
1

SUR LES VARIÉTÉS ALGÉBRIQUES À TROIS DIMENSIONS DE GENRE 

GÉOMÉTRIQUE ZÉRO ET DE BIGENRE UN

par Lucien Godeaux (Liège, Belgique)

On sait qu’Enriques a construit une surface algébrique dépourvue de courbe 
canonique mais possédant une courbe bicanonique d’ordre zéro et précisément 
la surface du sixième ordre passant doublement par les arêtes d’un tétraèdre. 
Nous nous proposons dans cette note de construire une variété algébrique à 
trois dimensions privée de surface canonique mais possédant une surface bica­
nonique d’ordre zéro. La surface d’Enriques, de genres pa = pe = 0, P2 = P4 = 1, 
est l’image d’une involution du second ordre, privée de points unis, appartenant 
à une surface ayant une courbe canonique d’ordre zéro, de genres p„ = pe = P4 = l. 
Nous obtenons la variété cherchée par un procédé analogue.

La surface de Steiner, passant doublement par les arêtes d’un trièdre et 
triplement par le sommet, a pour équation

2 2 
*2 *3 “1“ X3 Xl -J" X2 X0 X2

Nous établissons le théorème suivant:

Si dans l’équation d’une surface de Steiner, on remplace les coordonnées
courantes par des formes algébriques du second degré en x0, x,, x2, x3, x4,
linéairement indépendantes, on obtient, dans un espace à quatre dimensions, une
hypersurface du huitième ordre, privée de surface canonique mais possédant une
surface bicanonique d’ordre zéro.
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Nous obtenons chemin faisant un théorème que nous avons établi autrefois [1].
Si dans l’équation d’une surface de Steiner, on remplace les coordonnées 

courantes par des formes algébriques du second degré en x0, x,, x2, x3, on obtient 
une surface du huitième ordre de genres pa = pe — 3, p"’ = 9 dont le diviseur 
de Severi est a = 2.

Dans une note récente [2] nous avons établi qu’une variété algébrique à 
trois dimensions possédant une surface canonique d’ordre zéro a l’ordre tc — 1, 
ri étant le genre des sections curvilignes de la variété et est située dans un 
espace à n dimensions, où 3n < n -f- 9. Nous démontrons que:

Si une variété algébrique à trois dimensions possédant une surface canonique 
d’ordre zéro contient une involution du second ordre ayant un nombre fini non nul 
de points unis, l’image de cette involution est une variété privée de surface cano­
nique mais possédant une surface bicanonique d’ordre zéro.

Une surface privée de courbe canonique mais ayant une courbe bicanoni­
que d’ordre zéro se ramène par une transformation birationnelle à une surface 
d’Enriques [3]. Il semble que pour les variétés à trois dimensions, une propriété 
analogue n’existe pas.

Nous utilisons ici les théorèmes sur les involutions cycliques que l’on 
trouvera dans l’ouvrage que nous avons récemment publié sur cette question [4],

1. La surface intersection complète de quatre hyperquadriques linéairement 
indépendantes dans un espace linéaire Sb à six dimensions a pour système 
canonique celui de ses sections hyperplanes [5], par conséquent, la variété 
algébrique à trois dimensions Vf intersection complète de quatre hyperquadri­
ques linéairement indépendantes dans un espace S7 à sept dimensions possède 
une surface canonique d’ordre zéro. Le système |F| de ses sections hyperplanes 
est son propre adjoint.

Les surfaces F sont régulières et ont les genres pa — pg — 7, p'1’ = 17.
Considérons dans S7 l’homographie harmonique H d’équations

X0 X, x2 x3 x4 — x5 — x6 — x7 ’

qui a comme axes ponctuels a4 (x5 = x6 = x7 = 0) à quatre dimensions et un 
plan ct2 (x0 = Xj — x2 = x3 = x4 = 0).
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Nous supposerons que la variété V'3b est transformée en soi par l’homogra­
phie H. Dans ces conditions les équations de la variété peuvent s’écrire

(1) <Po(*o>*..*2»*3.*4) = *î+*î + *ï, Tl = XbX7, <?2 = X7X5, f3 — X5X6,

9o = 0, cp, = 0, cp2 = 0, cp3 = 0 représentant quatre hyperquadriques de a4, 
linéairement indépendantes, ayant 16 points communs distincts. De plus, la 
figure de référence peut être choisie de manière que dans le plus a2, le triangle 
de référence soit le triangle diagonal des quatre droites communes aux coniques 
conjuguées des coniques découpées sur le plan par les hyperquadriques défi­
nissant la variété [6].

Désignons par £2® la variété à trois dimensions image de l’involution I 
engendrée par H sur P316, obtenue en rapportant projectivement aux hyperplans 
d’un espace à quatre dimensions les sections de P316 par les hyperplans passant 
par le plan a2, ou, ce qui revient au même, projetons P316 du plan a0 sur 
l’espace a4. Cela revient à éliminer x5, x6, x7 entre les équations (1). On obtient 
ainsi l’équation de la variété £2®:
/0\ 2 2 I 2 2 I 22(2) T2 ?3 + T3 T, + Tl T2 = To Tl T2 T3 •

La variété £2® possède:
Trois surfaces W, (cp2 = cp3 = 0), W2 (cp3 = cp, = 0), ^ (cp, = cp2 = 0) du 

quatrième ordre, doubles pour la variété;

Une courbe T (cp, = cp2 == cp3 = 0) du huitième ordre, triple pour la variété; 
Seize points cp0 = cp, = cp2 = cp3 = 0 quadruples pour la variété.

L’involution / possède seize points unis, intersections de la variété V'3b avec 
l’espace o4. Nous avons démontré qu’à un point uni de l’involution / correspond 
sur la variété £2® un point de diramation quadruple pour cette variété.

Pour abréger l’écriture dans la suite, nous désignerons par V la variété 
Pj16 et par £2 la variété £2®. 2 * * * * *

2. Désignons par F0 les sections de V par les hyperplans passant par a2,
par F, les sections par les hyperplans passant par a4. Appelons 3>0 les images
des surfaces Fa sur £2 et <&, celles des surfaces Ft.

Considérons une surface F0, soit F0, découpée par un hyperplan passant
par a2 mais non par un des points communs à V et à o4. Soit 3>0 la surface
qui lui correspond.



4 LUCIEN GODEAUX

L’homographie H détermine sur F0 une involution /„ privée de points unis. 
Le système canonique |(F0, F)| de Fa comprend deux systèmes composés au 
moyen de /„. L’un, |(F0, F0)| a la dimension trois et l’autre, |(F0, F,)| a la 
dimension deux. Comme nous l’avons démontré, le transformé du système ca­
nonique de la surface O0 est celui des systèmes précédents qui a la dimension 
minimum, c’est-à-dire le second. La surface <h0 a donc le genre géométrique pe = 3.

Entre le genre arithmétique pu = l de F„ et celui p'a de 4>0, nous avons 
la relation

Pa + 1 — 2(pfl + 1),

d’où p'a = 3, ce qui pouvait être déduit à priori puisque 5>0 est, comme F0, une 
surface régulière.

Nous avons

*<,*7 = *7*5 = *5*6

Ti T2 T3

ou

*5?! = *6 T 2 = *7 T 3

T2T3 T3Tl TlT2 '

Le système canonique de la surface 5>0 est donc découpé sur £2 par les 
hypersurfaces

4t2T3 + ^2 T3 Ti + ^-3 Ti T2 = O,

du quatrième ordre, passant simplement par les surfaces W,, W2, W3 et dou­
blement par la courbe T.

Une courbe (F0, F,) est de genre 17 et H détermine sur cette courbe une 
involution privée de points unis; l’image de cette involution est donc, d’après 
la formule de Zeuthen, une courbe de genre 9.

Sur la surface ®0, le système canonique est le système |(<ï,0, <£>4 et par 
conséquent |$>t| est l’adjoint à |O0|. Quant au système |(^0, ^l, c’est le 
système des sections hyperplanes de S.

Les sections hyperplanes <£>0 de Q sont des surfaces de genres pa — ps = 3, 
pw - 9.



3. Le système canonique d’une hypersurface d’ordre n d’un espace à quatre 
dimensions est découpé par les hypersurfaces d’ordre n — 5 passant par les 
surfaces doubles de Phypersurface donnée. Les surfaces canoniques de £2 sont 
donc découpées par les hypersurfaces cubiques passant par les surfaces W,, 
^2, ^3. Une telle hypersurface rencontre l’hyperquadrique 9, = 0 suivant W2 et 
^3, c’est-à-dire suivant une surface d’ordre huit. Elle contient donc cp, = 0 
comme partie et est complétée par un hyperplan qui devrait contenir W,, ce 
qui est absurde. Donc:

L’hypersurface £2 est dépourvue de surface canonique.
Les hypersurfaces bicanoniques de £2 sont découpées par les hypersurfaces 

du sixième ordre passant doublement par les surfaces W,, W2, ¥3. L’hypersurface

9,92?? = 0
satisfait à cette condition. 11 ne peut en exister une seconde, car elle rencon­
trerait l’hyperquadrique 9, = 0 suivant une surface d’ordre 16 et contiendrait 
cette hyperquadrique. Pour la même raison, elle contiendrait les hyperquadriques 
92 = 0, 93 = 0 et serait donc confondue avec l’hypersurface précédente. Celle-ci 
ne rencontre plus £2 en dehors des surfaces , £F2, W3.

L’hypersurface £2 possède une surface bicanonique d’ordre zéro. 
L’hypersurface £2 a les genres Ps = 0, P2 = 1.

4. Considérons maintenant la surface F, section de la variété V par un 
hyperplan passant par a4. Il lui correspond sur £2 la surface 3», obtenue en éli­
minant x5, x6, Xj entre les équations (1) et l’équation

2.1X5 + 22x6 + X3x7 = 0,

c’est-à-dire la surface 3», section de £2 par l’hypersurface

(3) *,?2?3 + *2<P3<Pi + X39i92 = 0.

L’involution /, déterminée par H sur la surface Z7, possède 16 points unis. 
Entre le genre pa = l de F, et celui p'a de 3>,, on a la relation

12(p. + 1) = 2.12(p'a + 1) - 3.16,
d’où p'a = 5.

Sur une surface F,, le système canonique contient deux systèmes linéaires 
appartenant à l’involution f. L’un, |(F,, F0)| a la dimension quatre et est 
dépourvu de points-base, l’autre, |(F,, F,)| est un faisceau ayant pour points- 
base les points unis de f.
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Le système canonique de la surface O,, homologue de F,, est celui de ces 
systèmes qui est dépourvu de points-base. Le genre géométrique de O, est donc 
og — 5 et son système canonique coïncide avec le système 1(0,, O0)| des sec­
tions hyperplanes de la surface. Ces sections hyperplanes ont le genre 9.

Line courbe (Z7,, F,) est de genre 17 et passe par les points unis de /,, 
donc la courbe correspondante (O,, O,) est de genre cinq.

Les surfaces O, sont d’ordre huit.
Une surface O, est découpée sur l’hypersurface Q par une hypersurface (3) 

et son système canonique coïncide avec celui des sections hyperplanes. Elle a les 
genres pa = p„ = 5, p"’ = 9. La partie variable de l’intersection de deux surfaces 
O, est de genre cinq.

5. Les hyperquadriques de S7 découpent sur V le système |2Fj de dimen­
sion 31. Il contient deux systèmes linéaires composés au moyen de l’involution /; 
l’un contient les surfaces 2 F0 et 2 F,, l’autre les surfaces F0-f F,.

Soit = 0 l’équation d’une hyperquadrique de a4 linéairement indépendante 
des hyperquadriques cp0 = 0, cp, = 0, q>2 = 0, cp3 = 0. Elle dépend de 10 para­
mètres et le système comprenant les surfaces 2 F0 et 2 F, est découpé sur V 
par les hyperquadriques

41 -)- ^nx5 -(- ^22x6 -f- X33 x7 -|- 2A23 x6x7 2 X31 x7 x5 -f- 2 X12 x5 x6 0.

11 a la dimension 16. 11 lui correspond sur S les surfaces découpées par les 
hypersurfaces du huitième ordre

Parmi ces surfaces se trouvent les surfaces 2 3>0 et 2 0,.
Observons, ce qui résulte d’ailleurs de la théorie des involutions, que les

hypersurfaces

(5) ^11 + ^22^3 Tl + ’ • • + 2X,2Cp,Cp2Cp3 --  0

touchent l’hypersurface S le long d’une surface O,.
Chacun des 16 points de diramation de l’hypersurface 2 est équivalent, au 

point de vue des transformations birationnelles, à une surface rationnelle. Si 
nous désignons par A,, A2, ..., Alb les surfaces rationnelles ainsi obtenues, 
nous avons, d’après la théorie des involutions, la relation fonctionnelle

(6) 2 O0 = 2 O, -f- A, + A2 -f- • • • -f- A16.
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Le second système de \2F\ appartenant à l’involution / est découpé sur 
V par les hyperquadriques

Sx,.x4 = 0, (i — 0, 1, 2, 3, 4; k = 5, 6, 7).

Il a la dimension 14. Il lui correspond sur Q le système découpé par les hy- 
persurfaces

Sx,.cp, = 0, 0 = 0, 1,2, 3,4; ; = 5,6,7)

qui comprend les surfaces $0 + <!>,, Ces surfaces passent par les points de 
diramation de Q et y ont des points doubles coniques.

6. Le fait que le système canonique d’une section hyperplane 3>0 de Q est 
découpé par les surfaces ^ et que celles-ci ont pour courbes canoniques leurs 
sections hyperplanes se traduit par les relations fonctionnelles

= + 2M, q;^3>0.
On en déduit

^0 — ^0 “I- — ‘ï’i + "^4,
ce qui montre bien l’existence d’une surface bicanonique d’ordre zéro.

7. Revenons à une section hyperplane <I>0 de la variété S, par exemple à 
la section par l’hyperplan xt — 0.

La surface <50 ne passant pas par les points de diramation de Q, la relation 
fonctionnelle (6) donne

2(®0, ®o) = 2(®0> <&,)

et la surface <£„ a le diviseur de Severi o = 2.
La relation (4), où l’on fait x4 = 0, montre qu’il existe une surface du 

huitième ordre, circonscrite à la surface «J,, le long d’une courbe (O,,, <£,). 8

8. Considérons maintenant, dans un espace Sn à n dimensions, une variété 
irréductible V, à trois dimensions, possédant une surface canonique d’ordre zéro. 
Si n est le genre des sections curvilignes de cette variété, nous avons montré 
qu’elle est d’ordre n — 1 et que l’on a 3n < it -(- 9. Le système \F\ des sec­
tions hyperplanes de V est son propre adjoint.

Supposons que la variété V soit transformée en soi par une homographie 
harmonique H possédant deux axes ponctuels a0, <s1 dont la somme des dimen­
sions vaut n — 1, rencontrant V le premier en x0 points, le second en x4 points.
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Appelons F0 les sections de V par des hyperplans passant par a, et F{ 
celles faites par des hyperplans passant par a0. Nous désignerons par fi une 
variété image de l’involution / déterminée par H sur V, par O0 les surfaces 
correspondant aux surfaces F0 et par <I)1 celles qui correspondent aux surfaces F,.

Sur une surface F0 du système \F0\ le système canonique est découpé par 
les surfaces F et contient deux systèmes composés au moyen de l’involution /. 
L’un |(F0, F0)| a pour points-base les x, points unis de / appartenant à a,, 
l’autre, |(F0, F,)| est dépourvu ae points-base et est donc le transformé du 
système canonique de la surface O0 homologue de F0. On en conclut la relation 
fonctionnelle

O0 33 + -Xo»

X0 étant un terme formé de composantes des points de diramation de fi appar­
tenant aux surfaces O,.

En répétant le même raisonnement pour les surfaces F,, on a

o; = O0 + Xx,

Xx étant formé de composantes des points de diramation de fi appartenant aux 
surfaces O0.

Par suite,

IO0 I = '+ *„! — |O0 -f + Xt| • |<£, | = i‘l'o + X, | = |O, -f- A", + X0j,

et la variété fi, dépourvue de surface canonique, possède une surface bicano- 
nique d’ordre zéro, les points de diramation étant des points isolés sur le 
modèle projectif considéré. Ainsi se trouve démontré le théorème énoncé à la 
fin de l’introduction.

À chacun des x, points unis de / situés dans a, correspondent des points 
quadruples de la variété fi et chacun de ceux-ci est équivalent à une surface 
rationnelle que nous désignerons par Am {i — 1, 2, ..., x,). Chacun de ces 
points de diramation est double conique pour les surfaces ‘l’o.

De même, aux x0 points unis de / appartenant à l’espace a0 correspondent 
des points quadruples de fi, doubles pour les surfaces <ï,1, équivalents à des 
surfaces rationnelles que nous désignerons par Alk(k = 1, 2, ..., x0). D’après 
la théorie des involutions, on a

(7) 20 +SAJi^2O1 + SA0l..
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On remarquera que si x, par exemple est nul, les surfaces <&„ ont le divi­
seur de Severi a = 2. Mais il importe de remarquer que les raisonnements 
précédents supposent que l’un au moins des nombres x0, x, n’est pas nul.

9. Voici un exemple d’une variété Q satisfaisant aux conditions précédentes.
Dans un espace S5 la variété V38 intersection d’une hyperquadrique et d’une 

hypersurface du quatrième ordre possède une surface canonique d’ordre zéro. 
Les sections hyperplanes de l/38 sont des surfaces de genres pa = pe = 5 et 
les sections curvilignes C de la variété ont le genre 9. Supposons que la variété 
soit transformée en soi par une homographie harmonique H ayant comme axes 
deux plans. Dans chacun de ces plans, l’involution / déterminée par H sur 
V8 possède huit points unis.

La variété S image de l’involution I est dépourvue de surface canonique 
et possède une surface bicanonique d’ordre zéro. En conservant les notations 
précédentes, la relation (7) devient

2 $0 + Ai + ^12 + • • • + ^is 953 2 + A01 + + • • • + i408 .

Entre les genres arithmétiques pa = 5 de F0 (ou de F,) et p'a de <h0 (ou 
de <&,), on a la relation

12(p. + l) = 2.12(/>; +0-3.8,
d’où p'a = 3.

On peut obtenir un modèle projectif de la variété Q en rapportant projec- 
tivement les hyperquadriques de Ss unies pour H et ne contenant pas les axes 
de cette homographie aux hyperplans d’un espace à 11 dimensions. On obtient 
dans cette espace une variété V* intersection des cônes projetant deux surfaces 
de Veronese à partir des espaces à cinq dimensions contenant l’une d’elles. 
La variété Q est l’intersection de V* avec un hyperplan et une hyperquadrique.

Liège, Août 1965.
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