ρ_3 et τ . Ce point est simple pour la surface Φ_9 , le plan tangent projetant ρ_7 de O_9 .

Sur la surface Φ_{10} , on a

$$\Gamma^9 \equiv \Gamma^{10} + \rho_7$$
.

Sur cette surface, les courbes ρ_3 et τ rencontrent ρ_7 chacune en un point mais ne se rencontrent pas.

Le système $|C^{10}|$ a le degré 31 (n-22) et la surface Φ_{10} est d'ordre n-22.

12. Les courbes C^{11} correspondent à la solution $\lambda = 5$, $\mu = 20$. Elles ont donc en O la multiplicité 25 et passent cinq fois par $(\alpha, 1)$, une fois par $(\alpha, 2)$, $(\alpha, 2, 1), \ldots, (\alpha, 2, 4)$, cinq fois par $(\beta, 1)$, une fois par $(\beta, 2)$, $(\beta, 2, 1)$, $(\beta, 2, 2)$, deux fois par $(\beta, 1, 1), \ldots, (\beta, 1, 7)$, une fois par $(\beta, 1, 8)$, $(\beta, 1, 8, 1)$.

Au dernier (β , 1, 8, 1) de ces points correspond sur la surface Φ_{11} une droite ρ_{10} et cette surface contient en outre deux droites ρ_{9} et τ . La surface Φ_{11} est la projection de la surface Φ_{10} à partir du point O_{10} commun aux droites ρ_{3} et ρ_{7} . Ce point est simple pour la surface Φ_{10} , le plan tangent projetant la droite ρ_{10} qui est exceptionnelle. Elle a donc le degré virtuel -1. Sur la surface Φ_{11} , on a

$$\Gamma^{10} \equiv \Gamma^{11} + \rho_{10}$$
.

Le degré de C^{11} étant 31 (n-23), la surface Φ_{11} est d'ordre n-23.

13. Les courbes C^{12} sont données par la solution $\lambda = 24$, $\mu = 3$. Elles ont donc en O la multiplicité 27 et passent quatre fois par les points $(\alpha, 1)$, $(\alpha, 1, 1)$, ..., $(\alpha, 1, 5)$, trois fois par $(\beta, 1)$, une fois par $(\beta, 2)$, $(\beta, 2, 1)$, $(\beta, 2, 2)$.

Sur la surface Φ_{12} on a une courbe ρ_3 du quatrième ordre correspondant au domaine du point $(\alpha, 1, 5)$ et une droite τ . Cette surface est la projection de la surface Φ_{11} à partir du point O_{11} commun aux droites ρ_{10} et ρ_9 . Ce point est quadruple pour Φ_{11} , le cône projetant la courbe ρ_3 étant le cône angent.

Sur la surface Φ_{12} on a

$$\Gamma^{11} \equiv \Gamma^{12} + 2 \rho_3$$
.

Le système $|C^{12}|$ a le degré 31 (n-27) et la surface Φ_{12} est d'ordre n-27.

14. Le système $|C^{13}|$ est donné par $\lambda=18$, $\mu=10$. Les courbes C^{13} ont en O la multiplicité 28 et passent trois tois par les points $(\alpha, 1)$, $(\alpha, 1, 1)$, $(\alpha, 1, 5)$, trois fois par $(\beta, 1)$, $(\beta, 1, 1)$, $(\beta, 1, 2)$, une fois par $(\beta, 1, 3)$, $(\beta, 1, 3, 1)$, $(\beta, 1, 3, 2)$.

La surface Φ_{13} , d'ordre n-28, contient une cubique gauche ρ_3 et une froite exceptionnelle ρ_7 . Elle est la projection de la surface Φ_{12} à partir du

point O'12 simple pour cette surface.

Le système $|C^{14}|$ est donné par $\lambda = 12$, $\mu = 17$. Ses courbes ont donc la multiplicité 29 en O et passent deux fois par les points $(\alpha, 1)$, $(\alpha, 1, 1)$, ..., $(\alpha, 1, 5)$, deux fois par $(\beta, 1)$, $(\beta, 1, 1)$, ..., $(\beta, 1, 7)$, une fois par $(\beta, 1, 8)$, $(\beta, 1, 8, 1)$.

La surface Φ_{14} , d'ordre n-29, contient une conique ρ_3 et une droite exceptionnelle ρ_{10} . Elle est la projection de la surface Φ_{13} à partir du point O'_{13} commun à la cubique ρ_3 et à la droite ρ_7 . Ce point est simple pour cette

surface.

Enfin les courbes C^{15} correspondent à la solution $\lambda = 6$, $\mu = 24$. Elles ont en O la multiplicité 30 et passent une fois par les points $(\alpha, 1)$, $(\alpha, 1, 1)$,

..., $(\alpha, 1, 5)$, une fois par les points $(\beta, 1)$, $(\beta, 1, 1)$, ..., $(\beta, 1, 29)$.

Au domaine du premier ordre du point $(\beta, 1, 29)$ correspond sur la surface Φ_{15} une droite ρ_{11} qui est exceptionnelle, car la surface Φ_{15} est d'ordre n-30. Cette surface contient une droite τ . Elle est la projection de Φ_{14} à partir du point O_{14} commun à la conique ρ_3 et à la droite ρ_{10} .

Sur la surface Φ_{14} , on a

$$\Gamma^{12} \equiv \Gamma^{14} + \rho_7 + \rho_{10} + \rho_{11}$$
.

Les courbes C^{15} assujetties à toucher en O une droite distincte de a, b, acquièrent en ce point la multiplicité 31 et des tangentes variables. La surface Φ_{16} que l'on obtient en rapportant projectivement ces courbes aux hyperplans d'un espace à r_0-16 dimensions, est la projection de Φ_{15} à partir du point commun aux droites ρ_3 et ρ_{11} .

15. La structure du point O' est donc constituée par une courbe rationnelle τ de degré virtuel -3, par huit courbes rationnelles ρ_1 , ρ_2 , ρ_3 , ρ_4 , ρ_5 , ρ_6 , ρ_8 , ρ_9 de degré virtuel -2 et par trois droites exceptionnelles ρ_7 , ρ_{10} , ρ_{11} .

La courbe τ rencontre chacune des courbes ρ_1 , ρ_2 , ρ_3 , ρ_4 , ρ_5 , ρ_7 , ρ_{10} en un

point.

La courbe ρ_3 rencontre chacune des courbes τ , ρ_2 , ρ_4 , ρ_5 , ρ_6 , ρ_7 , ρ_8 , ρ_9 , ρ_{10} , ρ_{11} en un point.

Les courbes ρ₄ et ρ₅ rencontrent les courbes τ et ρ₃, la dernière rencontre

en plus p7.

La courbe ρ_8 rencontre ρ_3 et ρ_7 , la courbe ρ_9 rencontre ρ_3 et ρ_{10} .

Le fait le plus saillant dans cette analyse est que le point O est triple pour la surface Φ et est suivi d'un point double biplanaire infiniment voisin. Celui-ci est suivi d'un point triple qui n'est pas infiniment voisin au point double précédent.

Liège, le 5 novembre 1971.

Bibliographie

(1) Voir notre ouvrage sur la Théorie des involutions cycliques appartenant à une surface algébrique et applications (Monografie Matematiche del Consiglio Nazionale delle Ricerche, Rome, Cremonese, 1963).

(Reçu le 03. 12. 1971)

Adresse de l'Auteur: Lucien Godeaux 37, Quai Orban 4000 — Liège (Belgique)