VARIÉTÉS ALGÉBRIQUES DOUBLES AYANT UN NOMBRE FINI DE POINTS DE DIRAMATION*

PAR

LUCIEN GODEAUX

(Liège)

La série canonique d'une courbe double contient les points de diramation de cette courbe. Par contre, les courbes canoniques d'une surface algébrique double ne passent pas par les points de diramation de cette surface. On est conduit à se demander si le passage par les points de diramation des variétés canoniques d'une variété algébrique double dépend de la parité du nombre de dimensions de cette variété. Nous nous proposons de montrer que la réponse est affirmative, sous cependant une certaine restriction. Dans notre démonstration, nous supposons que sur la variété algébrique V, les adjointes aux hypersurfaces découpent sur une de celles-ci le système canonique complet. Cette hypothèse est toujours vérifiée si la variété V est complètement régulière, c'est-à-dire si elle ne possède pas de formes différentielles de première espèce ¹. (Il est à noter que cette hypothèse n'est pas nécessaire dans le cas des courbes et des surfaces.)

Nous nous bornons d'ailleurs à donner les démonstrations in extenso pour les variétés à trois et à quatre dimensions, les démonstrations dans les cas d'un nombre de dimensions supérieur étant complètement analogues.

Dans le cas des variétés à trois dimensions, des démonstrations ont également été don-

nées par MM. B. Segre et K. Kodaira.

^{*} Note envoyée au Séminaire sur la théorie des variétés différentiables, Bucarest, 30 juin - 9 juillet 1967.

¹ Le théorème a été établi par Severi dans le cas des variétés à trois dimensions dans Fondamenti per la Geometria sulle varieta algebriche. Rendiconti del Circolo Matematico di Palermo, 2° sém., 1909, p. 33-87. La démonstration dans le cas général est due à N. E. Marchionna. Voir de cet auteur: Sul teorema di Riemann-Roch relativo alle varietà algebriche. Rendiconti della Accademia dei Lincei, 1° sém., 1958, p. 396-403, 500-504, 672-679; Una dimonstrazione algebrico-geometrica del teorema di Riemann-Roch relativo alla varietà alle algebriche classiche. Idem, 2° sém., 1958, p. 160-171. Consulter également l'Appendice VI au traité de Severi, Geometria dei sistemi algebrici sopra una superficie e sopra una varietà algebrica. Tome III, Roma, Cremonese, 1959, dù à M. Marchionna, Il teorema di Riemann-Roch sulle varietà algebriche e questioni collegate con la teoria delle irregolarità. p. 395-437.

Nous renverrons, pour les propriétés des involutions appartenant à une variété algébrique, à notre ouvrage récent sur ces questions ².

I. VARIÉTÉS À TROIS DIMENSIONS

1. Soit V_3 une variété algébrique à trois dimensions, complètement régulière, contenant une involution I du second ordre n'ayant qu'un nombre fini α de points unis. Nous pouvons prendre, comme modèle projectif de la variété V_3 , une variété appartenant à un espace S, à r dimensions, sur laquelle l'involution I est déterminée par une homographie biaxiale harmonique H ayant pour axes des espaces σ_m , σ_n respectivement à m et n dimensions. On a r=m+n+1. Comme nous l'avons montré, on peut prendre r, m et n aussi grands que l'on veut. Dans cette construction, les points unis de l'involution I appartiennent à l'un des axes de H, par exemple à σ_m .

Désignons par |F| le système des sections hyperplanes de V_3 , par F_1 le système découpé par les hyperplans passant par σ_n , par $|F_2|$ le système découpé par les hyperplans passant par σ_m . $|F_1|$ et $|F_2|$ ont respective.

tivement les dimensions m et n.

Nous supposerons m>3. Rapportons projectivement les surfaces F_1 aux hyperplans d'un espace S_π à m dimensions. Il correspond à V dans cet espace une variété Ω_3 image de l'involution I, un point de Ω_3 représentant un groupe de points de I. De même que V_3 , la variété Ω_3 est complètement régulière.

Nous désignerons par Φ_1 , Φ_2 les surfaces de Ω_3 homologues des

surfaces F_1 et F_2 .

2. Considérons une surface F_1 passant par un point uni A de l'involution I. Comme nous l'avons établi, la surface Φ_1 homologue de F_1 a un point double conique au point de diramation A' correspondant à A.

L'espace à trois dimensions tangent à V_3 en A coupe l'axe σ_m suivant un plan σ_2 et le plan tangent à F_1 en A coupe ce plan suivant une droite. Les ∞^2 cônes tangents aux surfaces Φ_1 en A' correspondent aux ∞^2 droites du plan σ_2 . On en conclut que la variété Ω_3 a un point quadruple en A', les sections hyperplans du cône tangent en ce point étant des surfaces de Véronèse.

La variété Ω_3 possède des points quadruples aux points de diramation, le cône tangent en un de ces points ayant pour sections hyperplanes des surfaces de Véronèse.

3. Considérons maintenant une surface F_1 ne contenant aucun point uni de l'involution I. Sur cette surface, l'homographie H détermine une involution du second ordre privée de points unis et d'autre part, l'adjoint |F'| à |F| découpe sur F_1 le système canonique complet. Comme nous l'avons démontré, ce système canonique contient deux systèmes linéaires partiels $|C_{10}|$ et $|C_{11}|$ appartenant à l'involution. Si p'_{σ} est le genre géométrique des surfaces Φ_1 , l'un de ces systèmes a la dimension $p'_{\sigma}-1$

² Les involutions cycliques appartenant à une surface algébrique et applications. Roma, Cremonese, 1963. L'appendice traite des involutions cycliques appartenant à une variété algébrique à trois dimensions.

et est le transformé du système canonique de la surface Φ_1 homologue de F_1 , l'autre a la dimension p'_{σ} . Si p_{σ} est le genre géométrique des surfaces.

F, on a $p_g = 2p'_g + 1$.

Le système adjoint |F'| à |F| est transformé en soi par H et contient deux systèmes appartenant à l'involution I. Nous désignerons par $|F'_1|$ celui de ces systèmes qui découpe sur F_1 le système $|C_{10}|$ et par $|F'_2|$ l'autre. Soient $|\Phi'_1|$ et $|\Phi'_2|$ les systèmes qui correspondent sur Ω_3 aux systèmes $|F'_1|$, $|F'_2|$. Le premier $|\Phi'_1|$ est l'adjoint au système $|\Phi_1|$.

Considérons au contraire une surface F_2 . Sur cette surface, H détermine une involution possédant α points unis. Les systèmes $|F_1'|$, $|F_2'|$ découpent sur F_2 deux systèmes linéaires de courbes canoniques. D'après nos recherches antérieures, celui de ces systèmes qui correspond au système canonique de la surface Φ_i homologue n'a pas pour points-base les points unis de l'involution. L'autre système a ces points pour points-base.

Les systèmes $|\Phi_1|$, $|\Phi_2|$ ne peuvent avoir le même adjoint, par conséquent l'adjoint $|\Phi'_2|$ à $|\Phi_2|$ est le système qui correspond à $|F'_2|$.

Nous voyons donc que le système $|F_1'|$ a pour points-base les α points unis de I. En reprenant le raisonnement fait plus haut, on voit que les surfaces Φ_1' ont des points-doubles coniques aux points de diramation de Ω_3 .

Le système canonique de Ω_3 est $|\Phi_1' - \Phi_1|$. Les surfaces Φ_4' ayant des points doubles coniques aux points de diramation et les surfaces Φ_1 ne passant pas en général par ces points, les surfaces canoniques de Ω_3 ont des points doubles coniques aux α points de diramation.

Le système canonique de Ω_3 peut aussi être représenté par $|\Phi_2'-\Phi_2|$. On arrive aux mêmes conclusions, car les surfaces Φ_2' qui contiennent une surface Φ_2 doivent avoir, comme celle-ci, un point double conique en chaque point de diramation.

Les surfaces canoniques des variétés doubles à trois dimensions complètement régulières ayant un nombre fini de points de diramation ont des

points doubles coniques en chacun de ces points.

Observons qu'aux surfaces canoniques de Ω_3 correspondent sur V_3 des surfaces canoniques passant par les points unis de l'involution.

4. Si Ω_0 est le degré, Ω_1 le genre sectionnel et Ω_2 le genre arithmétique du système canonique de V_3 , le genre arithmétique P_a de cette variété est donné par³

$$2 P_3 = \Omega_0 - \Omega_1 + \Omega_2 + 4.$$

Désignons par Ω_0' , Ω_1' , Ω_2' les caractères analogues du système canonique de Ω_3 et par P_a' le genre arithmétique de cette variété. On a

$$\Omega_0 = 2 \; \Omega_0', \quad \Omega_1 = 2 \, \Omega_1' + rac{lpha}{2} - 1, \quad \Omega_2 = 2 \; \Omega_2' - rac{lpha}{4} + 1$$

d'où l'on déduit

³ Formule due à Pannelli. Voir Severi, Fondamenti per la Geometria loc. cit.

Le nombre de points unis doit être multiple de 8.

Les variétés V_3 et Ω_3 étant complètement régulières, les genres géométriques de ces variétés sont $P_g=P_a$, $P_g'=P_a'$.

II. VARIÉTÉS À QUATRE DIMENSIONS

5. Soit V_4 une variété algébrique à quatre dimensions complètement régulière contenant une involution I d'ordre deux n'ayant qu'un nombre fini α de points unis. Comme dans le cas précédent, nous pouvons supposer que V_4 appartient à un espace S, à r dimensions et que l'involution I est engendrée par une homographie H biaxiale harmonique dont les axes σ_m , σ_n ont respectivement m et n dimensions (r=m+n+1).

Nous utiliserons des notations analogues aux précédentes. Le système des variétés à trois dimensions sections hyperplanes de V_4 sera désigné par |F| et ceux qui sont découpés par les hyperplans passant par σ_n ou

 σ_m par $|F_1|$ ou $|F_2|$.

En rapportant projectivement les variétés F_1 aux hyperplans d'un espace S_m à m dimensions (m>4), on obtient une variété Ω_4 image de l'involution I. Les variétés qui correspondent sur Ω_4 aux variétés F_1 , F_2 seront désignées par Φ_1 , Φ_2 .

Le système adjoint à |F| sera dénoté par |F'| et les adjoints aux systèmes $|\Phi_1|$, $|\Phi_2|$ seront dénotés par $|\Phi_1'|$, $|\Phi_2'|$. Ils correspondent

à des systèmes $|F_1'|$, $|F_2'|$ appartenant à |F'|.

6. Sur une variété F_1 passant par un point uni de I l'homographie H détermine une involution dont l'image Φ_1 possède un point quadruple au point de diramation A' homologue de A, les sections hyperplanes du cône tangent étant des surfaces de Véronèse.

L'espace à quatre dimensions tangent à V_4 au point A coupe σ_m suivant un espace à trois dimensions σ_3 . Les ∞^3 cônes tangents aux variétés Φ_1 en A' correspondent aux ∞^3 plans de l'espace σ^3 . Le point A' est donc multiple d'ordre huit et les sections hyperplanes du cône tangent sont des variétés de Véronèse à trois dimensions.

La variété Ω_4 possède des points multiples d'ordre huit aux points de diramation, les cônes tangents ayant comme sections hyperplanes des variétés

de Véronèse d'ordre huit.

7. Sur une variété F_1 ne passant par aucun point uni de I, l'homographie H détermine une involution privée de points unis. Les adjointes F' à |F| déterminent sur F_1 le système canonique complet et nous avons démontré que ce système contient deux systèmes linéaires partiels, l'un $|C_0|$ de dimension $p'_{\sigma}-1$, l'autre, $|C_1|$ de dimension $p'_{\sigma}-2$, p'_{σ} étant le genre géométrique des variétés Φ_1 . De plus, le transformé du système canonique de la variété Φ_1 homologue est le système $|C_0|$, le nombre de dimensions de F_1 étant trois 4. Le genre p_{σ} des variétés |F| est donné par $p_{\sigma}=2p'_{\sigma}-1$.

Si nous supposons que le système $|C_0|$ est découpé par le système

 $|F_1'|$, l'adjoint au système $|\Phi_1|$ est $|\Phi_1'|$.

⁴ Involutions cycliques privées de points unis appartenant à une variété algébrique complètement régulière. Bull. Acad. roy. Belg., 1968, p. 663-670.

Sur une variété F_2 , H détermine une involution possédant α points unis. Les surfaces canoniques de Φ_2 ont pour homologues sur F_2 les surfaces canoniques passant par les points unis. Comme $|\Phi_2'|$ est l'adjoint à $|\Phi_2|$, le système $|F_2'|$ possède les points unis comme points-base.

Les systèmes $|\Phi_1|$, $|\Phi_1'|$ étant dépourvus de points-base, il en

est de même du système canonique $|\Phi'_1 - \Phi_1|$.

Les variétés Φ_2 et Φ_2' ont des points quadruples aux points de diramation et les variétés $|\Phi_2' - \Phi_2|$ qui passent par les points de diramation sont des variétés canoniques particulières.

Le système canonique d'une variété algébrique double à quatre dimensions complètement régulière, possédant un nombre fini de points de diramation,

est dépourvu de points-base.

III. EXTENSION AUX VARIÉTÉS À PLUS DE QUATRE DIMENSIONS

8. Si une variété V_n à n dimensions possède une involution ayant un nombre fini de points unis, une variété image de cette involution possède, en un point de diramation, un point équivalent à un point multiple d'ordre 2^{n-1} , le cône tangent ayant pour sections hyperplanes des variétés de Véronèse à 2^{n-1} dimensions. Si la variété image de l'involution est construite comme les variétés Ω_3 , Ω_4 , les points de diramation présentent exactement la singularité précédente.

Les variétés canoniques d'une variété double, complètement régulière, à 2n + 1 dimensions, possédant un nombre fini de points de diramation,

ont la multiplicité 22n en chacun de ces points.

Le système canonique d'une variété double, complètement régulière, à 2n dimensions, présentant un nombre fini de points unis, est dépourvu de points-base.

Ces théorèmes se démontrent exactement comme ceux dont il a été question plus haut. Il suffit d'admettre que le théorème pour la valeur immédiatement inférieure de n a été démontré.

Reçu le 11 août 1968

Université de Liège