Estratto da: Rend. Ist. di Matem. Univ. di Trieste Vol. I, fasc. I (1969).

SUR LES INVOLUTIONS N'AYANT QUE DES POINTS UNIS DE PREMIÈRE ESPÈCE APPARTENANT À UNE VARIÉTÉ ALGÉBRIQUE(*)

par Lucien Godeaux (à Liége) (**)

Sommario. - Si considera una varietà algebrica ad n dimensioni e sopra questa un'involuzione ciclica d'ordine primo avente un numero finito di punti uniti di prima specie. Si cerca la molteplicità dei punti di diramazione della varietà immagine dell' involuzione per le varietà canoniche dell' immagine stessa. Si danno poi alcuni esempi.

SUMMARY. - We consider an n-dimensional algebraic variety and a prime-order cyclic involution on it having a finite number of united points of the first kind. We look for the multiplicity of the branch points of the image variety of the involution with respect to the canonic varieties of this image. We give then some examples.

Considérons une variété algébrique V à n dimensions contenant une involution cyclique I d'ordre premier p, ne possédant qu'un nombre fini de points unis, simples pour la variété. La transformation birationnelle T de V en soi génératrice de l'involution I induit dans la gerbe des tangentes à V en un point uni A une homographie. Nous dirons que le point uni A est de première espèce si cette homographie est l'identité, qu'il est de seconde espèce si cette homographie est une homologie, Nous supposerons dans cette note que tous les points unis de l'involution I sont de première espèce. Nous désignerons par Ω une image de l'involution I.

^(*) Pervenuto in Redazione il 27 febbraio 1969.

^(**) Indirizzo dell'Autore: 37, Quai Orban - Liége (Belgique).

Dans une note récente (¹), nous avons construit un modèle projectif normal de la variété Ω sur lequel chaque point de diramation est multiple d'ordre p^{n-1} , le cône tangent ayant pour sections hyperplanes des variétés de Veronese généralisées. Rappelons que nous donnons ce nom à la variété obtenue en rapportant projectivement aux hyperplans d'un espace à $\binom{p+n-1}{p}-1$ dimensions les hypersurfaces d'ordre p d'un espace linéaire à n-1 dimensions.

Considérant ensuite le cas où l'involution I est déterminée sur V par une homographie biaxiale de période p dont les axes ont la même dimension, nous avons établi que les variétés canoniques de Ω ont en un point de diramation la multiplicité νp^{n-2} , ν étant le reste de la division de n par p.

Dans cette note, nous considérons le cas où l'involution I est déterminée sur V par une homographie biaxiale de période p dont les axes ont des dimensions différentes. Les points de diramation de Ω ont pour les variétés canoniques une multiplicité allant de 0 à p-1. Nous donnons quelques exemples et nous construisons notamment une variété à trois dimensions possédant des points triples dont les variétés canoniques ne passent pas par ces points.

Nous utiliserons à différentes reprises des résultats exposés dans notre ouvrage Les involutions cycliques appartenant à une surface algébrique et applications (Rome, Cremonese, 1963).

1. Considérons dans un espace linéaire $S_{\mu+\nu+1}$ à $\mu+\nu+1$ dimensions, une homographie biaxiale H dont la période est un nombre premier p et dont les axes sont un espace σ_4 à μ dimensions et un espace σ_2 à ν dimensions. Nous supposerons $\mu>\nu$.

Nous désignerons par y_0, y_1, \ldots, y_μ les coordonnées des points de σ_1 et par z_0, z_1, \ldots, z_r celles des points de σ_2 . Nous représenterons par φ_m ψ_n une forme algébrique de degré m en y dont les coefficients sont des formes de degré n en z. Nous poserons $\varphi_0 = 1$, $\psi_0 = 1$.

Les équations de l'homographie H sont

$$\varrho\,y_i'=y_i,\quad \varrho\,z_k'=\varepsilon\,z_k,\quad (i=0,\,1,\ldots,\mu\,;\ k=0,1,\ldots,\nu),$$

ε étant une racine primitive d'ordre p de l'unité.

⁽¹⁾ Variétés algébriques contenant une involution cyclique n'ayant que des points unis de première espèce (Bulletin de l'Académie roy. de Belgique, 1968, pp. 1139-1146). Une seconde note sous le même titre est en cours d'impression dans le même bulletin.

μ variétés linéairement indépendantes de la forme

$$\varphi_p + \psi_p = 0$$

ont en commun une variété V à v+1 dimensions et d'ordre p^{μ} . Cette variété est transformée en elle-même par H et cette homographie détermine sur la variété l'involution I. Elle rencontre l'espace σ_1 en p^{μ} points qui sont unis pour l'involution, mais elle ne rencontre pas l'espace σ_2 .

L'espace linéaire à $\nu+1$ dimensions tangent à la variété V en un point uni A est la projection de ce point de l'espace σ_2 , de sorte que toutes les tangentes à V en A sont unies. Les points unis de l'involution I sont tous des points unis de première espèce.

2. Les hypersurfaces $\varphi_p + \psi_p = 0$ sont au nombre de

$$r+1 = {\mu+p \choose p} + {r+p \choose p}$$
.

Rapportons les projectivement aux hyperplans d'un espace S_r à r dimensions.

Aux hypersurfaces $\varphi_p=0$ correspondent les hyperplans passant par un espace Σ_2 à $\binom{\nu+p}{p}-1$ dimensions et aux hypersurfaces $\psi_p=0$ correspondent les hyperplans passants par un espace Σ_1 à $\binom{\mu+p}{p}-1$ dimensions. Les espaces Σ_1 , Σ_2 ne se rencontrent pas.

A une droite de $S_{\mu+r+1}$ s'appuyant sur σ_1 et σ_2 , correspond dans S_r une droite s'appuyant sur Σ_1 et Σ_2 . Les points d'appui de ces droites sur Σ_1 forment una variété de Veronese généralisée Ψ_1 , d'ordre p^μ , représentant les hypersurfaces d'ordre p de σ_1 . Les points d'appui des droites sur Σ_2 , appartiennent à une variété de Veronese généralisée Ψ_2 , représentant les hypersurfaces d'ordre p de σ_2 , et d'ordre p^r .

Le lieu des droites homologues des droites s'appuyant sur σ_1 et σ_2 est une variété W intersection du cône projetant de Σ_2 la variété Ψ_1 et du cône projetant de Σ_1 la variété Ψ_2 . Elle est d'ordre $p^{\mu+\nu}$ et représente les groupes de p points de l'involution engendrée par H dans $S_{\mu+\nu+1}$.

Aux hypersurfaces (1) correspondent μ hyperplans de S_r linéairement indépendants coupant la variété W suivant une variété Ω à $\nu+1$ dimensions image de l'involution I engendrée par H sur V.

Aux p^{μ} points unis de l'involution I correspondent p points de diramation de la variété Ω , situés sur la variété Ψ_1 . Le cône tangent à Ω en un de ces points projette de ce point la variété Ψ_2 . Les points de diramation sont donc multiples d'ordre p^{ν} pour Ω .

3. Les variétés canoniques F de la variété V sont découpées par les hypersurfaces d'ordre

$$n = \mu p - (\mu + \nu + 2)$$

qui ne contiennent pas V. Les nombre des variétés F linéairement indépendantes est donc

$$\binom{r+n}{r} - \mu \binom{r+n-p}{r}$$
.

Le système |F| contient p systèmes linéaires partiels $|F_1|$, $|F_2|,\ldots,|F_p|$ appartenant à l'involution I. Ils sont respectivement découpés par les systèmes linéaires d'hypersurfaces contenant les hypersurfaces

$$\varphi_n = 0, \ \varphi_{n-1} \ \psi_1 = 0, \ \varphi_{n-2} \ \psi_2 = 0, \dots, \ \varphi_{n-p+1} \ \psi_{p-1} = 0.$$

A ces hypersurfaces correspondent respectivement les nombres $\varepsilon^0 = 1, \varepsilon, \varepsilon^2, \dots, \varepsilon^{p-1}$.

Le système $|F_i|$ par exemple, qui correspond au nombre ε^i , contient les hypersurfaces

$$\varphi_{n-i} \, \psi_i = 0, \ \varphi_{n-p-i} \, \psi_{p+i} = 0, \ \varphi_{n-2p-i} \, \psi_{2p+i} = 0, \dots,$$

mais c'est la première qui détermine la multiplicité des points de diramation pour les variétés du système $|F_i|$.

Les variétés F_1 , F_2 ,..., F_p ont aux points de diramation respectivement les multiplicités $0, 1, \ldots, p-1$.

Désignons par $||\Phi_1||, ||\Phi_2||, ..., ||\Phi_p||$ les systèmes linéaires qui correspondent sur Ω aux systèmes $||F_1||, ||F_2||, ..., ||F_p||$.

Rappelons qu'au point de vue des transformations birationnelles, un point de diramation est équivalent à une variété rationnelle à ν dimensions. Appelons Δ la somme des variétés rationnelles équivalentes aux p^{μ} points de diramation de Ω .

A une variété F correspond sur Ω une variété Φ et à cette variété correspond sur V la variété F de départ et ses transformées par H et ses puissances. La variété Φ appartient à un système

linéaire $|\varPhi|$. Faisons varier F dans |F| d'une manière continue en la faisant tendre vers une variété F_i . La variété \varPhi tend vers une variété \varPhi_i comptée p fois. Si au contraire on fait tendre F vers une variété F_i , la variété \varPhi tend vers une variété \varPhi_i comptée p fois, augmentée de i fois la somme \varDelta . En faisant varier i de 1 à p-1, on a

$$\mid \varPhi \mid = \mid p \mid \varPhi_1 \mid = \mid p \mid \varPhi_2 + \varDelta \mid = \mid p \mid \varPhi_3 + 2\varDelta \mid = \ldots = \mid p \mid \varPhi_p + (p-1)\varDelta \mid.$$

4. Le système canonique de $\mathcal Q$ est l'un des systèmes $\mid \varPhi_1 \mid$, $\mid \varPhi_2 \mid$, ..., $\mid \varPhi_p \mid$. Appelons le $\mid \varPhi_0 \mid$ et soit $\mid F_0 \mid$ le système qui lui correspond sur V.

Supposons que les variétés F_0 aient la multiplicité k aux points unis de I. Soient A un de ces points et A' le point de diramation correspondant.

L'espace linéaire à $\nu+1$ dimensions tangent à V en A projette de ce point l'espace σ_2 . Le cône tangent en A à une surface F_0 rencontre σ_2 suivant une hypersurface d'ordre k. A celle-ci correspond sur Ψ_2 une variété à $\nu-1$ dimensions d'ordre $kp^{\nu-1}$. A une tangente à F_0 en A correspond une droite passant par A' et s'appuyant sur cette variété. On en conclut que les variétés canoniques de Ω ont un point multiple d'ordre $kp^{\nu-1}$ en chaque point de diramation.

En un point de diramation, la variété Ω possède un point multiple d'ordre p^r et ce point est multiple d'ordre kp^{r-1} pour les variétés canoniques.

5. Considérons le cas où la variété V est une surface, c'est-à-dire où l'on a v=1. Dans ce cas, nous avons démontré que les courbes canoniques de V correspondant aux courbes canoniques de la surface Ω , passaient p-2 fois par les points unis de I.

Les courbes canoniques de la surface V, située dans un espace à $\mu+2$ dimensions, sont découpées par les hypersurfaces d'ordre

$$n = \mu p - (\mu + 3)$$

qui ne contiennent pas la surface V. Celles de ces courbes qui correspondent aux courbes canoniques de Ω sont découpées par les hypersurfaces

$$\varphi_{n-p+2}\,\psi_{p-2} + \varphi_{n-2p+2}\,\psi_{2p-2} + \dots = 0$$

qui ne contiennent pas V.

En un point de diramation, la surface Ω a un point multiple d'ordre p et ce point est multiple d'ordre p-2 pour les courbes canoniques.

On observera que le reste de la division de $\nu + 1 = 2$ par p est 2.

6. Nous allons maintenant considérer quelques cas particuliers. Supposons en premier lieu $\mu=2,\ \nu=1,\ p=3.$ La variété V est une surface d'ordre 9 appartenant à un espace S_4 à quatre dimensions. Elle est l'intersection de deux hypersurfaces cubiques

$$\varphi_3 + \psi_3 = 0, \quad \varphi_3' + \psi_3' = 0$$

et ses courbes canoniques sont découpées par les hyperplans. Son genre arithmétique est donc $p_a = p_g = 5$ et son genre linéaire $p^{(1)} = 10$.

La variété W apppartient à un espace S_{13} à 13 dimensions et est le lieu des droites s'appuyant sur une surface Ψ_1 d'ordre 9, située dans un espace Σ_1 à 9 dimensions, et sur une cubique gauche Ψ_2 située dans un espace Σ_2 à 3 dimensions. La surface Ω est la section de W par deux hyperplans, elle possède neuf points triples à cônes tangents rationnels aux points de diramation.

Entre le genre arithmétique $p_a=5$ de V et celui p_a' de Ω , on a la relation

$$12(p_a + 1) = 3 \cdot 12(p'_a + 1) - 4 \cdot 9,$$

d'où $p'_a = 2$.

Les courbes canoniques correspondant aux courbes canoniques de Ω passent simplement par les points unis, donc d'après la formule de Zeuthen, les courbes canoniques de la surface Ω sont elliptiques.

Les courbes canoniques de la surface Ω sont découpées par les hyperplans passant par l'espace Σ_1 ; elles correspondent aux sections de V par les hyperplans passant par σ_1 .

7. Supposons encore $\mu=2, \nu=1,$ mais p=5. La surface V est l'intersection dans S_4 de deux hypersurfaces

(2)
$$\varphi_5 + \psi_5 = 0, \quad \varphi_5' + \psi_5' = 0.$$

Les courbes canoniques sont découpées sur la surface V par les hypersurfaces d'ordre cinq, dont il faut défalquer celles qui contiennent V. Le genre arithmétique de V est donc $p_a=126-2=124$.

La variété W appartient à un espace S_{26} à 26 dimensions. La surface Ψ_4 représente les quintiques planes du plan σ_4 et appartient à un espace Σ_4 à 20 dimensions. La courbe Ψ_2 représente les groupes de cinq points de la droite σ_2 , elle est d'ordre cinq dans un espace Σ_2 à cinq dimensions.

La surface Ω est la section de W par deux hyperplans et a, comme W, l'ordre 125.

Entre le genre arithmétique $p_a=124$ de V et celui p_a' de \varOmega on à la relation

$$12(p_a + 1) = 12p(p'_a + 1) + \alpha(p - 1)(p - 5)$$

qui, pour p = 5, donne

$$p_a + 1 = 5(p'_a + 1),$$

d'où $p'_a = 24$.

Aux courbes canoniques de Ω correspondent sur V des courbes canoniques ayant des points triples aux points unis et par conséquent découpés par les hypersurfaces

$$\varphi_2 \, \psi_3 = 0.$$

Il existe 24 de ces hypersurfaces linéairement indépendantes ce qui correspond à la valeur de p_a' . Observons d'ailleurs que les sections hyperplanes de la surface Ω correspondent aux sections de V par les hypersurfaces $\varphi_5 + \psi_5 = 0$ dont il faut défalquer les hypersurfaces (2). Il en reste 25 linéairement indépendantes, donc les sections hyperplanes de Ω ne sont pas les courbes canoniques de cette surface.

Le degré du système découpé sur la surface V par les hypersurfaces (3) est égal à 400, donc le genre linéaire de la surface $\mathcal Q$ est égal à 81.

Pour obtenir les équations d'une courbe canonique de la surface Ω , remarquons que les coordonnées des points de S_{26} sont proportionnelles aux combinaisons cinq à cinq avec répétitions des coordonnées y ou des coordonnées z. En élevant les deux membres de l'équation (3) à la cinquième puissance, on obtient l'équation d'une hypersurface du cinquième ordre. En reprenant le raisonnement fait plus haut (n. 3), on voit que cette hypersurface a un contact du quatrième ordre avec la surface Ω en tout point d'intersection, le long d'une courbe canonique.

8. Nous supposerons $\mu = 3$, $\nu = 2$ et p = 3.

L'espace σ_4 et le plan σ_2 appartiennent à un espace S_6 à six dimensions. La variété à trois dimensions V est représentée par trois équations

(4)
$$\varphi_3 + \psi_3 = 0$$
, $\varphi_3' + \psi_3' = 0$, $\varphi_3'' + \psi_3'' = 0$.

Dans l'espace S_{29} , à 29 dimensions, l'espace Σ_1 à 19 dimensions contient une variété Ψ_1 d'ordre 27 et l'espace Σ_2 , à 9 dimensions, contient une surface Ψ_2 d'ordre 9. La variété W à six dimensions a l'ordre 3^5 et aux hypersurfaces (4) correspondent trois hyperplans de S_{29} coupant la variété W suivant la variété Ω image de l'involution du cinquième ordre I.

Les surfaces canoniques de la variété V sont découpées par les hypersurfaces d'ordre 9-7=2. Comme la variété V est complètement régulière, son genre arithmétique est $P_a=28$.

Les adjointes à une surface canonique F de V sont découpées par les hypersurfaces du quatrième ordre ne contenant pas F. Le genre arithmétique de F est donc

$$p_a = \binom{10}{4} - 3 \cdot 7 - 28 = 161.$$

La courbe (F,F) commune à deux surfaces F est d'ordre $4\cdot 3^3$ et sur cette courbe la série canonique est découpée par les hypersurfaces d'ordre 9+4-7=6. Cette série est donc d'ordre $8\cdot 3^4$ et le genre de la courbe est $\omega_4=4\cdot 3^4+1$.

Le degré du système | F | est $\omega_0 = 8 \cdot 3^3$.

Entre le degré ω_0 du système canonique |F|, le genre ω_4 de la courbe commune à deux surfaces F, le genre arithmétique $\omega_2 = p_a$ de la surface F et le genre arithmétique P_a de V, on a la relation (Severi)

$$2 P_a = \omega_0 - \omega_1 + \omega_2 + 4$$

qui, dans le cas actuel, est uue identité.

Désignons par ω_0' le degré du système canonique $|\Phi|$ de Ω , par ω_1' le genre de la courbe commune à deux surfaces Φ , par $\omega_2' = p_a'$ le genre arithmétique de Φ , par P_a' le genre arithmétique de Ω . On doit avoir la relation

(5)
$$2 P_a' = \omega_0' - \omega_1' + \omega_2' + 4.$$

Aux surfaces Φ correspondent sur V des surfaces canoniques F_0 qui ne passent pas par les points unis, ou qui passent une fois par ces points, ou qui y passent deux fois. Suivant les cas, les surfaces F_0 sont découpées respectivement par les hyperquadriques $\varphi_2=0,\ \varphi_1\ \psi_1=0,\ \psi_2=0$ et le genre arithmétique de Ω est respectivement égal à 10, 12 ou 6.

Supposons en premier lieu que les surfaces F_0 ne passent pas par les points unis, la variété Ω ayant le genre arithmétique $P_a'=10$. Le degré du système $|\Phi|$ est $\omega_0'=8\cdot 3^2$, le genre ω_1' est, d'après la formule de Zeuthen, $\omega_1'=4\cdot 3^3+1$ et le genre arithmétique p_a' de Φ et donné par la formule

$$p_a = 1 = 3 (p'_a + 1),$$

d'où $\omega_{2}' = p_{a}' = 53$.

La relation (5) est vérifiée identiquement.

Supposons maintenant que les surfaces F_0 passent simplement par les 27 points unis de I. On a $P_a'=12$, $\dot{\omega}_0'=63$, $\omega_1'=46$, $\omega_2'=p_a'=56$, cette dernière valeur étant obtenue par la formule.

$$12(p_a + 1) = 3 \cdot 12(p'_a + 1) - 4 \cdot 3^3.$$

La relation (5) n'est pas vérifiée.

Supposons enfin que les surfaces F_0 passent deux fois par les points unis de I. On a alors $P_a'=6$ et $\omega_0'=60$. Les courbes (F_0, F_0) ont un point double aux points unis et la relation (5) donne une valeur négative pour p_a' , ce qui est absurde.

On voit donc que la variété à trois dimensions Ω , d'ordre 3⁴, située dans un espace à 26 dimensions, possède 27 points triples à cône tangent rationnel et son système canonique coincide avec celui de ses sections hyperplanes.

Ce qui précède montre le chemin à suivre pour étudier les cas où les variétés V et Ω sont à trois dimensions, c'est-à-dire où $\nu=2$.