
As received (   )
• Non-stable microstructure ➔ Non-classical creep response
Argon aged at 900ºC (    <    <   )
• Progressively more stable microstructure ➔ towards classical creep response

Accurate prediction of creep deformation and creep life requires suitable numerical 
models capable of addressing complex creep deformation responses.

Prospects

Semi-physical approach

Mathematical framework for a semi-physical model for the prediction of 
creep life of Fe-Ni-Cr alloys addressing solid-solution hardening
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Combination of both approaches to model solid-solution hardening

❖ New physical phenomena included as terms representing physical 
interactions between dislocations, particles and the substructure

Inclusion of calculated 𝜎𝑏 within the internal stress (𝜎𝑖) in 𝑣G and 𝑣C
• Proof of concept:

A common physical framework: The Orowan equation
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To this end, the effect and evolution of microstructural features influencing the 
creep behavior of alloys must be considered.
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Steel X8NiCrAlTi creep in air at 34 MPa and 900ºC *

*: Experimental curves after [1]

Definition of the critical breakout stress 𝜎𝑏  form pinning solute atoms
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a dislocation line breaks 
out from solute atoms:

➢ Application and validation of the model:
• Incoloy 800H 
• SEW555 alloy (AID4Greenest)
• Ni-superalloys

➢ Develop a multi-scale creep model

[2]: relation between steady-state creep rate ሶ𝜖𝑠𝑠  & mobile dislocation density:
  Derivation of 𝜖𝑠𝑠- 𝜌𝑚 relation:

  Generalization for 𝜖 and extension for dynamic & static recovery:

  Analytical resolution for ሶ𝜖𝑠𝑠: 

Engineering approach
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Work hardening

❖ New physical phenomena included as internal-stresses 𝜎𝑖 :
𝜎𝑖 = 𝜎𝐺𝐵𝑃𝑆 + 𝜎𝑆𝑆𝐻 + 𝜎𝑃𝐻 +⋯

solid-solution hardening
precipitate hardening

grain boundary precipitate strengthening

Approximate c𝑖 𝑡  
during creep test
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Mean-field model results* with different maximum 𝜎𝑏

*: Parameters after [4]

Reference (𝜎𝑏 = 0)
𝜎𝑏,𝑚𝑎𝑥 = 1.0 MPa

𝜎𝑏,𝑚𝑎𝑥 = 2.5 MPa

𝜎𝑏,𝑚𝑎𝑥 = 5.0 MPa
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As-received
Argon aged 20h 
Argon aged 1000h 
Argon aged 3000h 

• ሶ𝜖 = ሶ𝜖𝑠𝑠
• ሶ𝜌𝑚 = 0
• no dynamic recovery
• Taylor equation dislocation stress 𝜎𝑑

𝜎𝑑 = 𝛼𝑚𝑇𝐺𝑏 𝜌𝑚 = 𝜎 − 𝜎𝑖

The critical breakout work (𝑊𝑏) is calculated as [2]:

Carlos Rojas-Ulloa1 , Fan Chen1, Víctor Tuninetti2, Amedeo Di Giovanni3, Olivier Pensis3, Laurent Duchêne1 and Anne Marie Habraken1,4

4321

mean field model, HT-9 [3], improved for steel P91 [4], and Ni-based alloy [5]. 

  [4,5] effective velocity 𝑣e from glide (𝑣G) & climb (𝑣C):
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Creep strain rate s−1  

precipitate hardening terms (see [5])
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