SUR LES VARIETES ALGEBRIQUES A TROIS DIMENSIONS DE GENRE
GEOMETRIQUE ZERO ET DE BIGENRE UN

par Lucien Godeaux (Liége, Belgique)

On sait qu’Enriques a construit une surface algébrique dépourvue de courbe
canonique mais possédant une courbe bicanonique d'ordre zéro et précisément
la surface du sixieme ordre passant doublement par les arétes d'un tétraédre.
Nous nous proposons dans cette note de construire une variété algébrique a
trois dimensions privée de surface canonique mais possédant une surface bica-
nonique d’ordre zéro. La surface d’Enriques, de genres pa=pe =10, P.=Pi=1,
est I'image d’une involution du second ordre, privée de points unis, appartenant
a une surface ayant une courbe canonique d'ordre zéro, de genres p,, =pe =Pi=1.
Nous obtenons la variété cherchée par un procédé analogue.

La surface de Steiner, passant doublement par les arétes d’'un triedre et
triplement par le sommet, a pour équation

X3 XI 'J" X2 XU X2
Nous établissons le théoréme suivant:

Si dans I'équation d'une surface de Steiner, on remplace les coordonnées
courantes par des formes algébriques du second degré en Xx0,X, X2, X3, X4,
linéairement indépendantes, on obtient, dans un espace a quatredimensions, une
hypersurface du huitiéme ordre, privée desurface canonique mais possédant une
surface bicanonique d’ordre zéro.
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Nous obtenons chemin faisant un théoréme que nous avons établi autrefois [1].

Si dans I'équation d’une surface de Steiner, on remplace les coordonnées
courantes par des formes algébriques du second degré en x0, x,, X2, X3, on obtient
une surface du huitieme ordre de genres pa = pe — 3, p'™ = 9 dont le diviseur
de Severi est a = 2,

Dans une note récente [2] nous avons eétabli qu’une variété algébrique a
trois dimensions possédant une surface canonique d’ordre zéro a l'ordre t© — 1,
ri étant le genre des sections curvilignes de la variété et est située dans un
espace a n dimensions, ou 3n << n -f- 9. Nous démontrons que:

Si une variété algébrique a trois dimensions possédant une surface canonique
d'ordre zéro contient une involution du second ordre ayant un nombre fini non nul
de points unis, I'image de cette involution est une variété privée de surface cano-
nique mais possédant une surface bicanonique d’ordre zéro.

Une surface privée de courbe canonique mais ayant une courbe bicanoni-
que d'ordre zéro se ramene par une transformation birationnelle a une surface
d’Enriques [3]. Il semble que pour les variétés a trois dimensions, une propriété
analogue n’existe pas.

Nous utilisons ici les théoremes sur les involutions cycliques que I’on
trouvera dans l'ouvrage que nous avons récemment publié sur cette question [4],

1. La surface intersection complete de quatre hyperquadriques linéairement
indépendantes dans un espace linéaire Sh a six dimensions a pour systéme
canonique celui de ses sections hyperplanes [5], par conséquent, la variété
algébrique a trois dimensions Vf intersection compléte de quatre hyperquadri-
ques linéairement indépendantes dans un espace Si a sept dimensions posséde
une surface canonique d’ordre zéro. Le systeme |F| de ses sections hyperplanes
est son propre adjoint.

Les surfaces F sont régulieres et ont les genres pa — pg — 7, p'l = 17.

Considérons dans ST I’hnomographie harmonique H d’équations

X0 X, X! X3 x4 — X5 — X6 — X7

qui a comme axes ponctuels ai (x5 = x6 = x7 = 0) a quatre dimensions et un
plan ) (x0 = Xj — X2 = x3 = x4 = 0).
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Nous supposerons que la variété V'3h est transformée en soi par I’homogra-
phie H. Dans ces conditions les équations de la variété peuvent s'écrire

(1) <Po(*0>*..*2»*3.*4) = *T+>T -+ =1, Tl = XbX7, < = X7X5 13 — X5X6,

% =0 ¢ =0 =0, =0 représentant quatre hyperquadriques de a4,
linéairement indépendantes, ayant 16 points communs distincts. De plus, la
figure de référence peut étre choisie de maniére que dans le plus a2, le triangle
de référence soit le triangle diagonal des quatre droites communes aux coniques
conjuguées des coniques découpées sur le plan par les hyperquadriques défi-
nissant la variété [6].

Désignons par £0 la variété a trois dimensions image de [Iinvolution |
engendrée par H sur Pil§, obtenue en rapportant projectivement aux hyperplans
d’un espace a quatre dimensions les sections de Pili par les hyperplans passant
par le plan a2, ou, ce qui revient au méme, projetons P6 du plan a0 sur
I'espace a4. Cela revient & éliminer x5, x6, x7 entre les équations (1). On obtient
ainsi I'équation de la variété £2@:

{9} T%?g—LTéT?—LT??ZZTOTITZT%

La variété 0 posséde:

Trois surfaces W, (2 = 3 = 0), W2(p3 =¢ =0), ™@p, =@ =10) du
quatrieme ordre, doubles pour la variété;

Une courbe T (cp, =2 == = 0) du huitiéme ordre, triple pour la variété;

Seize points ) = cp, = 2 = 3 = 0 quadruples pour la variété.

L’involution / possede seize points unis, intersections de la variété V'3) avec
I'espace 04. Nous avons démontré qu’a un point uni de l'involution / correspond
sur la variété £20 un point de diramation quadruple pour cette variété.

Pour abréger I'écriture dans la suite, nous désignerons par V la variété
Pjli et par £2 la variété £202 * * * **

2. Désignons par F0 les sections de V par les hyperplans passant par a2,
par F, les sections par les hyperplans passant par a4. Appelons 30 les images
des surfaces Fa sur f2 et <& celles des surfaces Ft.

Considérons une surface FO, soit FO, découpée par un hyperplan passant
par a2 mais non par un des points communs a V et & o4. Soit 30 la surface
qui lui correspond.
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L’homographie H détermine sur F0 une involution /, privée de points unis.
Le systeme canonique |(FO, F)| de Fa comprend deux systémes composés au
moyen de /,. L'un, |(FO, F0)| a la dimension trois et l'autre, |(FO, F,)| a la
dimension deux. Comme nous l'avons démontré, le transformé du systéme ca-
nonique de la surface O0 est celui des systemes précédents qui a la dimension
minimum, c’est-a-dire le second. La surface <h) a donc le genre géométrique pe=3.

Entre le genre arithmétique pu =1 de F, et celui pa de 40, nous avons
la relation

Pa + 1 — 2(pfl + 1),

d'ol pa = 3, ce qui pouvait étre déduit a priori puisque 50 est, comme FO0, une
surface réguliére.

Nous avons
*<, X7 = *7*5 = *5%6
Ti T T3
ou
*521 — *6 T2 =— *7 T3

T2T3 T3Tl TIT2"

Le systétme canonique de la surface 50 est donc découpé sur £2 par les
hypersurfaces

42Ty + 2 TTi + MTiT2 = O,

du quatrieme ordre, passant simplement par les surfaces W, W2, W3 et dou-
blement par la courbe T.

Une courbe (FO, F,) est de genre 17 et H détermine sur cette courbe une
involution privée de points unis; I'image de cette involution est donc, d’apres
la formule de Zeuthen, une courbe de genre 9.

Sur la surface ®0, le systéme canonique est le systeme |(710, <E>4 et par
conséquent [$>t| est ladjoint & |O0|. Quant au systeme [(©0, ™1, clest le
systeme des sections hyperplanes de S.

Les sections hyperplanes €0 de Q sont des surfaces de genres pa — ps = 3,
pw - 9.
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3. Le systéeme canonique d’une hypersurface d’ordre n d’un espace a quatre
dimensions est découpé par les hypersurfaces d'ordre n — 5 passant par les
surfaces doubles de Phypersurface donnée. Les surfaces canoniques de £2 sont
donc découpées par les hypersurfaces cubiques passant par les surfaces W,
~N2, N3 Une telle hypersurface rencontre I’hnyperquadrique 9, = 0 suivant W2 et
N3, C'est-a-dire suivant une surface d’ordre huit. Elle contient donc ¢y, = 0
comme partie et est complétée par un hyperplan qui devrait contenir W,, ce
qui est absurde. Donc:

L’hypersurface £2 est dépourvue de surface canonique.

Les hypersurfaces bicanoniques de £2 sont découpées par les hypersurfaces
du sixiéeme ordre passant doublement par les surfaces W,, W2, ¥3. L’hypersurface

9,927 =0

satisfait & cette condition. 1l ne peut en exister une seconde, car elle rencon-
trerait I'nyperquadriqgue 9, = 0 suivant une surface d'ordre 16 et contiendrait
cette hyperquadrique. Pour la méme raison, elle contiendrait les hyperquadriques
2 =0, 99=0 et serait donc confondue avec I'hnypersurface précédente. Celle-ci
ne rencontre plus £2 en dehors des surfaces . £F2, W3,

L’hypersurface £2 possede une surface bicanonique d'ordre zéro.

L hypersurface £2 a les genres Ps =0, P2 = 1

4. Considérons maintenant la surface F, section de la variété V par un
hyperplan passant par a4. Il lui correspond sur £2 la surface 3» obtenue en éli-
minant x5, x6, Xj entre les équations (1) et I'’équation

21X5 + 22x6 + X3x1 = 0,

c'est-a-dire la surface 3», section de £2 par I’hypersurface
(3) * 22?3 + *4PKPi + X39i92 = 0.

L'involution /, déterminée par H sur la surface Z7, posséde 16 points unis.
Entre le genre pa = 1 de F, et celui pa de 3>, on a la relation

12(p. + 1) = 2.12(pa + 1) — 3.16,

dou pa = 5.

Sur une surface F,, le systéme canonique contient deux systémes linéaires
appartenant a linvolution f. L’un, |(F,, F0)|] a la dimension quatre et est

dépourvu de points-base, l'autre, |(F, F,)| est un faisceau ayant pour points-
base les points unis de f.
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Le systeme canonique de la surface O,, homologue de F,, est celui de ces
systémes qui est dépourvu de points-base. Le genre géométrique de O, est donc
0oy — 5 et son systétme canonique coincide avec le systtme 1(0,, O0)| des sec-
tions hyperplanes de la surface. Ces sections hyperplanes ont le genre 9.

Line courbe (Z7,, F,) est de genre 17 et passe par les points unis de /,,
donc la courbe correspondante (O,, O,) est de genre cing.

Les surfaces O, sont d’ordre huit.

Une surface O, est découpée sur I'hypersurface Q par une hypersurface (3)
et son systéme canonique coincide avec celui des sections hyperplanes. Elle a les
genres pa =p, =5, p"™ = 9. La partie variable de l'intersection de deux surfaces
O, est de genre cing.

5. Les hyperquadriques de ST découpent sur V le systtme |2Fj de dimen-
sion 31. Il contient deux systémes linéaires composés au moyen de I'involution /;
I'un contient les surfaces 2 F0 et 2 F,, l'autre les surfaces FO-f F,.

Soit =0 I'équation d’une hyperquadrique de al linéairement indépendante
des hyperquadriques 0 =0, ¢p =0, p2 =0, 8 = 0. Elle dépend de 10 para-
metres et le systeme comprenant les surfaces 2 F0 et 2 F, est découpé sur V
par les hyperquadriques

4 -)- Mxd (- A22x6 -f- XBXT -|- 2A8x6xT 2 XXX -f- 2 X2xixE O,

11 a la dimension 16. 11 lui correspond sur S les surfaces découpées par les
hypersurfaces du huitiéme ordre

Parmi ces surfaces se trouvent les surfaces 2 3% et 2 0,.
Observons, ce qui résulte dailleurs de la théorie des involutions, que les
hypersurfaces

(5) M1 + AT+ o+ 2X,20000208 — O

touchent I'hypersurface S le long d’une surface O,.

Chacun des 16 points de diramation de I’hypersurface 2 est équivalent, au
point de vue des transformations birationnelles, a une surface rationnelle. Si
nous désignons par A, A2 ..., Alb les surfaces rationnelles ainsi obtenues,
nous avons, d'aprés la théorie des involutions, la relation fonctionnelle

(6) 200 =120, f A + Al f 1+ F Al
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Le second systeme de \2F\ appartenant a l'involution / est découpé sur
V par les hyperquadriques

SX,. x4 = 0, (i—0, 1 2 3, 4; k=5,6, 7).
[l a la dimension 14. Il lui correspond sur Q le systeme découpé par les hy-
persurfaces

Sx,.cp, = 0, 0=0, 1,2, 3,4; ;=5,6,7)

qui comprend les surfaces $0 + <>, Ces surfaces passent par les points de
diramation de Q et y ont des points doubles coniques.

6. Le fait que le systtme canonique d'une section hyperplane 30 de Q est
découpé par les surfaces ™ et que celles-ci ont pour courbes canoniques leurs
sections hyperplanes se traduit par les relations fonctionnelles

= + 2M, q;"\3=>0.
On en déduit

AQ — AQ “- — T + "N4,

ce qui montre bien I'existence d’une surface bicanonique d’ordre zéro.

7. Revenons a une section hyperplane <X de la variété S, par exemple a
la section par I'hyperplan xt — O.

La surface <5) ne passant pas par les points de diramation de Q, la relation
fonctionnelle (6) donne

2(®0, ®0) = 2(® <&)

et la surface <, a le diviseur de Severi 0 = 2.
La relation (4), ou l'on fait x{ =0, montre qu’il existe une surface du
huitieme ordre, circonscrite a la surface «, le long d’une courbe (O,, <£).8

8. Considérons maintenant, dans un espace Sn a n dimensions, une variété
irréductible V, a trois dimensions, possédant une surface canonique d’ordre zéro.
Si n est le genre des sections curvilignes de cette variété, nous avons montré
qu’elle est d'ordre n — 1 et que I'on a 3n <it-(- 9. Le systtme \F\ des sec-
tions hyperplanes de V est son propre adjoint.

Supposons que la variété V soit transformée en soi par une homographie
harmonique H possédant deux axes ponctuels a0, <l dont la somme des dimen-
sions vaut n — 1, rencontrant V le premier en X0 points, le second en x!{ points.



8 LUCIEN GODEAUX

Appelons F les sections de V par des hyperplans passant par a, et F
celles faites par des hyperplans passant par a0. Nous désignerons par fi une
variété image de linvolution / déterminée par H sur V, par O0 les surfaces
correspondant aux surfaces F0 et par )l celles qui correspondent aux surfaces F,.

Sur une surface F0 du systétme \FOl le systeme canonique est découpé par
les surfaces F et contient deux systémes composés au moyen de Iinvolution /.
L'un |(FO, F0)| a pour points-base les x, points unis de / appartenant a a,,
I'autre, |(FO, F,)| est dépourvu ae points-base et est donc le transformé du
systéme canonique de la surface O0 homologue de FO. On en conclut la relation
fonctionnelle

00 33 + -Xo»

X0 étant un terme formé de composantes des points de diramation de fi appar-
tenant aux surfaces O,.
En répétant le méme raisonnement pour les surfaces F,, on a

0; = O + Xx

Xi étant formé de composantes des points de diramation de fi appartenant aux
surfaces OO.
Par suite,

00] = "= *1 — |00 -f + Xt|*|<E | = iTo + X,| = |0, - A", + X0j,

et la variété fi, dépourvue de surface canonique, posséde une surface bicano-
nique d’ordre zéro, les points de diramation étant des points isolés sur le
modele projectif considéré. Ainsi se trouve démontré le théoreme énoncé a la
fin de Iintroduction.

A chacun des x, points unis de / situés dans a, correspondent des points
guadruples de la variété fi et chacun de ceux-ci est équivalent a une surface
rationnelle que nous désignerons par Am {i— 1, 2, ..., Xx,). Chacun de ces
points de diramation est double conique pour les surfaces ‘lo.

De méme, aux x0 points unis de / appartenant a I'espace al correspondent
des points quadruples de fi, doubles pour les surfaces <,1, équivalents a des
surfaces rationnelles que nous désignerons par Alk(k =1, 2, ..., x0). D’apres
la théorie des involutions, on a

(7) 20 +SAJiN20! + SAl.
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On remarquera que si X, par exemple est nul, les surfaces <&, ont le divi-
seur de Severi a = 2. Mais il importe de remarquer que les raisonnements
précédents supposent que l'un au moins des nombres x0, X, n'est pas nul.

9. Voici un exemple d’une variété Q satisfaisant aux conditions précédentes.

Dans un espace S la variété V@ intersection d’une hyperquadrique et d’une
hypersurface du quatriéme ordre possede une surface canonique d’ordre zéro.
Les sections hyperplanes de |/8 sont des surfaces de genres pa = pe = 5 et
les sections curvilignes C de la variété ont le genre 9. Supposons que la variété
soit transformée en soi par une homographie harmonique H ayant comme axes
deux plans. Dans chacun de ces plans, l'involution / déterminée par H sur
V8 posséde huit points unis.

La variété S image de linvolution | est dépourvue de surface canonique
et possede une surface bicanonique d'ordre zéro. En conservant les notations
précédentes, la relation (7) devient

2350 + A1 + M2 + ¢+ ¢ 4+ Nis 953 2 + An + —+ oo 4 j408.

Entre les genres arithmétiques pa =5 de F0 (ou de F,) et pa de <hl (ou
de <&), on a la relation

12(p. + 1) = 2.12(/>; +0-3.8,
d'ou pa = 3.

On peut obtenir un modele projectif de la variété Q en rapportant projec-
tivement les hyperquadriques de Ss unies pour H et ne contenant pas les axes
de cette homographie aux hyperplans d’un espace a 11 dimensions. On obtient
dans cette espace une variété V* intersection des cbnes projetant deux surfaces
de Veronese a partir des espaces a cing dimensions contenant I'une d’elles.
La variété Q est I'intersection de V* avec un hyperplan et une hyperquadrique.

Liege, Aolt 1965.
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