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Glossary 

 

Algorithm:  
Is a sequence of instructions that should be carried out to 
transform the input to output. (1) 

Coordinate: 

An ordered set of data values that specifies a location on the 
Earth, which can be absolute or relative. The coordinates of a 
point on the earth’s surface are measured in degrees of latitude 
and longitude. (2) 

  

 
Geographic Coordinate 
System: 

Reference system that uses latitude and longitude for locating or 
referencing points on the earth's surface and its representation by 
zones. The system is based on the measurement of angles in 
sexagesimal degrees. (2) 

  

Adverse drug reaction: 
A response to a medicine that is harmful and unintended and 
which occurs at doses normally used in humans. (3) 

  

Annual blood 
examination rate: 

The number of people receiving a parasitological test for malaria 
per unit population per year.  (3) 

  

Annual parasite Index: 

The number of confirmed new cases from malaria registered in a 
specific year, expressed per 1,000 individuals under surveillance, 
for a given country, territory, or geographic area. Annual parasite 
index (API) refers to high and moderate malaria transmission risk 
areas. (3) 

  

Anopheles, infected: 
Female Anopheles mosquitoes with detectable malaria 
parasites.(3) 

  

Anopheles, infective: 
Female Anopheles mosquitoes with sporozoites in the salivary 
glands. (3) 

  

Anopheline density: 

Number of female anopheline mosquitoes in relation to the 
number of specified shelters or hosts (e.g., per room, per trap or 
per person) or to a given period (e.g., overnight or per hour), 
specifying the method of collection. 
Note: This term refers strictly to the population density or 
abundance of adult female Anopheles mosquitoes. Anopheline 
mosquito density is a highly insensitive measure of malaria 
transmission. (3) 
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Anthropophilic: 

Description of mosquitoes that show a preference for feeding on 
humans, even when non-human hosts are available.   
Note: A relative term requiring quantification to indicate the 
extent of preference for anthropophily versus zoophily; usually 
expressed as the human blood index (proportion of mosquitoes 
that have fed on humans out of total fed). (3) 

  

Artemisinin-based 
combination therapy: 

A combination of an artemisinin derivative with a longer-acting 
antimalarial drug that has a different mode of action. (3) 

  

Artemisinin-based 
combination therapy: 

A combination of an artemisinin derivative with a longer-acting 
antimalarial drug that has a different mode of action. (3) 

  

Biting rate: 

Average number of mosquito bites received by a host in a unit 
time, specified according to host and mosquito species (usually 
measured by human landing collection). (3) 

  

Active case detection: 

Detection by health workers of malaria cases at community and 
household levels, sometimes in population groups that are 
considered at high risk. Active case detection can consist of 
screening for fever followed by parasitological examination of all 
febrile patients or as parasitological examination of the target 
population without prior screening for fever. 
Note: Active case detection may be undertaken in response to a 
confirmed case or cluster of cases, in which a population 
potentially linked to such cases is screened and tested (referred to 
as “reactive case detection”), or it may be undertaken in high-risk 
groups, not prompted by detection of cases (referred to as 
“proactive case detection”). (3) 

  

Passive case detection: 

Detection of malaria cases among patients who, on their own 
initiative, visit health services for diagnosis and treatment, usually 
for a febrile illness. (3) 

  

Case detection: 

One of the activities of surveillance operations, involving a search 
for malaria cases in a community. 
Note: Case detection is a screening process in which the indicator 
is either the presence of fever or epidemiological attributes such 
as high-risk situations or groups. Infection detection requires use 
of a diagnostic test to identify asymptomatic malaria 
infections.(3) 
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Case notification: 

Compulsory reporting of all malaria cases by medical units and 
medical practitioners to either the health department or the 
malaria control program, as prescribed by national laws or 
regulations. (3) 

  

Case relapsing: 

Malaria case attributed to activation of hypnozoites of P. vivax or 
P. ovale acquired previously. 
Note: The latency of a relapsing case can be > 6–12 months. The 
occurrence of relapsing cases is not an indication of operational 
failure, but their existence should lead to evaluation of the 
possibility of ongoing transmission. (3) 

  

Case suspected malaria: 

Illness suspected by a health worker to be due to malaria, 
generally on the basis of the presence of fever with or without 
other symptoms. (3) 

  

Catchment area: 

A geographical area defined and served by a health program or 
institution, such as a hospital or community health centre, which 
is delineated on the basis of population distribution, natural 
boundaries and accessibility by transport. (3) 

  

Cluster: 

Aggregation of relatively uncommon events or diseases in space 
and/or time in numbers that are considered greater than could be 
expected by chance. (3) 

  

Confirmed case: 

Malaria case (or infection) in which the parasite has been detected 
in a diagnostic test, i.e. microscopy, a rapid diagnostic test or a 
molecular diagnostic test. 
Note: On rare occasions, the presence of occult malaria infection 
in a blood or organ donor is confirmed retrospectively by the 
demonstration of malaria parasites in the recipient of the blood or 
organ. (3) 

  

Database: 
A system to store information in digital format, organized to 
enable particular queries. (2) 

  

Diagnosis: 

The process of establishing the cause of an illness (for example, a 
febrile episode), including both clinical assessment and diagnostic 
testing. (3) 

  

Digital Terrain Model 
(DTM): 

Representation in computer graphics of relief by using x, y, and z 
coordinates distributed in an organized or random manner. (2) 
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Drug efficacy: 

Capacity of an antimalarial medicine to achieve the therapeutic 
objective when administered at a recommended dose, which is 
well tolerated and has minimal toxicity. (3) 

  

Drug resistance: 

The ability of a parasite strain to survive and/or multiply despite 
the absorption of a medicine given in doses equal to or higher 
than those usually recommended. 
Note: Drug resistance arises as result of genetic changes 
(mutations or gene amplification) that confer reduced 
susceptibility." (3) 

  

Electromagnetic 
spectrum: 

The set of all forms of electromagnetic energy is arranged in 
ascending or descending order of their respective wavelength, 
frequency, or energy. (3) 

  

Endemic area: 

An area in which there is an ongoing, measurable incidence of 
malaria infection and mosquito-borne transmission over a  
succession of years. (3) 

  

Endophagy: 
Tendency of mosquitoes to blood-feed indoors. Note: Contrasts 
with exophagy. (3) 

  

Endophily: 

Tendency of mosquitoes to rest indoors. 
Note: Contrasts with exophily; usually quantified as the 
proportion resting indoors; used in assessing the effect of indoor 
residual spraying. (3) 

  

Entomological 
inoculation rate: 

Number of infective bites received per person in a given unit of 
time, in a human population.  
Note: This rate is the product of the “human biting rate” (the 
number of bites per person per day by vector mosquitoes) and the 
sporozoite rate (proportion of vector mosquitoes that are 
infective). At low levels of transmission, the estimated 
entomological inoculation rate may not be reliable. (3) 

  

Erythrocytic cycle: 

Portion of the life cycle of the malaria parasite from merozoite 
invasion of red blood cells to schizont rupture. The duration is 
approximately 24 h in P. knowlesi, 48 h in P. falciparum, P. ovale 
and P. vivax and 72 h in P. malariae. (3) 
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Exophagy: 

Tendency of mosquitoes to feed outdoors. 
Note: Contrasts with endophagy; usually quantified as the 
proportions biting hosts outdoors versus indoors, conveniently 
assessed by comparative human landing catches outdoors and 
indoors or by observation of biting rates on non-human hosts 
outdoors. (3) 

  

Exophily: 

Tendency of mosquitoes to rest outdoors 
Note: Contrasts with endophily; usually quantified as proportions 
resting outdoors and indoors; used in estimating outdoor 
transmission risks. (3) 

  

Georeferencing: 

The process of assigning a geometric reference to a phenomenon 
on the Earth's surface; for example, giving coordinates to health 
services. Georeferencing mechanisms can be generally classified 
into metric georeferencing and indirect georeferencing. Metric 
georeferencing, also called continuous georeferencing, is 
coordinate-based. Indirect georeferencing methods retrieve the 
metrically georeferenced locations through attribute data.  (2,4)  

  

Gonotrophic 
cycle: 

Each complete round of ovarian development in the female 
mosquito, usually after ingestion of a blood meal, to yield a batch 
of eggs. Gonotrophic harmony is achieved when every blood 
meal results in one batch of eggs from the gonotrophic cycle. (3) 

  

GPS (Global Positioning 
System): 

Is a global navigation satellite system that provides location, 
velocity, and time synchronization.  It is based on a global 
network of satellites that transmit radio signals from medium-
earth orbit. There are four constellations that provide this service. 
However, Global Positioning System (GPS) satellites developed 
and operated by the United States is most commonly used. (2) 

  

House-spraying: 
Application of liquid insecticide formulation to specified (mostly 
interior) surfaces of buildings. (3) 

  

Hypnozoite: 

Persistent liver stage of P. vivax and P. ovale malaria that remains 
dormant in host hepatocytes for variable periods, from 3 weeks to 
1 year (exceptionally even longer), before activation and 
development into a pre-erythrocytic schizont, which then causes a 
blood-stage infection (relapse). (3) 
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Incubation period: 

Period between inoculation of malaria parasites and onset of 
clinical symptoms. 
Note: The shortest incubation period in mosquito-borne 
infections ranges from 7 days for P. falciparum to 23 days 
for P. malariae. The long incubation for P. vivax and P. 
ovale (from 3 weeks to 1 year and exceptionally many 
years) is due to the activation of hypnozoites. (3) 

  

Indoor residual 
spraying: 

Operational procedure and strategy for malaria vector control 
involving spraying interior surfaces of dwellings with a residual 
insecticide to kill or repel endophilic mosquitoes. (3) 

  

Indoors: 

Inside any shelter likely to be used by humans or animals, where 
mosquitoes may feed or rest. Note: Where indoor-resting 
mosquitoes can be targeted for indoor residual spraying."  (3) 

  

Infectious: 
Capable of transmitting infection, a term commonly applied to 
human hosts. (3) 

  

Infective: 

Capable of producing infection, a term commonly applied to 
parasites (e.g., gametocytes, sporozoites) or to the vector 
(mosquito). (3) 

  

Infrared: 
The portion of the electromagnetic spectrum includes 
wavelengths between 0.7 µm and 100 µm. (2) 

  

Insecticide resistance: 

Property of mosquitoes to survive exposure to a standard dose 
of insecticide; may be the result of physiological or behavioural 
adaptation. (3) 

  

Insecticide: 

Chemical product (natural or synthetic) that kills insects. Ovicides 
kill eggs; larvicides (larvacides) kill larvae; pupacides kill pupae; 
adulticides kill adult mosquitoes. Residual insecticides remain 
active for an extended period. (3) 

  

Latitude: 
The angular distance north or south from the earth's equator 
measured from 0 through 90 degrees. (2) 

  

Longitude: 

The angular distance of a meridian (a great circle passing through 
the north and south poles) from the prime (0 degree) meridian that 
passes through Greenwich, England. (2) 
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Long-lasting insecticidal 
net: 

A factory-treated mosquito net made of material into which 
insecticide is incorporated or bound around the fibres. The net 
must retain its effective biological activity for at least 20 WHO 
standard washes under laboratory conditions and 3 years of 
recommended use under field conditions. (3) 

  

Malaria control: 

Reduction of disease incidence, prevalence, morbidity or 
mortality to a locally acceptable level as a result of deliberate 
efforts. Continued interventions are required to sustain control.(3) 

  

Malaria elimination: 

Interruption of local transmission (reduction to zero incidence of 
indigenous cases) of a specified malaria parasite in a defined 
geographical area as a result of deliberate activities. Continued 
measures to prevent re-establishment of transmission are required. 
Note: The certification of malaria elimination in a country will 
require that local transmission is interrupted for all human malaria 
parasites. (3) 

  

Malaria eradication: 

Permanent reduction to zero of the worldwide incidence of 
infection caused by human malaria parasites as a result of 
deliberate activities. Interventions are no longer required once 
eradication has been achieved. (3) 

  

Malaria incidence: 
Number of newly diagnosed malaria cases during a defined period 
in a specified population. (3) 

  

Malaria infection: 

Presence of Plasmodium parasites in blood or tissues, confirmed 
by diagnostic testing. Note: Diagnostic testing could consist of 
microscopy, rapid diagnostic testing or nucleic acid-based 
amplification (e.g., polymerase chain reaction assays to detect 
parasite DNA or RNA). (3) 

  

Malaria mortality rate: 
Number of deaths from malaria per unit of the population during a 
defined period. (3) 

  

Malaria prevalence 
(parasite prevalence): 

Proportion of a specified population with malaria infection at one 
time. (3) 

  

Malaria reintroduction: 

Malaria reintroduction is the occurrence of introduced cases 
(cases of the first-generation local transmission that are 
epidemiologically linked to a confirmed imported case) in a 
country or area where the disease had previously been 
eliminated.(3) 
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Malaria risk 
stratification: 

Classification of geographical areas or localities according to 
factors that determine receptivity and vulnerability to malaria 
transmission. (3) 

  

Malaria stratification: 

Classification of geographical areas or localities according to 
epidemiological, ecological, social and economic determinants for 
the purpose of guiding malaria interventions. (3) 

  

Malaria-free: 

Describes an area in which there is no continuing local mosquito 
borne malaria transmission and the risk for acquiring malaria is 
limited to infection from introduced cases. (3) 

  

Malarious area: 
Area in which transmission of malaria is occurring or has 
occurred during the preceding 3 years. (3) 

  

Map scale: 

The relationship (or ratio) between distance on a map and the 
corresponding distance on the ground. For example, a 1:100,000 
scale map. (2) 

  

Near Infrared: 
The portion of the electromagnetic spectrum that includes 
wavelengths between 0.7 µm and 3 µm. (2) 

  

Net insecticide-treated: 

Mosquito net that repels, disables or kills mosquitoes that come 
into contact with the insecticide on the netting material. The two 
categories of insecticide-treated net are: 
• conventionally treated net: a mosquito net that has been treated 
by dipping it into a WHO-recommended insecticide. To ensure its 
continued insecticidal effect, the net should be re-treated 
periodically. 
• long-lasting insecticidal net: a factory-treated mosquito net 
made of netting material with insecticide incorporated within or 
bound around the fibres. The net must retain its effective 
biological activity for at least 20 WHO standard washes under 
laboratory conditions and 3 years of recommended use under field 
conditions. 
Note: Untreated mosquito nets can also provide substantial 
protection against mosquito bites. (3) 

  

Parallel: 
An imaginary circle drawn on the earth that passes through all 
points that have the same latitude. (2)  
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Plasmodium: 

"Genus of protozoan blood parasites of vertebrates that includes 
the causal agents of malaria. P. falciparum, P. malariae, P. ovale 
and P. vivax cause malaria in humans. Human infection with the 
monkey malaria parasite P. knowlesi and very occasionally with 
other simian malaria species may occur in tropical forest 
areas."(3) 

  

Population at risk: 
Population living in a geographical area where locally acquired 
malaria cases have occurred in the past 3 years. (3) 

  

Radar: 

A system that emits timed pulses of microwave radiation and 
determines the direction and distance to an object by measuring 
the time required for the radiation to reflect back from the 
object.(2) 

  

Rapid diagnostic test: 
Immunochromatographic lateral flow device for rapid detection of 
malaria parasite antigens. (3) 

  

Raster format: 

Spatial representation of the entities through the arrangement of 
cells or pixels in the form of a numerical matrix of Digital 
Numbers (DN). (2) 

  

Reintroduction risk: 

The risk that endemic malaria will be re-established in a specific 
area, after its elimination. 
Note: The risk is typically determined by factors including 
climate, altitude, vector populations, human susceptibility, socio-
economic status, urban or rural and coverage of interventions. (3) 

  

Relapse: 

Recurrence of asexual parasitaemia in P. vivax or P. ovale 
infections arising from hypnozoites. 
Note: Relapse occurs when the blood-stage infection has been 
eliminated but hypnozoites persist in the liver and mature to form 
hepatic schizonts. After an interval, generally from 3 weeks to 1 
year, the hepatic schizonts rupture and liberate merozoites into the 
bloodstream. (3) 

  

Resolution: 

The ability of a sensor system to distinguish detailed information 
in an object. Examples are spatial, spectral, radiometric, and 
temporal resolution. (3) 

  

Screening: 

Identification of groups at risk that may require further 
intervention, such as diagnostic testing, treatment or preventive 
services. (3) 
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Spectral signature: 

A set of wavelengths of electromagnetic radiation emitted or 
reflected by an object which may be used to identify the object or 
measure values related to the object. (3) 

  

Spraying, residual: 

Spraying the interior walls and ceilings of dwellings with a 
residual insecticide to kill or repel endophilic mosquito vectors of 
malaria. (3) 

  

Supervised 
classification: 

The selection of pixels that are representative of specific classes 
and that will be used by the image processing software as 
references for the classification of all other pixels in the image.(3) 

  

Surveillance: 

Continuous, systematic collection, analysis and interpretation of 
disease-specific data and use in planning, implementing and 
evaluating public health practice. 
Note: Surveillance can be done at different levels of the health 
care system (e.g. health facilities, the community), with different 
detection systems (e.g. case-based: active or passive) and 
sampling strategies (e.g. sentinel sites, surveys). (3) 

  

Thematic maps : 

A map that indicates the distribution and behavior of a particular 
phenomenon, for example, vegetation, geology, rainfall, 
population distribution, etc. (2) 

  

Topographic maps: 
A map that indicates topographical relief using contour lines 
that represent different values of altitude. (2) 

  

Uncomplicated malaria: 

Symptomatic malaria parasitaemia without signs of severity or 
evidence of vital organ dysfunction. 
Note: See current WHO definition (Guidelines for the treatment 
of malaria. Third edition). Malaria-associated disease can be 
defined more specifically by criteria for the degree of fever (e.g., 
temperature). (3) 

  

Universal Transverse 
Mercator Network or 
UTM system: 

A reference system uses a set of strips or meridian zones, defined 
in a Mercator transverse projection system. Each of these zones 
has 6º longitude, its origin point is the intersection of the central 
meridian with the equator. (2)  

  

Unsupervised 
classification: 

The classification of pixels with common characteristics is based 
on the software analysis of an image without the selection of 
representative pixels by the user. (2) 
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Vector competence: 

For malaria, the ability of the mosquito to support completion of 
malaria parasite development after zygote formation and oocyst 
formation, development and release of sporozoites that migrate to 
salivary glands, allowing transmission of viable sporozoites when 
the infective female mosquito feeds again. 
Note: Human malarias are transmitted exclusively by competent 
species of Anopheles mosquitoes; various plasmodia are 
transmitted by competent species of mosquitoes of the genera 
Aedes, Anopheles and Culex and other haematophagous 
Diptera.(3) 

  

Vector control: 

Measures of any kind against malaria-transmitting mosquitoes, 
intended to limit their ability to transmit the disease. 
Note: Ideally, malaria vector control results in a reduction of 
malaria transmission rates, by reducing the vectorial capacity, to a 
point at which transmission is interrupted. (3) 

  

Vectorial format: 

A representation of a picture in computer graphics by using 
various geometric shapes such as points, curves, straight lines and 
polygons. (2)  

  

Vector principal: 

The species of Anopheles mainly responsible for transmitting 
malaria in any particular circumstance. 
Note: Principal vectors may overlap seasonally or alternate in 
importance. (3) 

  

Vector susceptibility: 
The degree to which a mosquito population is susceptible (i.e. not 
resistant) to insecticides"  (3) 

  

Vector: 

In malaria, adult females of any mosquito species in which 
Plasmodium undergoes its sexual cycle (whereby the mosquito is 
the definitive host of the parasite) to the infective sporozoite stage 
(completion of extrinsic development), ready for transmission 
when a vertebrate host is bitten 
Note: Malaria vector species are usually implicated (incriminated) 
after field collection and dissection indicates that the salivary 
glands are infected with sporozoites; specific assays can be used 
to detect and identify circumsporozoite protein, especially where 
infection rates are low. (3) 
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Vectorial capacity: 

The species of Anopheles mainly responsible for transmitting 
malaria in any particular circumstance. 
Note: Principal vectors may overlap seasonally or alternate in 
importance. (3) 

  

Vigilance: 

A function of the public health services for preventing 
reintroduction of malaria. Vigilance consists of close monitoring 
for any occurrence of malaria in receptive areas and application of 
the necessary measures to prevent re-establishment of 
transmission. (3) 

  

WGS84: 
 
 
 
 

Is defined and maintained by the United States National 
Geospatial-Intelligence Agency (NGA). It is consistent, to about 
1cm, with the International Terrestrial Reference Frame (ITRF). It 
is a global datum, which means that coordinates change over time 
for objects which are fixed in the ground. (2) 
 
 

WRS 

The Worldwide Reference System (WRS) is a global system that 
catalogs Landsat data by Path and Row numbers. Landsat 
satellites 1, 2 and 3 followed WRS-1, and Landsat satellites 
4,5,7, 8, and 9 follow WRS-2. (2) 
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Summary 

 

Malaria remains a significant source of suffering and death. Annually, in Peru, many cases are 

reported, with 95% of these occurring in the Department of Loreto. Since 2018, the "Zero 

Malaria Plan" (ZMP) has implemented interventions to eliminate malaria from Peru by 2030. 

This program promotes a community-based model with three overlapping development phases: 

(1) Malaria control during the first three years, focusing on eliminating symptomatic infections, 

and using testing and treating to reduce 70% of the malaria burden. (2) Control during the 

middle ten years, targeting both asymptomatic and low-parasite-density infections to reduce 

99% of the malaria burden. (3) interventions during the entire program to eliminate residual 

malaria transmission foci, including reintroductions.    

 

There is a need for accurate and timely identification of high malaria transmission areas so that 

cost-effective malaria prevention, diagnosis, and treatment strategies can be implemented when 

and where they are needed.  

 

This research is an original study that assesses the risk of co-endemic Plasmodium 

vivax and Plasmodium falciparum transmission in the Peruvian Amazon using boosted 

regression tree (BRT) models based on social and environmental predictors derived from 

satellite imagery and data to assess and predict high and very high malaria transmission in the 

department, at the village level. This research also generates technical proposals for malaria 

control program in the Department of Loreto. 

 

 

Keywords: Malaria, risk mapping, satellite imagery, boosted regression trees. 
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Resumen 

 

La malaria sigue siendo un importante problema que genera sufrimiento y muerte en la 

población. Anualmente, se reporta un gran número de casos en el país, de los cuales el 95% 

ocurren en el Departamento de Loreto. Desde el 2018, el "Plan Malaria Cero" ha implementado 

intervenciones para eliminar la malaria del Perú para el 2030. Este programa promueve un 

modelo basado en la comunidad con tres fases de desarrollo: (1) Control de la malaria durante 

los primeros tres años, centrándose en eliminando las infecciones sintomáticas y usando 

pruebas y tratamientos para reducir el 70% de la carga de malaria. (2) Control durante los diez 

años intermedios, centrándose en infecciones asintomáticas y de baja densidad de parásitos 

para reducir el 99 % de la carga de paludismo. (3) intervenciones durante todo el programa 

para eliminar los focos residuales de transmisión de la malaria, incluidas las reintroducciones. 

Existe la necesidad de una identificación precisa y oportuna de las áreas de alta transmisión de 

la malaria para poder implementar estrategias rentables de prevención, diagnóstico y 

tratamiento de la malaria cuando y donde se necesiten. 

Esta investigación es un estudio original sobre el riesgo de transmisión co-endémica de 

Plasmodium vivax y Plasmodium falciparum en la Amazonía peruana, utilizando modelos de 

árboles de regresión potenciados (BRT) basados en predictores sociales y ambientales, 

derivados de imágenes satelitales y colección de datos para evaluar y predecir niveles de alto 

y muy alto riesgo de transmisión de la malaria, a nivel de localidades para toda la región Loreto.  

 

Palabras clave: Paludismo, mapeo de riesgos, imágenes satelitales, árboles de regresión 

potenciados. 
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Thesis outline 

 

This thesis isdivided in five chapters:   

 

Chapter 1, Introduction – This chapter provides the glossary, rationale, hypothesis and 

objectives of the thesis.  

 

Chapter 2, Literature review - This chapter reviews the relevant literature on three important 

components: (1) malaria epidemiology and malaria status (2) disease mapping using remote 

sensing and geographic information systems, and (3) literature related to regression algorithms 

and boosted regression trees. 

 

Chapter 3, Methodology – This chapter describes the study area, the process to achieve the 

predictors, the use of boosted regression tree models and the risk map elaboration.   

 

Chapter 4, Results – This chapter shows the results of the analysis with BRT. The relative 

contribution of variables, the partial dependence plots, the model’s performance. This chapter 

also provides population-based malaria risk maps and risk zones. 

 

Chapter 5, General conclusions, applications and perspectives – This chapter presents the 

findings, and describes other applications and avenues for future research. 

 

References, appendix and codes are provided at the end of this thesis.  
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Chapter 1: Introduction 

 

This chapter provides the positioning of this research, 
rationale, hypothesis and objective of the thesis.  
 

 

 1.1. Positioning the research 

 

Through the methodology and theoretical aspects, this study relies on several fields of science 

including, ecology-biogeography, epidemiology, and public health. As ecology-biogeography 

this research is focused on environmental conditions as essential determinants of distributions 

of species. As epidemiology, this research studies the distribution and determinants of health-

disease states. As a public health investigation, this research generates a proposal for malaria 

control at the regional scope. 

  

Traditionally, risk mapping is used to characterize the ecological/environmental risk of 

infection/exposure without active preventive measures. This study goes beyond eco-

environmental factors and adds social variables such as population, including, travel time to 

major populated villages/towns, as an accessibility proxy. In addition, this research develops 

predictive maps using machine-learning algorithms, over the applied classic risk mapping for 

description/explanation purposes. To acquire the thesis data uses geospatial technologies that 

have opened new perspectives of analysis and management of public health programs, 

particularly in the case of diseases transmitted by vectors. 
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 1.2. Rationale 

 

 

Despite efforts and investment in control and eradication under Health Strategy for the 

Prevention and Control of Metaxenic Disease (SNEM-PEM 1957 - 1965), and the Pan-Andean 

Program for Malaria Control in the border areas (PAMAFRO 2005 - 2010), malaria remains a 

significant public health issue in Peru (5,6). The Department of Loreto, located in the Amazon 

rainforest, harbors almost 95% of Peruvian malaria. Historical malaria trends show that malaria 

increase and reduction are conditioned mainly by environmental factors and by interventions 

conducted by specialized malaria control programs. After the SNEM-PEM ended in 1965, the 

number of cases grew, reaching its highest peak in 1998 with 247,229 cases. This rise was 

linked to the "El Niño" phenomenon and increased resistance to chloroquine, the primary drug 

against malaria at that time. During the PAMAFRO program, malaria cases in Loreto were 

reduced by 80%, obtaining the lowest value in 2010 with only 11,504 cases and no cases 

reported in some districts. Unfortunately, the control measures implemented by the program 

were not continued by the Ministry of Health (6).  

 

The Peruvian surveillance system is based on the number of reported malaria cases 

(conventionally confirmed by light microscopy) from a passive case detection strategy. 

However, asymptomatic or cases with minor symptoms are often not detected  by light 

microscopy and might require more sensitive tests like polymerase chain reaction (PCR) (7). 

These samples must be sent to specialized laboratories; years before, these were sent from 

Loreto to Lima (the capital of the country). This conventional surveillance system becomes 

weak in remote areas. 

 

Anopheles darlingi, the primary malaria vector in Loreto, identified in Iquitos in 1995, is an 

endophagic, exophagic vector and is highly anthropophilic (8,9). The malaria mosquito has a 

seasonal behavior, and its population variation is reflected in malaria case rates in Loreto and 

the country. Its longevity is highly sensitive to environmental conditions including 

temperature, precipitation, vegetation, deforestation, and natural and man-made water bodies. 

These variable conditions affect the availability of breeding sites, as well as parasite 

development itself (10–13). Rains in 2012 probably caused malaria resurgence in Loreto. That 

year doubled the cases compared to the previous year, and this increasing trend continued. In 
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2014, reported cases reached 61,000, the highest value in the last decade. In 2015, 61 856 cases 

in Loreto (14), represented approximately 15% of the total cases reported in the Americas. Of 

these Loreto cases, 49,745 were caused by P. vivax (15).  

 

The main factors responsible for the variation in malaria transmission in the Amazon are 

environmental characteristics facilitating larvae breeding sites (temperature, precipitation, 

natural and human-made water bodies) and mosquito resting places (surrounding vegetation, 

deforestation) for the primary malaria vector of P. vivax and P. falciparum, Anopheles darlingi 

(10–13). Social factors also influence malaria transmission by increasing exposure (forest-

based economic activities) (16,17), by contributing to delayed diagnosis and treatment (poor 

geographical accessibility to health facilities) (18–20), or by limiting effectiveness of malaria 

interventions (lower availability and utilization of control resources and preventive measures, 

and inappropriate treatment-seeking behaviors) (21–23).  

 

In 2019 the Peruvian malaria burden declined, with financial support and intensified 

interventions under "Zero Malaria Plan" (execution period 2018 – 2030) (24). In the first 

quarter of 2020, the program saw a reduction of 75% of malaria cases in Loreto.  In the last 

three years, malaria cases have kept it numbers less than in the previous period of the plan. In 

2021 were 17,658 cases (80.25% P. vivax), in 2020 were 15,520 malaria cases (78.82% P. 

vivax), and in 2019 were 25,871 (74.32 % P. vivax). 

 

In 2020-2021 the COVID-19 pandemic hit Peru, which then led the world ranking with 6258 

COVID- deaths per million inhabitants. The COVID-19 pandemic exposed the precariousness 

of Peruvian health system. When the first COVID-19-cases were identified, the government 

rapidly imposed a lockdown and curfew. These measures interrupted the activities carried out 

by the malaria program. The pandemic response absorbed community and volunteer health 

workers. In the first months many malaria campaign activities were discontinued because of 

the lack of personal protective equipment (PPE). Active case detection, as well as the delivery 

of treated mosquito nets and malaria drugs were interrupted. People were afraid to visit health 

care facilities (25).  

 

Another challenge to malaria control is the need to apply tools and interventions at different 

levels, since Loreto is a hypoendemic malaria area (26,27) and some remote areas have very 



 
 

4 
 

low entomological inoculation rates (EIRs) near those reported in Africa. This heterogeneity 

requires tailored interventions to control malaria in high-risk areas. 

 

Reaching high-risk populations in malaria-eliminating settings becomes an increasingly 

complex task as parasite reservoirs are increasingly clustered in geographically restricted foci 

of transmission (6,28,29) and have an undisclosed dynamic. Indigenous populations and 

mobile dwellers are also often hard to reach. These groups frequently face substantial barriers 

to accessing health care, including service delivery, and are often missed by standard 

surveillance systems. These populations act as parasite reservoirs, causing transmission and 

becoming a threat to malaria elimination (30)(31).  

 

The use of geographic information systems (GIS) (32) provides the ability to delimitate risk 

areas or find clusters. GIS is designed to store, retrieve, manipulate, analyze, and map 

geographical data under a reference system to analyze and solve complex problems (33–36). It 

covers many applications, e.g., engineering, computer science, land use planning, and 

environmental science. Its application to epidemiology and public health is rapidly increasing 

(37–47). GIS can access an enormous quantity of data, from documentation, tables, statistical 

reports, and satellite images, even when it may be difficult to find sufficient information from 

other sources (48,49). 

 

GIS and remote sensing have become a powerful duo for acquiring data for decision-making 

based on spatial information. They deliver a large amount of information that helps to focus on 

high-risk populations in disease prevention and control programs. This complex data can be 

analyzed with the aid of machine learning (ML). Machine learning (ML) covers a broad range 

of processes that is difficult to define precisely (20). A machine learns when it changes its 

structure program or data in response to external information to improve its expected future 

performance. It is useful when some tasks cannot be well-defined, for example, when seeking 

relationships and correlations inside vast data sets (data mining) or when the amount of 

knowledge available about specific tasks might be too large for explicit encoding by humans 

(20,39). 

This thesis, which is the first study to assess the risk of co-endemic Plasmodium vivax and 

Plasmodium falciparum transmission in the Peruvian Amazon, combines geographic 

information science (GIS) with satellite data and boosted regression tree (BRT) modeling to 
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enable malaria high-risk area detection in the Department of Loreto. This study provides new 

knowledge and operational tools to support malaria case detection strategies and demonstrates 

the ability to characterize areas and make predictions that are essential aspects of malaria 

control programs. Furthermore, these tools may be applicable to other diseases or fields where 

spatial prioritization or planning is required.  

  



 
 

6 
 

 

  



 
 

7 
 

1.3. Objectives 

 

General objective:  

To assess, predict, and map the risk of co-endemic P.vivax and P. falciparum occurrence at the 

village level in Loreto, using boosted regression tree (BRT) models based on social and 

environmental predictors derived from satellite imagery for malaria control. 

 

Specific objectives:  

 To geocode villages in the Department of Loreto as points and aggregate the population 

and P. vivax and P. falciparum incidence by village and year.  

 To use remote sensing and geographic information systems (GIS) to derive 

environmental and social predictors from satellite imagery and freely available data 

collections. 

 To assess the malaria risk by identifying areas of likely high human-vector contact and 

human parasite carriage using boosted regression tree analysis.  

 To predict yearly cross-validated BRT models to discriminate high-risk (annual parasite 

index API > 10 cases/1,000 people) and very-high-risk for malaria (API > 50 

cases/1,000 people). 

 To elaborate risk maps to identify areas of high malaria transmission. 
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1.4. Abstract 

 

This thesis, which is the first study to assess the risk of co-endemic Plasmodium vivax and 

Plasmodium falciparum transmission in the Peruvian Amazon, combines geographic 

information science (GIS) with satellite data and boosted regression tree (BRT) modeling to 

enable malaria high-risk detection in the Department of Loreto Yearly cross-validated BRT 

models were created to discriminate high-risk (annual parasite index API > 10 cases/1000 

people) and very-high-risk for malaria (API > 50 cases/1000 people) in 2766 georeferenced 

villages of Loreto department, between 2010–2017. The predictors identified were cumulative 

annual rainfall, forest coverage, annual forest loss, annual mean land surface temperature, 

normalized difference vegetation index (NDVI), normalized difference water index (NDWI), 

shortest distance to rivers, time to populated villages, and population density. BRT models built 

with predictor data for a given year efficiently discriminated the malaria risk for that year in 

villages (area under the ROC curve (AUC) > 0.80), and most models also accurately predicted 

malaria risk in the following year. Cumulative rainfall, population density and time to 

populated villages were consistently the top three predictors for both P. vivax and P. 

falciparum incidence. Maps created using the BRT models characterize the spatial distribution 

of the malaria incidence in Loreto and can contribute to malaria-related decision making in the 

area (15).  
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Chapter 2: Literature review 

 

This chapter reviews the relevant literature on three 
important components: (1) malaria epidemiology and 
malaria status (2) disease mapping using remote sensing 
and geographic information systems, and (3) literature 
related to regression algorithms and boosted regression 
trees. 

 

2.1. Malaria epidemiology 

 

The epidemiology of malaria is the study how health and disease processes affect the 

population. This includes knowledge about the groups in conditions of illness, the spatial and 

temporal distribution of the cases and its determinants of health (set of personal, social, 

economic and environmental factors that determine the health status of individuals or 

populations). 

 

2.1.1. Malaria parasite 

 

Malaria is a parasitic disease caused by a single-cell parasite of the Plasmodium family and 

transmitted by female Anopheles mosquitoes (51). Until the end of nineteenth century, malaria 

was supposed to be caused by noxious believed substances in the air coming from swamps or 

humid plains. This was the origin the word malaria bad-air (52).  

 

Infective mosquitoes inject Plasmodium sporozoites from their salivary glands into the 

bloodstream during feeding, thereby starting a life cycle (Figure 1). Among 

all Plasmodium species known, five are reportedly able to infect human erythrocytes: P. 

vivax, P. falciparum, P. malarie, P. ovale and P. knowlesi. of these, P. falciparum and P. 

vivax are the most frequently reported in human infections. P. vivax and P. ovale are 

characterized by a hypnozoite stage, wich is a dormant form that can persist in the liver for 

months to years, causing periodic relapses of peripheral parasitemia and illness (53). P. 

falciparum is associated with the most severe forms of the malaria, and is endemic in 
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Loreto. For more information about the parasite life cycle and the relation with the vector, see 

Appendix B. 

 

  
Figure 1: The life cycle of Plasmodium  (52) 
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2.1.2. Malaria transmission 

Human malaria is transmitted by biting female mosquitoes belonging to the genus Anopheles. 

There are about 400 different Anopheles mosquitoes throughout the world and approximately 

70 of these are malaria vectors under natural conditions (54). The efficiency of various species 

as Plasmodium vectors varies across regions, so that a particular species of Anopheles may be 

an essential source of transmission in one area but not in another (53,55). 

Different Anopheles can display different behaviors in terms of breeding or larval habitat (e.g., 

fresh or brackish water; flowing streams, still pools, man-made habitats, shaded or sunny sites), 

feeding preferences (e.g., time of day for peak biting activity, preference for people over 

animals, feeding indoors or outside), and resting habits (resting indoors after feeding or leaving 

the house before resting) (9). These differences in mosquito behavior can affect the 

epidemiology of malaria and the choice of a malaria control strategy. 

 

Eighteen Anopheles species are listed as vectors of malaria in Loreto (56,57). Anopheles 

darlingi is the principal vector, although other species, such as An. benarrochi, are sporadically 

involved in local transmission. An. darlingi is the most efficient malaria vector (58) and is 

known for erratic behavior depending on locality and environment (59). Available data on 

larval ecology indicates that An. darlingi is primarily a riverine species (8,60) and is also found 

in irrigation canals, rice fields, flooded cane fields, and pastures. Some studies also suggest a 

positive association between An. darlingi with shade and submerged vegetation (12). The 

largest reported flight range of An. darlingi in the Brazilian Amazon is 7.2 km (61), but most 

mosquitoes fly within 400-500 meters of their eggs hatched  (62,63). The association with the 

deforestation is still debated; Anopheles was found associated with areas subject to 

deforestation in one study (11,13), while the opposite pattern was observed in another 

entomological study in the Brazilian Amazon (64). Primary and secondary vectors currently 

recognized in the Region of the Americas are listed in the Appendix B-2. 
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2.1.3. Malaria status in the world 

Malaria is widely distributed in tropical and subtropical areas worldwide (Map 1). WHO 

malaria report in 2020 estimated that there were 241 million malaria cases and 627,000 malaria 

deaths worldwide. This represents an increase of 14 million more cases, and 69,000 more 

deaths compared to 2019. Approximately two-thirds of these additional deaths (47,000) were 

linked to disruptions in the provision of malaria prevention, diagnosis and treatment during the 

COVID-19 pandemic (65). Sub-Saharan Africa continues to carry the heaviest malaria burden, 

accounting for about 95% of all malaria cases and 96% of all deaths. About 80% of deaths in 

the region are among children under 5 years of age. 

 

Since 1900, there has been a tremendous advance in reducing global malaria (Table 1 and Map 

2) sparked by investment in malaria control and elimination carried out by worldwide malaria 

programs. Until the mid-nineteenth century, malaria was endemic in tropical and subtropical 

around the world (7). The availability of chloroquine for treatment and dichloro-diphenyl-

trichloroethane (DDT) for vector control allowed malaria elimination in 29 countries by 1949. 

From 1955 to 1969, WHO conducted the Global Malaria Eradication Program (GMEP) to 

interrupt transmission in all endemic areas outside Africa (7,66). Between 1992 - 1998, several 

studies were made on the effectiveness of long-lasting insecticide-treated nets (LLINs), rapid 

diagnostic tests, and artemisinin-based combination therapies (ACTs) under the Global Malaria 

Control Strategy and the Roll Back Malaria initiative in 1998 (67). In 2015, WHO approved 

the WHO’s (2015a) Global Technical Strategy for Malaria 2016–2030 (31) and Action and 

Investment to Defeat Malaria 2016–2030 with the goal of launching a new effort to eliminate 

malaria.  
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Table 1: Number of countries and territories where malaria was wrradicated, by WHO Region, 

1900–2015 (7) 

 

Indicator 

Americas 
and 

Caribbean 

 South Asia 
and East 
Asia and 
Pacific 

 Europe and 
Central 

Asia 

Middle East 
and North 

Africa 

 Sub-
Saharan 
Africa 

Total 

Total 
number of 
countries 46 39 58 2 45 211 

Malaria 
free             
1900 2 13 3 1 1 20 
1900-49 0 0 9 0 0 9 
1950-78 23 5 35 4 1 68 
1979-90 0 1 2 2 1 6 
1991-2015 2 1 9 6 0 18 

Total 
number of 
malaria-free 
countries 

27 20 58 13 3 121 

 

 

 

 

 

 

 

 

 

 

Map 1: Malaria Transmission Worldwide, 1900, and 2015 (7) 
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Map 2: Countries with indigenous cases in 2000 and their status by 2020 (65) 

 

The latest data on malaria for 2022 has not yet been published. The global trend from 2000 to 

2021 in shown in Figure 2. 

 

 

Figure 2: Global trend in malaria incidence (cases per 1,000 population at risk) (65). 

 

 (Map 3), compared to 231 million cases in 2017 and 251 million cases in 2010. Most cases 

occur in the Africa Region (213 million, 93%), Asia Region Southeast with (8 million, 3.4%) 

of cases and the Eastern Mediterranean Region with (5 million, 2.1%). Nineteen countries in 
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sub-Saharan Africa and India accounted for almost 85% of the global burden of malaria. More 

than half of all malaria cases worldwide were concentrated in six countries: Nigeria (25%), the 

Democratic Republic of the Congo (12%), Uganda (5%), and Ivory Coast, Mozambique, and 

Niger (4% each).  

 

 
 

Map 3: Map of malaria case incidence rate (cases per 1,000 population at risk) by country, 2018 (7) 

 

 

2.1.3.1. Malaria control program guidelines 

 

According to “Global technical strategy for malaria 2016 – 2030” (WHO) there is no a unique 

strategy for malaria control. The document encourages countries to develop a set of strategies 

based on the intensity and stratification of transmission and on epidemiological, ecological and 

social characteristics (31).  Further, the Global technical strategy for malaria 2016 – 2030 is 

based on three pillars:  

 

(a) Ensure universal access to malaria prevention, diagnosis and treatment, through 

implies vector control, chemoprevention for pregnant women and children in areas of moderate 

and high transmission, and for tourists, diagnostic testing and treatment.  

 

(b) Accelerate efforts towards elimination and achivement of malaria-free status, through 

focus programs, enacting legislation, renewed political commitment, deeper regional 
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collaboration, reducing the number of undetected infections, implementing targeted malaria 

vector control, preventing re-establishment of local malaria transmission, implementing 

transmission-blocking chemotherapy, detecting all infections to attain elimination and prevent 

re-establishment, use of medicines to reduce the parasite reservoir, devising P. vivax-specific 

strategies,  and increased using surveillance. 

 

 (c) Transform malaria surveillance into a core intervention, that aims to detect all malaria 

infections, whether symptomatic or not, to investigate each individual case of infection, to 

differentiate imported cases from those acquired locally, and to ensure that each detected case 

is promptly treated in order to prevent secondary infections (31). Some of these strategies are 

being implemented in Peru under the Zero Malaria Plan. Malaria programs constitute an 

important element for the implementation of designed interventions, commonly programs, 

mobilize people, deliver equipment, strengthen services as health facilities and laboratories, 

train microscopists and community leaders.  
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2.1.3.2. Malaria status in the Americas region 

 

Although Sub-Saharan Africa and South and Southeast Asia account the major malaria cases, 

this disease remain endemic in 19 countries of Latin America and Caribbean. Malaria causes 

high morbidity in rural areas of this region. Bolivia, Brazil, Colombia, Ecuador, Guyana, 

French Guiana, Peru, Suriname and Venezuela account for 93% of malaria cases in this area 

see Figure 3.    

 

 

Figure 3: Malaria cases by country in the WHO Region of the Americas area (65) 

 

After sustained work in malaria reduction from 2005 to 2014, the Americas Region 

experienced an increase in the total number of cases between 2015 and 2019 mainly in 

Venezuela and the increasing transmission in Brazil, Colombia, Guyana, Nicaragua, and 

Panama. Outbreaks have also occurred in (Costa Rica, Republic Dominican, and Ecuador) 

(68,69) . Since 2019 the number of cases and the incidence has decreased in this region. The 

total account between 2000 and 2020, malaria cases and case incidence reduced by 58% (from 

1.5 million to 0.65 million) and 67% (from 14.1 to 4.6 cases per 1,000 population at risk), over 

the same period, malaria deaths and the mortality rate reduced by 56% (from 909 to 409) see 

in detail in Table 2 and the incidence trend in (Figure 4) 
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Table 2: Estimated malaria cases and deaths in the WHO Region of the Americas, 2000–2020 

Estimated cases and deaths are shown with 95% upper and lower confidence intervals (65). 

 

Year Number of cases (000)                                                       Number of deaths 

Point Lower 

bound 

Upper  

bound 

%  

P. vivax 

Point Lower 

bound 

Upper 

bound 

2000 1,540 1,391 1,699 71.6% 909 665 1,169 

2001 1,297 1,169 1,432 67.2% 832 597 1,092 

2002 1,183 1,077 1,298 67.8% 764 513 1,022 

2003 1,159 1,066 1,262 68.6% 726 480 984 

2004 1,147 1,069 1,235 69.6% 711 462 985 

2005 1,273 1,202 1,358 70.3% 687 439 960 

2006 1,097 1,032 1,174 68.4% 581 346 843 

2007 989 908 1,074 70.3% 503 293 738 

2008 696 644 760 71.1% 470 224 747 

2009 688 634 753 70.6% 463 230 737 

2010 818 741 901 70.9% 502 247 793 

2011 615 570 671 68.9% 464 205 727 

2012 585 545 634 68.9% 430 211 652 

2013 576 531 629 64.5% 470 232 709 

2014 475 444 509 69.5% 348 193 485 

2015 602 552 665 70.7% 414 227 579 

2016 688 637 747 67.3% 529 264 749 

2017 946 878 1,031 73.9% 664 290 958 

2018 929 862 1,013 78.2% 571 271 815 

2019 894 826 981 77.4% 509 231 738 

2020 653 604 708 68.3% 409 185 579 
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Map 4: Countries in LA that are endemic to malaria, except Paraguay, and Argentina (7). 

 

 

 

 

 

 

Malaria is endemic in all to malaria except Paraguay and Argentina, which were declared free 

of malaria in 2018 and 2019, respectively (Map 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In LA Four nations contributed to more than ~80% of the 875,000 malaria cases reported 

(Venezuela 30%, Brazil 24%, Peru 19% and Colombia 10%) Annual malaria reports by country 

PAHO 2016 (Map 5). 

Figure 4: Americas trend in malaria case incidence (cases per 1,000 population at risk). 
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Malaria annual parasite index (API) refers to high and moderate malaria transmission risk 

areas: The calculation is the number of confirmed new cases from malaria registered in a 

specific year, expressed per 1,000 individuals under surveillance, for a given country, territory, 

or geographic area.  

 

 

 

 

 

 

  

Map 5: Malaria Annual Parasite Index in Latin America and the Caribbean, 2015  (134) 



 
 

23 
 

2.1.4. Malaria status in Peru 

Peru is located on the west coast of South America between Ecuador, 0° and 10 ° South of 

latitude, and has an extension of 1,205,216 km2. Its neighbor countries are Ecuador and 

Colombia in the north, Brazil to the east, and Bolivia and Chile to the southeast. Geopolitically 

Peru is divided into 24 departments and the Constitutional Province of Callao. According to 

the most recent (2017) census, Peru has 31 million 237,385 inhabitants (INEI). Females 

constitute 50.8%and males 49.2%. Peru has great geographic and climatic diversity.  Its 

territory includes dry coastal plains, high Andes mountains, and Amazon valley rainforest.  The 

latter comprises 70% of the national territory (56).  

 

The country has three malaria transmission zones that have environmental conditions suitable 

for malaria vectors: the north coast, mountainous Amazon, and the Amazon basin rainforest. 

Approximately 77% of malaria cases occur in the Amazon rainforest, 18% in the mountainous 

Amazon, and 5% in the north coast. Both P. vivax (80.6%) and P. falciparum (19.4 %) are 

found in the Amazon basin.  The Department of Loreto, where this study was conducted, is the 

largest department in the Peruvian Amazon.  

 

Malaria has been part of Peruvian life since at least the 1500s (70). In 1943, Peru launched an 

intervention directed toward mosquito larvae to reduce the malaria burden. In 1946, the 

Ministry of Health (MoH) implemented the first intra-home spraying with insecticide 

(dieldrin). In 1956, dichloro diphenyl trichloroethane (DDT) was implemented, as in other parts 

of the world. Between 1957 and 1965, the SNEM-PEM program initiated several interventions 

and studies which resulted in almost eliminating P. falciparum. (71). Between 1960 to 1970 

the number of malaria cases was low, with only several dozens of cases reported annually.  

Subsequently however, antimalaria policies were neglected and investment in control programs 

decreased.  Beginning in 1980 the curve of the number of cases steadily increased, reaching its 

highest peak in 1999. 

 

The use of DDT was discontinued in 1988 and associated with the reintroduction and 

dispersion of An. darlingi, a very efficient anthropophilic vector, resulted in a 50-fold malaria 

increase in Loreto over the next decade. In the early 1990s, malaria incidence increased caused 

by P. falciparum in the Amazon, reached around 30% of the cases; linked to An. darlingi 

presence in the department (72).  
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In 1998, the number of confirmed cases brutally skyrocketed, from 33,705 in 1991 to 247,229 

in 1999 (Figure 5). It was the highest peak in the last 77 years (15), this event was related to 

the strong (El Niño Southern Oscillation, ENSO) that, is a climatic pattern consisting of the 

oscillation of the meteorological parameters of the equatorial Pacific. It has two opposite 

phases that influence malaria cases, one of warming and rain in the eastern Pacific, known as 

the El Niño phenomenon, and the other phase of cooling, called La Niña. This warming and 

rain conditions affects the north coast malaria transmission zone creating thousands of puddles 

that became vector breeding sites (species: Anopheles, Aedes, and Culex), increased in P. 

falciparum, P. vivax, and other infectious diseases such as dengue fever, cholera, and diarrheal 

diseases.  

 

In this period of malaria peak, the number of malaria cases in the north coast (Tumbes, Piura, 

Lambayeque, La Libertad and Ancash) were 84,451 versus in the Amazon (Loreto, San Martin, 

Ucayali y Madre de Dios) were 59,644 (73). These years also P. falciparum chloroquine 

resistance was another condition for the malaria increasing.  

 

Figure 5: Historical trends of reported malaria incidence in Peru: 1939-2014 - MoH. 
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From 2005 to 2011, the comprehensive control activities supported by the Global Fund Malaria 

Project “PAMAFRO” with a community-centered approach, focused in border areas of Peru, 

Colombia, Ecuador, and Venezuela (see the map in appendix), steadily reduced the incidence 

of the disease in Loreto. In 2011, the end of the program, only 11,793 malaria cases were 

reported (6). After PAMAFRO the number of malaria cases rose again due the reduction of 

financial support allocated to malaria control and intervention activities, combined to important 

floods that occurred in 2012, in this year 31706 were reported, and in 2013; 43,737 cases. 

Currently, the country has implemented the Zero Malaria Plan, this program has the goal of 

eradicate the malaria burden in Peru, focusing on the Loreto department, the period proposed 

for this development goes from 2018 to 2030. After this intervention the number of malaria 

cases has been reduced. The Table 3, shows the malaria cases since 2010 and the response of 

the ZMP plan during the last three years. 

 

Table 3: Peruvian malaria cases, P. vivax, P. falciparum, percentage of P. vivax, and deaths for 

years 2010 to 2021, CDC-MoH. 

  Malaria cases   
Years Total P. vivax P. falciparum % Pv Deaths 
2010 29339 27036 2303 92.15 0 
2011 23060 20421 2639 88.55 0 
2012 31706 27702 4002 87.37 8 
2013 48887 40949 7929 83.76 10 
2014 64652 54361 10274 84.08 4 
2015 63187 50524 12654 79.96 5 
2016 56577 41256 15305 72.92 7 
2017 54309 41328 12978 76.10 10 
2018 44406 35199 9207 79.27 8 
2019 25871 19227 4642 74.32 2 
2020 15520 12388 3131 79.82 1 
2021 17658 14170 3487 80.25 6 

 

 

In Peru, microscopy is the main laboratory diagnostic method. In 2010 rapid 

diagnostic tests (RDTs) were introduced as a tool for malaria brigades. These are portable and 

simple to use and do not require laboratory infrastructure or complicated apparatus, facilitating 

their use by community agents in remote areas, and obtaining results in short time. RTD has 

good sensitivity and specificity in detecting the Plasmodium histidine rich protein 2 (HRP2) 

for P. falciparum.  However for Plasmodium lactate dehydrogenase (pLDH) of P. vivax it 

depends on the product, i.e., OptiMAL has high sensitivity (74). ZMP use the SD Bioline 
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Malaria Ag P.f/P.v antigen test that has high values in both parameters, sensitivity and 

specificity. For P. falciparum 99.7% and for P. vivax 95.5% the specificity is 99.3%. 

 

According to technical standards for malaria treatment are used in Peru: 

For P. vivax uncomplicated: three days of Chloroquine (250 mg.) and seven days of Primaquine 

(7.5 mg.). For P. falciparum uncomplicated: Artesunate (AS) 250 mg for three days + 

Mefloquine (MQ) 205 mg for two days and primaquine (PQ) 15 mg on the first day. However, 

in case of resistance there are three elective schemes, depending on the level of response for 

the treatment of P. falciparum, based on (a) Sulfadoxine / Pyrimethamine + Artesunate; (b) 2. 

Mefloquine + Artesunate, and, (c) Quinine + Clindamycin + Primaquine.  (75) 

 

2.1.4.1. Malaria and coronavirus 

 

In early 2020 the COVID-19 pandemic reached Peru. The pandemic, and the government’s 

reaction to it, severely affected the provision of, and access to malaria health services. On 

March 15, 2020, the Peruvian government declared a national emergency due to the COVID-

19 outbreak (Decree No. 044-2020-PCM). Restrictions placed on commercial activity. Only 

essential services, such as commercial establishments for food, pharmaceuticals establishments 

and health services remained active. Transport by air, sea, river, and land was suspended.  

 

Malaria program strategies to control and eradicate disease include delivering insecticide-

treated nets (ITNs), indoor residual spraying (IRS), early diagnosis, treatment, active case 

finding, and surveillance. The mechanisms to deliver these interventions depends on health 

workers, community agents and access to services. However, due to COVID-19 restrictions, 

Peru faced (1) reduction in the number of malaria healthcare workers, (2) overburden of health 

personnel by COVID-19 related activities, (3) closure of laboratories and the cessation of 

malaria diagnostic and research activities, (4) interruption of the activities carried out by 

community health agents and volunteers, and (5) reduction in active case finding due to the 

unavailability of proper personal protection equipment (PPE). Also, people at home were 

dominated by fear, especially for attending health facilities. 

 

During the COVID-19 pandemic, malaria was often misdiagnosed, or coinfection overlooked, 

particularly when clinicians relied primarily on symptoms since malaria and COVID-19 can 
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have common symptoms i.e., fever, breathing difficulties, headache and tiredness (76). These 

conditions affected malaria data capture, and the number of cases fell. In 2019, 25,871 malaria 

cases were reported in the country. In 2020, 15,652 cases, a decrease of 35.65% compared to 

the previous year. In 2021, 17,658 cases were reported, a reduction of 27.40% compared to 

2019 (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6: Number of malaria cases in Peru, by epidemiology weeks, from 2016 until 2021  

(a) P. vivax, (b) P. falciparum CDC – MoH – Peru. 
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Historically, when malaria control has been neglected, the disease springs back. Therefore, it 

is a necessary to continue all malaria control activities and research projects, while maintaining 

necessary restrictions and procedures to address the COVID-19 epidemic.  
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2.1.4.2. Malaria status in Loreto  

 

In the last three years, malaria cases decreased in Loreto. In (2019) 24,325 malaria cases were 

reported, 19,607 (80.6%) were by P. vivax and 4,716 (19.4%) of P. falciparum (Pv/Pf 4.15); 

the cases were concentrated in 47/53 districts (Map 6).  

 

In 2020. 13,398 malaria cases were reported, 10,384 (77.5%) were by P. vivax and 3,014 

(22.5%) of P. falciparum (Pv/Pf 4.45); the cases were concentrated in 42/53 districts (Map 6). 

 

 In 2021. 15,490 malaria cases were reported, 11,955 (77.2%) were by P. vivax and 3,534 

(22.8%) of P. falciparum (Pv/Pf 3.38); the cases were concentrated in 42/53 districts (Map 6). 

 

 

 

 

 

Map 6: Loreto malaria incidence by districts (53) and number de districts affected by year from 2008 

to 2021. Data from National Center for Epidemiology, Disease Prevention and Control CDC - Peru. 



 
 

30 
 

In the last 14 years districts with mayor number of malaria  cases were: San Juan Bautista, 

Andoas, Tigre, Pastaza, Napo, Trompeteros, Yavari, Ramon Castilla, Iquitos, Punchana, 

Mazan, Alto Nanay, Urarinas, Nauta, Balsapuerto, Torres Causana (Figure 7) and districts with 

high average API were Soplin, Alto nanay, Pastaza, Tigre, Andoas, Yaquerana, Trompeteros, 

Yavari, Torres causana, Napo, Alto tapiche, Mazan, Urarinas, Putumayo, Morona, were the 

districts with mayor number of malaria cases in Loreto. 

 

 

Before Zero Malaria Plan intervention, districts that reported 80% of malaria cases were:  

Andoas (10 096 -19.06%), San Juan Bautista (6 728 - 12.70%); Tigre (6 113 - 11.54%), Napo 

(4,203 - 7.93%), Pastaza (3,630 -6.85%), Trompeteros (3,348 - 6.32%), Urarinas (2,621 - 

4.95%), Iquitos (2,238 - 4.22%), Punchana (1,508 - 2.85%), Alto Nanay (1,455 - 2.75%), 

Torres Causana (1,431 - 2.70%).  

 

After ZMP interventions, in 2019, the districts that reported 80% of malaria cases were: Andoas 

(5,723 - 26.05%), Trompeteros (1,977 - 8.99%), Tigre (1,940 - 8.83%), San Juan Bautista 

(1,580 - 7.19%), Pastaza (1,327 - 6.04%), Urarinas (842 - 3.83%), Yavari (817 - 3.72%), Iquitos 

(721 - 3.28%), Alto Nanay (716 - 3.26%), Balsapuerto (637 - 2.9%), Mazan (620 - 2.82%), 

Napo (596 - 2.71%). 

Figure 7: Loreto districts with malaria cases (2008 -2021). CDC - MoH - Peru. 
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2.1.4.3. Malaria control program 

 

Recent activities against malaria in Peru are developing under the “Zero Malaria Plan” a 

taskforce between Peruvian Ministry of Health, Regional Health Direction (DIRESA - Loreto) 

and PAHO / WHO guidelines, is operative from 2017 (77) although intervention activities 

started by the end of 2018. This program with emphasis in Loreto, promotes a management 

model of malaria based on community health agents (CHA) with an integral, intercultural and 

health services approach with the objective of eliminating malaria by the end of 2030. The 

strategy is based on: (1) To ensure the quality of the diagnosis and treatment of malaria in 

health facilities at the community level, reducing the inequality of access and ensuring the 

multisectoral participation of the different levels of government in the control and elimination. 

(2) To reduce the risk of malaria transmission through the implementation of preventive 

interventions with community workers. (3) To promote healthy lifestyles with actions to 

eradicate malaria. (4) To optimize the malaria management through robust and responsive 

surveillance systems (24). 

 

This program will be developed in three phases, (1) phase I, denominated malaria control, in 

which it is intended to reduce clinical malaria by at least 70% over the three-year period, and 

(2) phase II, towards the elimination of malaria, in which it is intended to drastically reduce 

asymptomatic and sub patent malaria, in which new strategies will be used (i.e. population 

treatment, with variants of mass treatment of the reservoirs of endemic populations such as 

FST) and new diagnostic methods, the goal is to reduce malaria in 99%, (3) phase III, of 

elimination of residual malaria, in which the strategies and methods tested in phase II will be 

used in scenarios of residual malaria.  

 

In this brief period of interventions before the COVID-19, the program has succeeded in 

reducing cases to less than half in the country (Figure 8). In Loreto, the number of cases were 

reduced. However, Tumbes (department in the northwest part of Peru had an outbreak by P. 

vivax with 34 cases reported, of which 22 were indigenous and 12 imported from Venezuela. 

  

This program addresses all learned by its predecessors’ programs, the previous was 

PAMAFRO with a community approach (2005 - 2011) emerged as an initiative of the Andean 

Area Health Ministers meeting in Bolivia 2002, with the perspective of initiating the social 

integration of the Andean countries. The project was financed by Global Fund to fight AIDS, 
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Figure 8: Loreto trend of reported malaria incidence (1994-2019). CDC - MoH. 

tuberculosis and malaria was, for a total of $ 26 million in 5 years of execution. The scope of 

action of the PAMAFRO Project includes various areas, located at the borders from Colombia, 

Ecuador, Peru and Venezuela, which are characterized by sociocultural and ethnic diversity, 

by conditions of poverty and socio-environmental problems that facilitate the malaria 

transmission see PAMAFRO scope in Appendix B. 
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2.1.4.4. Malaria case detection  

 

The Peruvian health system has two sectors, the public and the private. The public sector is 

divided into the subsidized and the direct contributory. This system is segmented and 

fragmented. About 20% of the population does not have any health coverage. Social security 

covers only 25% of the people, especially the public and private employees; 5% have private 

health insurance, and 50% have state healthcare. 

 

Loreto has a low supply of health professionals and services (Table 4), and the access to health 

services is low because of large distances and sparse populations (75). The provinces of Alto 

Amazonas, Ucayali, Maynas, and Requena are most connected to health services, while Ramon 

Castilla, Datem del Maranon and Loreto have less connection to supplies.  

 

Table 4: Supply and health workers in Peru and Loreto, year 2014 and 2015. (78)   

Health Supply 
Indicator 

Years Peru Loreto 
ratio Supply 
to Demand 

*(Peru) 

ratio Supply 
to Demand * 

(Loreto) 

Health 
workers 

Doctors 

2015 

38065 533 1.219 0.543 
Nurses 39979 796 1.280 0.811 
Obstetricians 14445 425 0.462 0.433 
Dentists 5754 144 0.184 0.147 

Health 
facilities 

Hospital 

2014 

622 15 0.020 0.015 

Health 
Centers 

2519 98 0.081 0.100 

Health post 7719 373 0.247 0.380 
*Reference populations (adjusted census 2017 population censed + omitted people).  
Loreto pop.: 981,897. Peruvian pop.: 31’237,385 

 

The ministry of Health MoH, organizes the Peruvian malaria surveillance system. Detected 

malaria cases are reported in the NOTI web system. As we mentioned, the national surveillance 

system is based on the number of reported malaria cases (conventionally, confirmed by light 

microscopy) from a passive case detection strategy.  

 

There are three ways in which malaria surveillance system detects and capture the information 

to the NOTI web. 

 

1. Febrile patient, diagnostic captured for the community health agent (CHA). When a febrile 

patient is identified, the CHA takes a thick smear sample and a rapid diagnostic test (RDT). If 
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the RDT is positive, start treatment. If the test is negative, wait for the thick blood smear result, 

which has been previously sent to a health service with a laboratory, through the contact with 

the closest primary health worker. 

 

2. Febrile patient in the health establishment without laboratory: the diagnostic is captured by 

the primary health worker (PHW). The PHW performs the rapid diagnostic test (RDT) and 

takes the thick blood smear. If the RDT is positive, the treatment is started. 

 

3. Febrile patient in the health establishment with Laboratory. When a febrile patient comes to 

the health center, this person is first evaluated in the Triage environment. In this place, his vital 

signs are taken, his medical file is opened (or his existing medical file is searched if the person 

has one). If a thick blood test is positive, treatment starts. 

 

In each scenario, the use of the epidemiological file by health workers is mandatory (Figure 9), 

in physical or digital format. This format captures the specific and complementary information 

of the confirmed malaria cases by thick blood smear. The responsibility of the fulfillment of 

this format is from the closest health service to the malaria case, also called for surveillance 

purposes the notifying service or notifying point.     

 

In accordance with “Global technical strategy for malaria 2016 – 2030” (WHO), the Peruvian 

surveillance system is part of the intervention that means each detected case is promptly treated 

in order to prevent secondary infections.  
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Figure 9: Weekly record of individual epidemiological notification. CDC – MoH. 

 
The notification files are encoded into the NOTI web system in the data entry points in health 

services with internet and computer facilities, following a weekly calendar. These documents 

arrive to the entry points by:  

- Physical shipment of the format to the data entry points 

- Dictated by radio messages. 

- Dictated by cell phone from areas with telephone coverage in case the notifying point does 

not have telephone service.  

- Dictation via satellite phone (“Gilat”)  

- Sending messages or photos of the epidemiological notification by instant messaging service 

in places where it is possible to obtain an internet connection. 

The data registered in the NOTI web system is administered by the CDC-MoH, NHI. 
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2.2. Geospatial tools  

Geospatial tools are the set of elements and techniques that allow the analysis of reality from 

the knowledge of the geographical space provided for geospatial data. Geospatial systems 

express its results on various types of maps, showing the shape, size, distribution and other 

aspects of the phenomena analyzed. This thesis covers both important geo technics i.e., RS and 

GIS used in this research. 

 

2.2.1. Remote Sensing 

 

Remote sensing is the science and art of obtaining information about an object, area, or 

phenomenon by a device that is not in contact with the object (79) (RS) enables scientists to 

study the biotic and abiotic components of the earth surface (80). The relationship between the 

sensor and the land coverage is expressed as the emissivity of electromagnetic radiation. That 

is the ratio between the surface emissivity and the perfect black body emissivity at the same 

temperature. In contrast, that reflectivity is the ratio of the incident flow and the flow reflected 

by a surface (69). Depending on the portion of the electromagnetic spectrum, it will 

predominantly be reflection (near-infrared - 0.7 to 1.3 µm) or emission (thermal infrared - 8 to 

14 µm). In the middle infrared - 1.3 to 8 µm the signal is mixed. These values are used to 

capture earth information or to interpret the information. (81).  

 

The history of remote sensing goes back to the first aerial observation platforms: hot air 

balloons and the invention of photography in the XIX century. The year 1957 is often 

considered as the entry of remote sensing into the modern era, launched of Sputnik, the first 

artificial satellite set in orbit around the Earth by the Soviet Union.  

 

Earth Observation (EO) is based on two modes: (1) Passive or optic sensors (which use the sun 

radiation), or active sensors, also called radar, that generates its energy (81,82). The first optical 

satellite explicitly dedicated to remote sensing was the American LANDSAT 1, operational 

between 1972 and early 1978. The last of the series, the LANDSAT 8 Landsat Data Continuity 

Mission (LDCM), was launched into space on February 11th, 2013. In the field of radar, one 

of the main milestones for civil applications was the launch of the European Remote Sensing 

Satellite 1 (ERS 1) in 1991. Currently, there are many sensors orbiting the Earth in various 

resolutions and revisit period (referring to the periodicity with which a sensor captures images 
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of the same area). Optical and radar sensors allow the best access to spatial information or earth 

observation (EO) and expand their applications' range of possibilities (83).  

 

The elements of the data acquisition process are in Figure 10: 

(a) Sources of energy, 

(b) propagation of energy through the atmosphere,  

(c) energy interactions with earth surface features,  

(d) retransmission of energy through the atmosphere,  

(e) airborne and/or spaceborne sensors,  

(f) resulting in the generation of sensor data in pictorial and/or digital form, 

(g) interpretation and analysis, involves examining the data using various viewing and 

interpretation devices. With the aid of the reference data, analyst extracts information 

about the type, extent, location, and condition of the various resources over sensor data 

were collected.  

(h) this information is compiled, generally, in the form of hardcopy maps and tables or as 

computer files that can be merged with other "layers" of information in a geographic 

information system (GIS).  

(i) Finally, the information is presented to users who apply it to their decision making 

process. (79) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The flow of electromagnetic remote sensing of earth resources. (79) 
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2.2.1.2. Optic and radar sensors 

 

Optical sensors: is a sensor that requires external power to operate. Cameras and multispectral 

scanners, for example, are passive sensors (81,82). The visible light is only a limited range of 

the electromagnetic spectrum, and most satellite equipment is also sensitive to other portions 

of the spectrum. For example, it is possible to discriminate surface materials based on 

electromagnetic emissions that the human eye cannot detect (Adams and Huyck, 2006, 

Sherbinin, 2002). Optical remote sensing has offered data for over four decades, with a few 

systems dominating anthropogenic land use and cover change LULC analyses due to the length 

of consistent datasets or the ease of availability (e.g., Landsat since 1972, the Landsat Thematic 

Mapper since 1983, Satellite Pour l'Observation de la Terre (SPOT) since the mid-1980s and 

the Moderate Resolution Imaging Spectroradiometer (MODIS) since 1999) (Jensen 2014).   

 

Radar sensor: generates its electric signal and does not require a power source. Several 

countries secretly developed radar technology before and during World War II (Donnay, 2001, 

Uwe, 2010). The term RADAR was coined in 1940 by the United States Navy as an acronym 

for Radio detection and range. This object detection system emits radio waves to determine 

objects' range, altitude, direction, or speed. The signal emitted travels through the atmosphere, 

reflects on the surface of the Earth or against an object in its path, and returns to the sensor, 

which measures signal travel time, strength, and wavelength response. Synthetic Aperture 

Radar (SAR), for example, uses long-wave signal, which can penetrate clouds or bad weather 

conditions (84). Standard surveillance radars are typically found in airports or on ships. They 

make it possible to detect the presence of passive objects (called targets) employing echoes 

which they send back in response to the emission of an electromagnetic pulse (84) Another 

example of radar sensors, i.e. (Light Detection and Ranging LIDAR and Synthetic aperture 

sonar) uses a pulsed laser beam. Distance to object is determined by measuring the delay time 

between the pulse emission and its detection through the reflected signal. 

 

Landsat and MODIS are the most widely used optical sensors in the Americas. In 2014, the 

National Aerospace Research and Development Commission CONIDA launched the first 

Peruvian optical satellite, Perusat-1, which can capture high multispectral image resolution, 

was developed by the French company Airbus for military and civil applications within the 

scope of Peruvian territory. Perusat-1 has a spatial resolution of 0.7 m. in panchromatic and 2.8 
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m. in multispectral mode, performance under four spectral bands (blue, red, green, and NIR) 

(85).The use of radar growing, especially in Argentina through the SAOCOM 1A sensor, under 

the National Space Activities Commission CONAE, is an advantage to managing the EO 

principally, where cloud coverage makes acquiring valuable optical data challenging. Another 

satellite used in the region is Sentinel, which offers radar images (Sentinel-1) and interesting 

middle resolution optical data (Sentinel-2), which are used according to the applications and 

investigations needs. 
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2.2.2. Geographic Information System 

 

Several definitions have been proposed for geographical information systems (GIS) based on 

their functions, components, and uses. Antenucci et al. (1991) defined GIS as a “computer 

system that stores and links nongraphic attributes or geographically referenced data with 

graphic map features to allow a wide range of information processing and display operations 

as well as map production, analysis, and modeling.” Parr (1991) defined GIS according to its 

components, which include: (a) data input and editing, (b) data management, (c) data query 

and retrieval, (d) analysis, modeling, and synthesis, and (e) data display and output functions. 

Cowen (1990) viewed GIS as integrating spatial data for decision-support systems. 

 

Geographical Information System (GIS) developed in the early 1980s, a computational 

approach to managing geographic data. This technological revolution generated a notable 

impact on geography by allowing the automation of numerous procedures. GIS has become a 

cornerstone of geoinformatics and has gained prestige as computational tool to manipulate 

geographic data from numerous sources (86,87).  

 

Remote Sensing and GIS has benefited from significant development in recent years. Its 

applications have been directly linked to technological development (2). The potential of GIS 

in medical research is widely acknowledged. GIS inspires hypotheses because of its capability 

to (i) overlay and integrate spatial information and (ii) handle and process large amounts of 

data, thus substantiating quantitative analyses in disease ecology and health care delivery. 

While this technology requires strict measures to ensure data quality, it also creates new 

possibilities in ecological associative analysis (Verhasselt 1993). The ability to manage, 

manipulate, and analyze large quantities of spatial data more quickly and with less effort than 

conventional methods also opens up new avenues of research in public health, including health 

care management and environmental risk assessment (28). 
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2.2.2.1.  Raster and vector models 

 

Vector models focus on the precise location of the geographical elements in space, and they 

assume that the phenomena are discrete, i.e., they are precisely geographically delimited. In 

these models, each geographical feature can be represented by points, lines or polygons. Each 

point is spatially located by a pair of x and y coordinates in a given map projection system. 

Each feature is associated with a row in a database containing its attributes. A unique identifier 

links both databases, the spatial coordinates, and the descriptive table (2) (Figure 11-a) 

 

Raster models rely on two-dimensional matrices of cells (commonly referred to as pixels). Each 

raster layer is associated with a parameter of interest, such as altitude or mean annual 

temperature, and each pixel from the layer is given a corresponding value. The parameter’s 

value can be derived from aerial pictures or electromagnetic emissions of different 

wavelengths. To limit the file size, the result is often recorded as 8-bit images, which offer 256 

levels for each output parameter (Figure 11-b) 

  

Figure 11: Representation of (a) vectorial model (b) raster model, from the same area of 

visualization and analyzed. Adapted from the book Encyclopedia of GIS. 
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Advantages and disadvantages using vectorial or raster models.  

 

Vector model 

 

Advantages 

 

 Uses few data volumes. 

 Are more accurate than a raster 

when calculating surfaces and 

distances. 

 Allows for more precise limits as 

they are polygons, lines, and 

points allowing neighborhood 

relationships between elements. 

 Are more used and shared because 

of their economic cost. 

 Vector files are easier to develop 

topological rules and conditions 

compared to raster files, but on the 

contrary, they generate topological 

problems more easily (overlaps 

between elements of the same 

layer). 

 

Disadvantages: 
 

 The location of each vertex needs 

to be stored explicitly.  

 Continuous data e.g., elevation, 

and temperature, are not 

effectively represented in vector 

form. Interpolation is required for 

these data layers. 

 

Raster model  

 

Advantages 

 

 Uses vast files. 

 The inherent nature of raster maps, 

e.g., one attribute maps, is more 

suited to mathematical modeling 

and analyses. 

calculations, algorithms, and 

quantitative processing can be 

simple (map algebra).  

 Simulate better reality three-

dimensionally. 

 Discrete data, e.g., forest 

coverage, is accommodated 

equally well as continuous data, 

facilitating the integration of 

various data types. 

 
 
 
 

Disadvantages: 
 

 It is especially difficult to 
adequately represent linear 
features depending on the cell 
resolution.  

 Output maps from raster models 
do not conform to high-quality 
cartographic representation 
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Both models were used in this thesis, the raster to work with the images, and the vectorial to 

make maps. 

2.3. The art of mapping  

 

A map is a two-dimensional graphic representation of the earth. It is a schematic drawing or 

layout that represents the characteristics of a given region, such as its dimensions, coordinates, 

geographical elements, or other relevant aspects. Maps may represent areas of different sizes. 

They can be local, regional, or global (88). 

 

“Maps are essential across a wide swathe of science, from ecology and anthropology to 

sociology and climatology, and today’s researchers have a rich variety of inexpensive or free 

tools to choose from” (89).  

 

There are a lot of software currently available of computer aided mapping e.g., QGIS, GRASS-

SIG, ArcGIS, SAGA-SIG, Open Jump, Maptitud, Geoda, SIGEPI Google Earth, etc. Some of 

them are commercial and others Open Source (OS). This software allows users to integrate 

information with spatial data. Since John Snow's cholera map (1855), many researchers have 

used geo-tools to study about the diseases, in which the event has a spatial position and it can 

be georeferenced enabling to know about the relationship between the event and its 

environment. Mapping could also be used to draw a point where the people work, to draw a 

line to describe their weekly commutes, or use a choropleth map to represents rates or indices.  

 

One field in which mapping is currently growing, is maps cloud service, e.g., Carto, Fusion 

tables, Map box, ArcGIS online and, Google Earth Engine GEE. GEE combines a multi-

petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis 

capabilities. With this tool it is possible access to huge collections of remote sensing data and 

use them freely.  

 

Mapping can show the spatial distribution of health infrastructure such us, location of hospitals, 

health centers, health posts, laboratories. Mapping also can show areas of contamination by 

pesticides, radiation, or other risk areas. 
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During the coronavirus pandemic, we witnessed the great utility of the maps, they were made 

available in different repositories worldwide, and we were able to observe from global maps to 

local maps, accompanied by statistical information. In many cases, this generates map-based 

alerts to indicate if there is an infected person in our area. The related technology for mapping 

such as, remote sensing, geographic information system, GPS and database makes the mapping 

and geospatial analysis more powerful. Smartphones also played an important role collecting 

and showing data, using the integrated tool (GPS) or through apps developed by the 

government or private efforts.   

 

2.3.1. Types of maps 

 

There are many types of maps, cartographic, topographic, thematic, etcetera. According its 

representation theses could be:  

 

Punctual: These maps helps to represent schools, health establishments, localities, industries 

and an others at specific points or coordinates (x,y) on the map. Its representation could be 

simple points or proportional according to its magnitude. 

 

Linear: These types of maps are helpful to represent flows, connections between points 

(networks), and maps of isolines or equal magnitude, e.g. (the same height, rainfall, 

temperature, pressure, or rainfall). 

 

Surface: These types of maps show information of areas in two ways, such as, choropleth and 

chorochromatic 

 

a. Choropleth shows the same values by geopolitical division, e.g., incidence maps by the 

department, province of districts. 

b.   Chorochromatic. The color is used to define homogeneous areas, e.g., physical maps. 
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2.3.1. Disease mapping 

 

Map makes visible the development and nature of any phenomenon regarding its geographical 

distribution (90). Disease maps, like other types of map, “convey factual information” and 

stimulate the formation of causal hypotheses (Howe 1989). One of the most famous examples 

of map-driven hypothesis was based on the 1855 'spot map' produced by John Snow, which 

represented the distribution of cholera cases around the Broad Street (London) water pump 

during September 1854-55 (Figure 12). 

 

At that time, it was thought that cholera was spread by ‘bad air’ emitted from rotting organic 

matter. Snow was skeptical about this hypothesis, and he wondered whether sewage dumped 

into rivers and cesspools in the vicinity of water pump could contaminate the water supplies 

and, cause cholera outbreaks. He used local hospital and public records and asked residents if 

they had drunk water from the suspicious pump. Using this information, he created a spot map 

to illustrate the cluster of cases around the pump. On September 7th, 1854, Snow presented the 

map to local officials and convinced them to remove the handle from the pump. The number 

of cases quickly dropped, and the cholera outbreak eventually ended. For this study, Snow is 

now considered the father of modern epidemiology (91).  

Epidemiological maps may reveal spatial variations and distribution patterns that remain 

unsuspected from the examination of statistical tables (90). They can support decision making 

regarding the allocation of health services, and for the evaluation and monitoring of 

interventions. Maps are also a key research tool in analytical epidemiology and medical 

geography. Table 5 shows potential links between different types of epidemiological maps and 

diseases. 
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Types of maps in used in epidemiology and public health:  

 

Maps of classification 

Maps of buffers  

Maps of location allocation 

Maps of density 

Maps of distribution 

Maps of spatial-temporal data 

Maps of spatial autocorrelation  

Maps of risk  

  

Figure 12: Snow's (1855) map of cholera cases and water pumps around Broad Street, London. 
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Table 5: Potential links between type of epidemiological maps and disease (92). 

  

Factor Disease Mapping opportunity 

Vegetation/crop type Malaria Breeding/resting/feeding habitats, crop pesticides vector resistance 

 Chagas disease Palm forest, dry and degraded woodland habitat for triatomines 

 Leishmaniasis Thick forests as vector/reservoir habitat in Americas 

 Schistosomiasis Agricultural association with snails, use of human fertilizer 

 Trypanosomiasis Glossina habitat (forests, around villages, depending on species) 

  Yellow fiver Reservoir (monkey) habitat 

Deforestation Yellow fever Migration of infected human workers into forests where vectors exist 

    Migration of disease reservoirs (monkeys) in search of new habitat 

Forest patches Yellow fever Reservoir (monkey) habitat, migration routes 

Flooding Malaria Mosquito habitat 

  Schistosomiasis Habitat creation for snails 

Permanent water Malaria Breeding habitat for mosquitoes 

 Onchocerciasis Simulium larval habitat 

  Schistosomiasis Snail habitat 

Flooded forest Malaria Mosquito habitat 

Wetlands Cholera Vibrio cholerae associated with inland water 

 Malaria Mosquito habitat 

  Schistosomiasis Snail habitat 

Soil moisture Helminthiases Worm habitat 

 Malaria Vactor breading habitat 

  Schistosomiasis Snail habitat 

Canals Malaria Dry season mosquito-breeding habitat; ponding; leaking water 

 Onchocerciasis Simulium larval habitat 

  Schistosomiasis Snail habitat 

Human settlements Diseases Source of infected humans; populations at risk for transmission in general 

Ocean color Cholera Phytoplankton blooms, nutrients, sediments 

  Red tides   
Sea surface 
temperature Cholera Plankton blooms (cold water upwelling in marine environment) 

Sea surface height Cholera Inland movement of Vibrio-contaminated tidal water 
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2.4. Machine learning  

Machine learning (ML) is area of artificial intelligence that uses computer programs to 

optimize a performance criterion using example data or past experience. ML uses statistics in 

building mathematical models, because the core task is making inference from a sample. Its 

models may be predictive, or descriptive, or both.  

2.4.1. Boosted Regression Trees (BRT) 

 

Boosted regression trees (or gradient boosting machine - GBM) is a semi-supervised machine 

learning ensemble model based on decision trees. Other similar ensembles are the random 

forest and bagging. These ensembles combine the outputs of several “weak building block 

models” (the decision trees), to obtaining a single powerful modeling engine.  

Decision trees (DT) are conceptually simple procedures that can be used for regression and 

classification applications. In the context of regression, as this is the case for the current 

application, given a response variable Y, modeled by a function of many explanatory variables 

or predictors (X1, X2, ..., Xn), decision trees work by partitioning the regression predictor 

space (also known as the feature space) into distinct and non-overlapping regions via 

successive binary splits of the explanatory variables. It works on one predictor at each step and 

fits a constant value (a mean response value) for the (training) data observations in each of 

these regions. The splitting variables and split points are chosen to obtain the best fit to the 

data. This procedure continues repeated successively on the residuals left by the previous tree 

until some stopping rule is reached. 

A Boosted Regression Tree model uses a boosting algorithm to sequentially generate and 

combine many successive trees, with each new tree being fitted to the residuals from the 

previous model, obtaining smaller residuals (and best fit to the data) at each stage. Thus, 

improving predictive performance as more trees are added to the ensemble (95,96). Given that 

each new tree explores predictor spaces left by previous trees, if enough trees are added, a BRT 

model has the flexibility to fit nonlinear functional forms of predictor variables and to 

automatically handle complex interactions between them (Elith, 2008). For example, compared 

to parametric regression or generalized linear models, BRT models have been increasingly 

used in an extensive range of studies, including in remote sensing of land cover/land use 

(LC/LU) classification and epidemiologic studies using ecological data (97,98). However, this 



 
 

49 
 

powerful modeling tool has some disadvantages that need to be properly addressed. The first 

is the risk of overfitting. Another difficulty with BRT is summarizing and communicating the 

results. Because BRT models, and other supervised machine learning models do not provide a 

formula like a regression equation and individual parameter estimations like the “betas” 

estimated in typical regression models, no significance or confidence intervals are associated 

with the individual predictors included in the model. The interpretability and confidence about 

the outputs or predictions obtained are compromised. To uncover the relationship between 

predictors and the response, some summaries of predictor importance and visualization tools 

need to be used such as partial dependence plots (PDP). 
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2.4.4. Partial Dependence Plots (PDPs) 

 

Partial dependence plots help to visualize the functional form of the marginal effect on the 

response from a subset of predictor variables, usually one variable (less frequently two), 

keeping constant all other explanatory variables of the model. These marginal effects are 

generated by averaging the predicted values of the model at given fixed values in the range of 

a particular predictor, obtaining a straightforward function that links the prediction averages to 

that predictor, interactions with other explanatory variables included. The Partial dependence 

plots can show, for instance, whether the relationship between the response and a given 

predictor is linear, monotonic, or more complex. For instance, partial dependence plots display 

a linear (straight line) relationship if used in the context of a linear regression model. 

  

It is useful to understand the PDPs in relation to the Individual conditional expectation plot 

(ICE plot). ICE plots display the estimated relationship between the predicted response and a 

predictor variable of interest for each unit of analysis in the data, resulting several lines, one 

per unit. Those lines represent all the heterogeneity of the predicted responses in the data for 

the range of values of the given predictor variable and the observed values of the other 

predictors. The PDP is just the averaging of the corresponding ICE curves across all those units  

see Figure 13.  
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It is worth noting that PDP and ICE, although useful to visualize and possibly make causal 

interpretations about the black-box models, should not replace a randomized controlled 

experiment or a carefully designed observational study to establish causal relationships. When 

PDPs yield unexpected results, it is crucial to explore the data and look for the root of spurious 

associations such as unmeasured confounding factors (99). 

 

2.4.5. Cross-validation 

 

There are numerous procedures we can use to fine-tune model complexity. One of these 

methods is cross-validation (CV). We cannot calculate the bias and variance for a model, but 

we can calculate the total error.  

Figure 13: Partial dependence plot (red line) and ICE plot (black lines). PDP is the average of the 

predicted all the ICE lines for the range of values of the predictor variable on the x axis. 
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CV is a procedure that employs rotating portions of the data to do repetitive training and testing 

of a model (Figure 14). It is frequently used in the context of supervised machine learning 

aimed at obtaining estimates of the predictive performance of the model. If there is a large 

validation dataset, CV is the best approach (1).  

 

 

 

 

 

 

 

 Total instances: 25 

 Value of k: 5  

 

 No. 

Iteration 

 

Training set observations 

Testing set 
observations 

1 [ 5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24] [1 2 3 4 5] 

2 [ 1  2  3  4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]    [6 7 8 9 10] 

3 [ 1  2  3  4  5  6  7  8  9 15 16 17 18 19 20 21 22 23 24 25]    [11 12 13 14 15] 

4 [ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 20 21 22 23 24 25]    [16 17 18 19 20] 

5 [ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20]    [21 22 23 24 25] 

    

   

  

Figure 14: Example of the training and evaluation subsets generated in k-fold cross-validation. From a 
total of 25 elements. In the first iteration, we use the first 20 percent of data for evaluation and the 
remaining  80 percent for training. 
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Chapter 3: Methodology 

 
This chapter describes the study area, the process to 
achieve the predictors, the use of boosted regression tree 
models and the risk map elaboration.   
 

 

This ecological study developed in the Loreto department has the objective of assess, predict, 

and map the risk of co-endemic P. vivax and P. falciparum occurrence at the village level in 

the Peruvian Amazon, using boosted regression tree (BRT) models based on social and 

environmental predictors derived from satellite imagery.  

BRT model was used for both explanation and predict malaria risk. BRT is well known in the 

field of ecology. Some potentialities are that (1) it makes easier to identify which variables has 

a better performance into the model, (2) allows flexible modeling of the “functional form” 

between the explanatory variables and the result. Also, BRT allows modeling the interactions 

between explanatory variables.  

 

3.1. Study area 

 

Loreto, located in the northeast part of Peru between 61 to 220 meters above sea level, is the 

largest department in Peru (368,851.95 km2, 28.7% of the national territory). Contradictorily, 

it has a low population, a total of 981,897 inhabitants lives in the department, according with 

the last Peruvian census (2017). The major part is concentrated in Iquitos, the capital. 

Approximately 40% of them aged below 15 years, and ~one third residing in rural areas (100). 

Geopolitically is divided in 8 provinces (Datem del Maranon, Alto Amazonas, Ucayali, 

Requena, Loreto, Maynas, Mariscal Ramon Castilla and Putumayo) (14). Loreto has an 

extensive fluvial network connecting to the Amazon River (Map 7) boats are the primary mode 

of transport. There is one paved road (Iquitos - Nauta 93Km.) and some other path roads 

(Saramiriza - Doce de Octubre 126 Km.) and (Yurimaguas - Jeberos 8.7Km.).  

 

Loreto has a tropical climate, with a rainy season from November to May and a dry season 

from June to October. Precipitation is present throughout the year (cumulative average: 2,500 

mm) with a peak in March (360 mm) and a minimum in July (50-100 mm). Malaria in Loreto 
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has a seasonal pattern, and higher transmission period is usually from February to July. Rural 

villages depend mainly on natural resource exploitation, while commercial activities are more 

important in cities.  

 

 

 

 

 

 

 

 

Map 7: Study area: (a) geographical location of Loreto in South America; (b) administrative division 

of Loreto: department, provinces, and districts; (c) hydrographic map of Loreto; (d) road network, 

rivers, and georeferenced villages. 
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3.2. Malaria incidence and population 

 

All cases confirmed by light microscopy (LM) that were reported by health facilities to the 

conventional surveillance system between 2010 and 2017 (101) were aggregated by village 

and year. Yearly overall and species-specific indices (API) were calculated for each village, 

using the formula: (number of confirmed cases/village population size) x 1,000.  Using 

Peruvian Ministry of Health (MoH) thresholds, villages were classified as being or not being 

at high-risk (i.e., API>10 cases/1,000 people) or very-high-risk (API>50 cases/1,000 people).   

The population villages sizes, obtained from the exceptional National Census of 2012-2013 

(102), was assumed to be uniform during the study period.  

 

3.3. Georeferencing process 

 

Malaria cases by species were aggregated from January 2010 to December 2017 for each 

village. Georeferenced data were verified by visual inspection of randomly selected village 

coordinates over populated areas identified in satellite images. The geographical location of 

villages that reported at least one malaria case during the study period was facilitated by the 

Regional Government of Loreto GOREL as standard village codes (ten-digit) in the malaria 

surveillance system and village georeferencing databases. In case village codes were not found 

in the georeferenced database or those had only village names, its locations were included such 

as matching villages and district names with the support of local health workers 

Of the 2,843 villages included in the official Loreto cartography, we validated and 

georeferenced 2,766 village points in QGIS (103,104). Non-validation was primarily due to 

duplicated names and/or duplicated coordinates. 

 

3.4. Download of predictors 

 

Social and environmental variables previously associated with malaria transmission (105–107) 

were tested as factors for high-risk (IPA>10) or very-high-risk (IPA>50)  (Table 6).  These 

variables were derived from different satellite imagery and mixed products. JavaScript codes 

for Google Earth Engine (GEE)(108) were used to download and process this images at datum 

WGS84 zone 18 (EPSG 4326).  
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Table 6: Predictor and outcome variables used in BRT models. 

 

** API = Confirmed cases in a year *1,000 / total population, * PP: Per-pixel 

Variable description Source information 

Variable Descriptions Units 
Time-
dependent 
variable 

Data collection Source 
Spatial 
resolution 

Temporal 
resolution 

Units 

FC 
Forest cover in a 2-km side 
square grid around village 

% yes (year) UMD/hansen/global_forest_change_2015  year 30m year 
% per output 
grid cell 

FL  
Annual forest loss in a 2-km 
side square grid around 
village 

% yes (year) UMD/hansen/global_forest_change_2015 Year 30m Year 
% per output 
grid cell 

CAR 
Cumulative annual rainfall. 
(average in a 2-km side square 
grid around village) 

mm yes (year) TRMM/3B42  3hrs ~27km 3hrs mm/3hrs x pp 

LST  
Land surface annual mean 
temperature 

oC yes (year) MODIS/006/MOD11A1/LST_Day_1km 1 day 1km 1 day oC 

NDVI  

Normalized difference 
vegetation index. (average in 
a 2-km side square grid 
around village) 

index yes (year) MODIS/006/MOD13Q1 8 days 250m 8 days index 

NDWI  
Normalized difference water 
index. (average in a 2-km side 
square gride around village) 

index yes (year) 
LANDSAT/LC05C01/T1_T1 
LANDSAT/LC08/C01/T1_T1 
LANDSAT/LE07/C01/T1_T1 

16 days 30m 16 days index 

SDR 
Euclidean shortest distance to 
rivers 

kilometers no 
JRC/GSW1_0/GlobalSurfaceWater 
(occurrence) 

JRC/GSW 
Historical data 

30m once kilometers 

TPV  
Travel time to major 
populated villages/towns 

minutes no Oxford/MAP/accessibility_to_cities_2015_v1_0 
Oxford (MAP), 
Google, (JRC) & 
Univ. Twente 

1Km once minutes 

POPD 
Population in a 5-km side 
square grid around village) 

log 
(number 
people) 

no WorldPop/POP  WorldPop 2015 100m once 
people in 
100x100m grid 
cell 

Malaria 
high-risk 

Village with API** > 10 
cases/1,000 people 

binary 
(yes/no) 

yes (year) _ 

Surveillance 
system of 
Peruvian 
ministry of health 

- week reported cases Malaria 
very-high-
risk 

Village with API > 50 
cases/1,000 people 

binary 
(yes/no) 
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Figure 15: List of Landsat images (path and row) WRS-2 covering the study area. 

To download the images for the study area, we first evaluated the use of ENVI (remote sensing 

software) and Semi-Automatic classification plugin for QGIS. However, to cover Loreto 

extension with Landsat images 30-meter spatial resolution 25 scenes were needed (Figure 15), 

this is a big number for processing. Other difficulty was that this area is mostly rainy and cloudy 

and the acquiring clean images using optic sensor was a complex task. These difficulties pushed 

us to evaluate other alternatives. Thus, GEE was chosen because it consists of a multi-petabyte 

analysis-ready data catalog co-located with a high-performance through an Internet-accessible 

application programming interface (API) and an associated web-based interactive development 

environment (IDE) that enables processing in less time than others alternatives evaluated (108). 

 
 
Using GEE, a feature collection encompassing Loreto coordinates was upload at code editor. 

The codes for each predictor were made using Java Script. The Image collections were 

managed assuming the data period, type of sensor. Calibration at Top of Atmosphere (TOA), 

and cloud masking were applied for Landsat images (81,109). The values were calculated 

according to the parameter required for the model according to the flow (Figure 16) after we 

clipped the area and rescaled and reprojected to obtain all images with the same parameters. 
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No time depending 
social variables

Time depending 
environmental variables

U. of Oxford, 
Google, 

U. of Twente 
Esp. res.: 1Km

Units: min

FC FL

No time depending 
environmental 

variable

Zonal grid of 2 km. side around of geocoded villages.

TPV 

GLAD, USGS, 
Google, NASA
Esp. res.: 30 m.

Units: %

GLAD, USGS, 
Google, NASA
Esp. res.: 30 m.

Units: %

CAR

3B42/TRMM, 
NASA, JAXA

Esp. res.: 27 km.
Units: mm/3 hrs.

NDVI

NASA/MODIS
Esp. res.: 250 m.

Units: Index

WorldPop
Esp. res: 100 m
Units: Number of 

habitants/pixel

POBD

JRC/GSW
Esp. Res.: 30 m.

Units: meters

NDWI

NASA/Landsat
Esp. res.: 30 m.

Units: Index

LST
USGS

MOD11A1 
version 6

Esp. res.: 1Km.
Units: ℃

Overlapping 
to calc the sum 

of values in 
zonal 5Km.

NDVI :
 (NIR-RED)
 (NIR+RED)

NDWI 
 (NIR-SWIR)  
(NIR+SWIR)

Preprocessed TOA, DOS
Cloud masking

To calc the
 shortest distance to 

rivers

Distance hub 
algorithm

SDR

(lossyear1 – 
lossyear2) /(100) 

multiplied by 
(lossyear1)

(Lossyear1 - 
treecover2000)

Sum of values

Bernoulli Regression Trees as binary outcomes evaluated at each village for 
malaria API>50/1000 people and malaria API>10/1000 people. 

The optimal learning rate (lr), bag.fraction and tree complexity (tc) were 
determined by testing several combinations with the lowest model deviance. 
Ensuring the same villages in cross-validation groups across models with the 

parameter “fold.vector”

Relative Contributions of variables (RC)

Area Under de Curve (AUC).

Data collection and download  Parameters:  
Datum WGS84 zone 18 (EPSG 4326)

Satellite imagery

Risk Maps

Logarithmic 
scale Applied

accessibility to 

cities 2015 

Figure 16: The flow adopted to capture values from satellite imagery (inputs) to analyze under Boosted 

Regression Trees (BRT) to obtain the malaria risk map. 
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3.5. Description of predictors 

 

Time to major populated villages/towns (TPV): from the accessibility to cities 2015 developed 

by Malaria Atlas Project, University of Oxford, this map enumerates land-based travel time to 

the nearest densely-populated area (between 85 degrees north and 60 degrees south). Densely-

populated areas defined as contiguous areas with 1,500 or more inhabitants per square 

kilometer or most built-up land cover types coincident with a population center of at least 

50,000 inhabitants.  The underlying datasets used to produce the friction map includes roads 

(comprising the first ever global-scale use of Open Street Map and Google roads datasets), 

railways, rivers, lakes, oceans, topographic conditions (slope and elevation), land cover types, 

and national borders. (20).  

 

Population density (POPD): the estimated number of residents in each 100mx100m grid-cell 

in 2015, extracted from WorldPop (https://www.worldpop.org) (110). 

 

Shortest distance to rivers (SDR), estimated using the Global Surface Water (occurrence) map 

(111) from JRC (Joint Research Centre) generated using scenes from Landsat 5, 7, and 8 

acquired between 16 March 1984 and 10 October 2015. A 50% threshold mask was applied in 

GEE to select pixels with a presence of water at least half of the period 1984-2015, capturing 

main and secondary rivers. The shortest distance in (meters) between rivers and villages was 

calculated using the proximity algorithm QGIS v.3.4.2 (112,113).  

 

Forest coverage (FC) and forest loss (FL), time-dependent measures of the area covered by 

trees (%) in each year and the loss of tree coverage compared to the previous year (%), 

calculated from 2000–2018 Global Forest Change data. To register the 2017 forest coverage, 

we used the formula given by (lossyear2017 - lossyear2018) / (100) multiplied by 

(lossyear2017), this process was iterated to complete all the layers for the study period. The 

2015 annual forest loss was calculated applying the formula (lossyear2017 - treecover2000) 

this process was iterated to complete all the layers for the study period 

(https://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.6.html)(114).  
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Cumulative annual rainfall (CAR), generated from NASA GSFC TRMM. The Tropical 

Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan 

Aerospace Exploration Agency (JAXA) designed to monitor and study tropical rainfall. The 

estimated cumulative yearly rainfall (mm/year) calculated from daily 3-hour infrared 

precipitation estimates in product 3B42 of the (TRMM) (115). The 34B2 product contains a 

gridded, TRMM-adjusted, merged infrared precipitation (mm/hr) at 0.25-degree spatial 

resolution and 3 hours of temporal resolution. The band precipitation was selected to add all 

the pixels yearly. 

 

Normalized Difference Water Index (NDWI), a satellite-derived index from the Near-Infrared 

(ρNIR) and Short Wave Infrared (ρSWIR) channels that estimates the amount of water in 

internal leaf structure (116,117). This index was processed from Landsat 5, 7 and 8 T1 

(calibrated TOA, DOS and clouds masking), and calculated as NDWI=(ρNIR-

ρSWIR)/(ρNIR+ρSWIR) (109,118). where ρRED and ρNIR correspond to the reflectance 

measured in the Red band and the Near Infrared band, respectively. Generally, NDVI ranges 

from −1 to +1, where water typically has an NDVI less than 0, bare soil between 0 and 0.1 and 

vegetation greater than 0.1. 

 

Normalized Difference Vegetation Index (NDVI), the estimated fraction of radiation absorbed 

by the vegetation in the red (ρRED) and the near infrared (ρNIR) channels(119), from the 

MODIS/006/MOD13Q1 Moderate Resolution Imaging Spectroradiometer - National 

Aeronautics and Space Administration (NASA). The index was calculated at a spatial 

resolution of 250m. as: NDVI=(ρNIR-ρRED)/(ρNIR+ρRED) (118,120–122). where ρNIR and 

ρSWIR correspond to the reflectance measured in the Near Infrared band and the Shortwave 

Infrared band.  In general, NDWI is positive for all water features and negative for all other 

land features. 

 

Land Surface Temperature (LST), an estimate of the infrared emissivity of the earth in degrees 

Celsius (Emissivity Daily L3 Global, MOD11A1 version 6) (123). Mean values from 365 daily 

layers were used to produce raster images with yearly means.  
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3.6. Extraction of values  

 

Raster images were resampled in 90-meter-pixels using R software version 3.5.1.  Focal 

function that computes an output raster based on the neighborhood information (124) using a 

“moving window” around to the pinpointed village captured a 2 km-side square grid for forest 

coverage, forest loss, rainfall, vegetation index, water index and surface temperature, and in a 

5 km-side square grid for density population. These 2 and 5 km-side thresholds were chosen to 

capture breeding and resting sites within the flight distance for An. darlingi mosquitoes 

(63,125). And to capture the population within and around the village, respectively. Raster 

values in square grids were aggregated as averages for environmental variables and as sums 

for POPD. For accessibility and distance to rivers, the value extracted was the village location 

grids. 

 

3.7. Boosted regression tree analysis 

 

BRT models(126,127) were created using R packages “gbm”(128,129) and “dismo”(130) to 

examine the relationship between potential predictors and the species-specific malaria risk 

status in villages for each study year. Fitting a Bernoulli response distribution to accommodate 

the binary data structure (i.e., villages with or without high-risk of malaria; or, villages with or 

without very-high-risk of malaria). The optimal learning rate (lr), bag.fraction and tree 

complexity (tc) were determined by testing several combinations with the lowest model 

deviance. Ten-fold cross-validation procedures using the “gbm.step” function enabled the 

selection of the optimal number of regression trees for each model, ensuring the same villages 

in cross-validation groups across models with the parameter “fold.vector”. Model predictive 

performance was assessed using cross-validated estimates of the area under the curve (cvAUC) 

of the receiver operating characteristic (ROC), which is a measure of model discriminatory 

efficiency.    

 

The relative contribution (RC) percentage was used to assess the relevance of each variable in 

BRT models. This metric measures how often the predictor is selected for partitioning, 

weighted by the squared model improvement resulting from successive partitions(130,131). 

Partial dependence plots (PDPs) were generated to describe the effect of one predictor on the 

malaria risk status of the villages,after accounting for the average effects of all other 
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predictors(132). In these plots, the vertical axis is the logit of cross-validated predicted 

probability (logit (p)) for high-risk or very-high-risk of malaria, and the horizontal axis is the 

variable predictor with corresponding units. BRT models built with data of a given year were 

assessed in terms of their ability to predict the malaria risk status of villages with data of the 

following year by estimating corresponding testing AUCs (tAUC).  

 

The area under the curve (AUC) of the receiver operating characteristic (ROC) curve assessed 

the performance of BRT models for discriminating the malaria risk status in villages. Each 

cross-validation BRT model built with data of a given year yielded a cross-validated AUC 

(cvAUC), while its model predictions (i.e., predicted probabilities for villages at malaria risk) 

with testing data of the following year allowed for the estimation of a testing AUC (tAUC).  

 

3.8. Risk maps elaboration 

 

BRT models built with 2016 data were tested with 2017 data, obtaining predicted probabilities 

for villages at high-risk (API>10) and villages at very-high-risk (API>50). These predicted 

probabilities were linked to the pinpointed maps with the unique village code. The values were 

classified into four discrete categories (i.e., 0-0.25, 0.251-0.50, 0.511-0.75, 0.751-1.00), and to 

create species-specific risk maps for 2017 using QGIS v.3.4.2-Madeira.  
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Chapter 4: Results 

 

This chapter shows the results of the analysis through the use 
of BRT. The relative contribution of variables, the partial 
dependence plots, the model’s performance. This chapter also 
provides population-based malaria risk maps and risk zones. 

 

 

4.1. Malaria occurrence 

 

Of the 321,210 malaria cases reported to the epidemiological surveillance system in Loreto 

between 2010 and 2017, 311,128 cases (96.9%) occurred among our validated and 

georeferenced 2,766 villages. Non-pinpointed cases (3.1%) could correspond to infections in 

transient populations and/or inaccurate records of the place of the infection.   

Malaria steadily increased in study villages from 10,994 cases in 2011 to 59,257 cases in 2014 

and 58,679 in 2015, after which cases slightly declined to 51,663 in 2017 (Figure 17) P. vivax 

cases always predominated over P. falciparum cases with the maximum ratio in 2012 (Pv/Pf 

5.5) and the minimum ratio in 2016 (Pv/Pf 2.6).  The highest peak occurred earlier for P. vivax 

(2014) than for P. falciparum (2016). The number of villages at high-risk (API>10) and at 

very-high-risk (API>50) followed similar trends.    

 

 

 

 

 

 

 

 

 

Figure 17: Reported malaria cases and number of villages at risk in Loreto from 2010 to 2017. 
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4.2. Relative contributions (RC) of variables 

 

Table 7: Means (M), standard deviations (SD), medians (Mdn), and interquartile ranges (IQR) values 

of relative contributions of predictors for overall malaria, P. vivax, and P. falciparum risk, over the 

study period (2010-2017). 

 

Predictors 
Means  

(M) 

Standard 
Deviations  

(SD) 

Medians  
(Mdn) 

Interquartile 
Ranges  
(IQR) 

CAR 868.80 151.33 876.80 212.21 
POPD 475.27 997.32 289.96 267.26 
TPV 1236.28 902.57 1111.25 1508.26 
NDWI 0.41 0.05 0.40 0.06 
FC 77.05 16.26 79.10 24.57 
NDVI 0.67 0.11 0.69 0.15 
LST 27.76 0.93 27.74 1.14 
SDR 2.12 4.74 0.30 1.28 
FL 1.20 1.56 0.67 1.35 

 

Table 8: Relative contributions (RC) of predictors obtained from yearly BRT models for the overall 

malaria risk over the study period (2010-2017). 

 

Risk Variables 2010 2011 2012 2013 2014 2015 2016 2017 

High risk 
(API>50) 
 

CAR 16.3 20.8 20.4 39.1 41.3 49.3 31.8 32.6 
POPD 14.7 22.8 17.7 8.8 13.5 9.8 12.8 9.2 
TPV 10.4 10.6 11.1 12.1 8.0 9.7 9.2 10.6 
NDWI 18.9 4.8 10.4 7.9 4.8 3.4 10.1 12.7 
FC 12.3 7.4 6.8 5.8 5.5 3.3 6.0 8.7 
NDVI 4.4 13.6 10.9 6.5 5.0 7.2 5.1 6.6 
LST 8.8 8.4 6.8 5.6 7.7 6.5 11.5 7.6 
SDR 8.3 5.0 7.2 4.1 5.5 3.7 7.0 6.3 
FL 5.8 6.6 8.8 10.1 8.8 7.0 6.4 5.8 

Very 
high risk 
(API>50) 
 

CAR 14.4 17.1 20.4 32.0 29.0 36.5 26.4 27.2 
POPD 13.8 19.5 15.3 9.5 11.9 11.0 15.1 12.6 
TPV 10.7 12.7 11.5 13.3 11.2 12.8 11.5 13.4 
NDWI 17.3 7.4 13.1 10.7 9.7 6.2 10.5 10.4 
FC 12.5 6.8 6.8 5.1 7.9 5.4 7.8 8.4 
NDVI 5.9 10.2 9.7 9.4 5.8 9.4 5.6 8.3 
LST 10.9 11.0 9.0 8.4 10.5 8.2 10.5 7.0 
SDR 9.3 8.1 7.1 4.6 5.1 3.5 5.1 6.2 
FL 5.2 7.1 7.1 7.2 8.9 6.9 7.5 6.4 
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Table 9: Relative contributions (RC) of predictors obtained from yearly BRT models for the P. 

vivax malaria risk over the study period (2010-2017). 

 

 

Risk Variables 2010 2011 2012 2013 2014 2015 2016 2017 

High risk 
(API>50) 
 

CAR 17.0 18.5 20.6 38.1 41.8 48.4 33.2 31.7 
POPD 14.9 22.6 17.8 9.2 13.0 9.4 12.2 10.4 
TPV 10.3 11.3 11.0 11.6 7.4 9.7 10.3 11.1 
NDWI 18.9 5.3 11.5 8.0 5.3 3.8 9.5 12.0 
FC 11.9 7.1 6.3 5.8 5.4 3.1 5.5 8.2 
NDVI 5.1 12.1 10.5 6.9 4.8 7.4 4.4 7.2 
LST 8.2 9.3 6.5 5.7 7.3 6.8 11.7 7.6 
SDR 9.0 6.5 7.3 4.3 5.4 3.5 6.6 6.2 
FL 4.7 7.3 8.6 10.4 9.5 7.9 6.7 5.6 

Very 
high risk 
(API>50) 
 

CAR 14.3 17.3 19.9 30.8 27.7 35.5 25.6 28.1 
POPD 12.9 18.7 15.5 10.2 12.1 10.3 14.2 14.1 
TPV 12.0 12.0 11.0 12.7 11.5 12.5 11.0 13.1 
NDWI 16.8 6.9 13.1 11.2 10.5 7.1 10.6 10.1 
FC 12.2 7.1 7.8 5.6 7.7 5.4 8.4 8.2 
NDVI 6.7 11.1 10.3 9.5 5.1 9.7 6.5 7.8 
LST 11.6 11.1 8.3 7.3 10.5 8.8 10.2 6.8 
SDR 9.1 8.7 7.8 4.6 5.1 3.7 6.0 5.9 
FL 4.5 7.1 6.3 8.1 9.8 7.1 7.6 5.9 

 

Table 10: Relative contributions (RC) of predictors obtained from yearly BRT models for the P. 

falciparum malaria risk over the study period (2010-2017). 

 
Risk Variables 2010 2011 2012 2013 2014 2015 2016 2017 

High risk 
(API>50) 
 

CAR 11.5 15.9 14.4 26.9 23.3 30.7 27.6 28.6 
POPD 12.6 18.0 16.4 11.7 20.6 15.1 16.8 12.1 
TPV 12.5 12.0 8.7 11.3 11.9 10.9 10.9 14.7 
NDWI 15.1 7.6 12.1 9.8 8.7 6.3 12.4 10.6 
FC 7.3 14.4 10.1 8.4 7.4 8.9 6.0 4.2 
NDVI 9.4 7.6 11.4 10.5 9.5 6.1 6.1 4.5 
LST 12.5 7.4 8.1 4.2 5.7 6.1 5.7 9.7 
SDR 5.6 7.4 6.9 7.0 5.0 5.1 5.2 4.4 
FL 8.2 5.7 6.6 5.5 3.6 4.0 3.7 5.1 

Very 
high risk 
(API>50) 
 

CAR 16.1 20.7 16.8 23.1 19.4 25.6 26.2 25.0 
POPD 13.0 10.0 15.3 16.7 21.4 16.2 16.2 12.5 
TPV 13.4 7.2 7.3 11.1 10.9 13.1 11.5 15.8 
NDWI 12.2 8.4 13.6 9.6 9.7 8.0 13.8 8.1 
FC 7.8 11.1 11.6 5.9 8.5 10.0 6.8 10.9 
NDVI 7.3 11.1 7.0 10.2 6.0 8.7 5.9 6.3 
LST 8.5 10.9 9.8 8.3 8.8 5.1 4.7 5.9 
SDR 6.4 13.8 10.5 5.9 4.6 3.7 4.2 6.0 
FL 10.2 4.2 4.7 5.4 5.8 3.4 6.1 3.9 
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4.3. Relative contributions (RC) of predictors from yearly BRT models 

 

(a)  

 

 

 

 

  

Figure 18: Relative contributions (RC) of predictors from yearly BRT models for malaria risk, 

overall and by species, years (2010-2017), high malaria risk (API>10 cases/1,000 people). 
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(b) 

 

 

 

 

 

 

 

 

Figure 19: Relative contributions (RC) of predictors obtained from yearly BRT models for malaria 

risk, overall and by species, years (2010-2017), very high malaria risk (API>50 cases/1,000 

people). 
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Most RC for overall malaria risk were similar to ones for P. vivax each year. CAR, POPD, and 

TPV, in that order, were always the top three predictors for increasing malaria risk in villages 

(overall and by species), with yearly RC medians exceeding 10% (Figure 18). NDWI was the 

fourth top predictor, but yearly RC medians only exceeded 10% when BRT models assessed 

villages at P. vivax very-high-risk of and villages at P. falciparum high-risk. 

 

CAR was generally the most relevant predictor in yearly BRT models for both P. vivax and P. 

falciparum, and presented the widest variation in RC.  The analysis for high-risk in villages 

showed a higher RC of CAR for P. vivax than for P. falciparum (Figure 19), with the lowest 

RC for both species in 2010 and the highest in 2015 (RC range for P. vivax: 17%-48.4%; RC 

range for P. falciparum: 11.5%-30.7%). The analysis for very-high-risk found the lowest RC 

in 2010 for both P. vivax (14.3%) and P. falciparum (16.1%), and the highest in 2015 for P. 

vivax (35.5%) and in 2016 for P. falciparum (26.2%). The estimated RC for CAR followed 

similar trends with increasing importance of CAR as malaria risk predictor until 2015 for P. 

vivax and until 2015-2016 for P. falciparum, followed by a decrease (P. vivax) or stabilization 

(P. falciparum).   

 

Unlike CAR, the POPD RC in villages was slightly higher for P. falciparum than for P. vivax 

in most years (Figure 20).  The relevance of POPD varied widely across years only when BRT 

models assessed for P. vivax high-risk (range: 9.2%-22.6%) and P. falciparum very-high-risk 

(range: 10.0%-21.4%).  The highest RC for P. vivax malaria risk were found at the beginning 

of the study period (2010-2012) and then decreased and remained low with small variations; 

while RC for P. falciparum increased from 2010 to 2014 and then declined in the following 

years.    
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Figure 2019: Boxplots representing the relative contributions of predictors obtained from yearly BRT 

models for malaria risk, overall and by species, over the study period (2010-2017). 

 

The importance of NDWI as species-specific malaria risk predictor varied during the study 

period. The difference between lowest and highest RC ranged between 3.8 and 18.9%, with an 

initial decrease in RC from 2010 to 2011 followed by peaks in 2012 and in 2016. The non-time 

dependent variable TPV was the predictor with the lowest RC variation across years for P. 

vivax risk in villages (7.4%-11.6% and 11%-13.1% for high-risk and very-high-risk 

respectively). It was also among the predictors with the lowest RC ranges when assessing the 

P. falciparum risk across time. For all other predictors in species-specific BRT models, the 

difference between lowest and highest RC did not exceed 10% across years.    

 

4.4. Partial dependence plots 

 

Figure 21 and Figure 213, presents partial dependence plots (PDP) (133) of the marginal effect 

of predictor variables on the probability of villages for being high-risk or very-high-risk, and 

shows the functional form of these effects. The probability for P. vivax high-risk in villages 

generally increases with:  higher CAR from 800 mm/3hrs., POPD between 403 and 2,980 in 

the 5-km side square grid around the village, longer TPV from 700 minutes, NDWI around 0.4, 

higher FC in the 2-km side square grid around the village from levels around 50%, NDVI 

between 0.7 and 0.8, higher LST from 27ºC, shorter SDR, and higher FL in the in the 2-km 
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side square grid around the village in comparison with the previous year. The probability for 

P. falciparum high-risk increased with higher CAR from 800 mm, POPD ranging between 403 

and 1096 inhabitants, longer TPV from 700 minutes, NDWI around 0.4, higher FC from about 

60%, NDVI ranging between 0.5 and 0.8, higher LST from 26ºC, shorter SDR, and higher FL. 

PDPs for very-high-risk are shown in Figure 22, and Figure 24Figure . 
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Figure 2120: Partial dependence plots indicating the marginal effect of predictor variables on the 

probability of villages for being a high malaria risk (API>10 malaria cases/1,000 people) for P. vivax 

Y-axes are on a logit scale. Red lines represent the predictions for 2017, while gray lines for other 

years. The distribution of variable values is indicated at the bottom of each plot. 
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Figure 22: Partial dependence plots indicating the marginal effect of predictor variables on the 

probability of villages for being a high malaria risk (API>10 malaria cases/1,000 people) for P. 

falciparum. Y-axes are on a logit scale.  Red lines represent the predictions for 2017, while gray lines 

for other years. The distribution of variable values is indicated at the bottom of each plot. 
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Figure 213: Partial dependence plots indicating the marginal effect of predictor variables on the 

probability of villages for being at very high malaria risk (API>50 malaria cases/1,000 people) for P. 

vivax (b). Y-axes are on a logit scale. Red lines represent the predictions for 2017, while gray lines for 

other years. The distribution of variable values is indicated at the bottom of each plot. 
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Figure 24: Partial dependence plots indicating the marginal effect of predictor variables on the 

probability of villages for being a very high malaria risk (API>50 malaria cases/1,000 people) for P. 

falciparum. Y-axes are on a logit scale. Red lines represent the predictions for 2017, while gray lines 

for other years. The distribution of variable values is indicated at the bottom of each plot. 
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4.5. The discriminatory capacity of the models 

 

The cvAUCs shown in Table 11 suggested that most yearly BRT models efficiently 

discriminated the malaria risk in villages (cvAUC>0.80), with the exception of the 2010 models 

for villages at high-risk (cvAUC=0.72), and at P. vivax very-high-risk (cvAUC=0.77), as well 

as P. falciparum high-risk (cvAUC=0.78). The estimated tAUCs decreased slightly when the 

yearly models were tested with data for the following year, but most of the models efficiently 

predicted malaria risk in the following year. For example, 2016 species-specific models using 

2017 data were able to efficiently discriminate high-risk (tAUC=0.81) and very-high-risk 

(tAUC=0.84) of P. vivax, and high-risk (tAUC=0.83) and very-high-risk of P. falciparum 

(tAUC=0.83) in 2017.  Results from the discriminatory assessment of yearly BRT models with 

data from other years are presented in Figure 225.   

 

Table 11:  Assessment of the capacity of BRT models for discriminating malaria risk in villages. 

 Model                Overall                              P. vivax          P.alciparum 

      cvAUC tAUC   cvAUC tAUC   cvAUC tAUC 

High risk 
(API>10) 

2010  0.72 0.70  0.72 0.70  0.78 0.76 

2011  0.80 0.76  0.8 0.75  0.86 0.74 

2012  0.82 0.80  0.82 0.80  0.84 0.81 

2013  0.84 0.80  0.83 0.80  0.87 0.80 

2014  0.83 0.82  0.82 0.82  0.85 0.84 

2015  0.82 0.79  0.82 0.79  0.87 0.85 

2016  0.82 0.80  0.82 0.81  0.87 0.84 

2017   0.82    -   0.83    -   0.87 - 

Very 
high risk 
(API>50) 

2010   0.76 0.76   0.77 0.76   0.82 0.78 

2011  0.85 0.81  0.84 0.80  0.88 0.81 

2012  0.85 0.82  0.85 0.81  0.87 0.76 

2013  0.86 0.80  0.86 0.80  0.89 0.84 

2014  0.84 0.84  0.84 0.83  0.89 0.83 

2015  0.85 0.83  0.85 0.82  0.89 0.86 

2016  0.84 0.83  0.84 0.83  0.88 0.83 

2017   0.85    -   0.84    -   0.89 - 

 

While cvAUC are the cross-validated area under ROC curve using data of a given year, tAUC are the 
cross-validated area under ROC curve using data of the following year.   
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Figure 225: Discriminatory assessment of yearly BRT models with data from other years. The 

discriminatory efficiency is assessed with the area under the ROC curve (AUC). 
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4.6. Risk mapping 

 

The study villages and their malaria risk in 2017 (estimated from 2016 BRT species-specific 

models) were mapped Map 8 and Map 9 in five distinct zones based on contiguity between 

districts, main networks of transport, shared river basins, and population density. 

 

 

 

 

  

Map 8: Predicted P. vivax risk maps for the year 2017 using 2016´s BRT models showing: (a) villages at high 
P. vivax risk (API>10 cases/1,000 people), (b) villages at very high P. vivax risk (API>50 cases/1,000 people). 
Colors specify in villages (dots) their probability of being at risk. 
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Map 9: Predicted P. falciparum risk maps for the year 2017 using 2016´s BRT models showing: (a) villages at 
high P. falciparum risk (API>10 cases/1,000 people), (b) villages at very high P. falciparum (API>50 cases/1,000 
people). Colors specify in villages (dots) their probability of being at risk. 
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4.7. Risk zones description 

 

Table 12: Number of villages at high malaria risk and at very high malaria risk according to 

predictions of 2016 BRT models using 2017 data. Malaria risk with predicted probabilities > 0.5. 

 

                   High risk (IPA>10)             Very high risk (IPA>50) 

                N         N         %              n          N          % 

P. vivax Zone 1 369 860 42.9  90 860 10.5 

 Zone 2 179 317 56.5  91 317 28.7 

 Zone 3 294 853 34.5  105 853 12.3 

 Zone 4 19 489 3.9  7 489 1.4 

  Zone 5 112 247 45.3   28 247 11.3 

P. falciparum Zone 1 101 860 11.7  12 860 1.4 

 Zone 2 88 317 27.8  11 317 3.5 

 Zone 3 46 853 5.4  9 853 1.1 

 Zone 4 1 489 0.2  0 489 0 

  Zone 5 7 247 2.8   0 247 0 

 

Zone I, includes Maynas province and is the largest, most densely populated and accessible 

area in the department. The risk maps showed that 42.9% of villages were at high-risk for P. 

vivax, among which 10.5% were at very-high-risk. Also, 11.7% of villages were at high-risk 

for P. falciparum, among which 1.4% were at very-high-risk. 

Zone II, covers Loreto province; it is the least populated area. Most villages (56.5%), were at 

high-risk for P. vivax, and 28.7% at very-high-risk. For P. falciparum, 27.8% were at high-

risk, and 3.5% at very-high-risk.  

Zone III, is the second most densely populated area and covers Datem del Maranon and Alto 

Amazonas provinces, which include 30% of the study villages and 19% of the province’s 

population. One third (34.5%) of the villages were at high-risk for P. vivax, and 12.3% at very-

high-risk. For P. falciparum, 5.4% were at high-risk, and 1.1% at very-high-risk.  

Zone IV, comprises Requena and Ucayali provinces, with 3.9% of villages at high-risk for P 

vivax, and 1.4% at very-high-risk. Only one village was at high-risk for P. falciparum.  

Zone V, comprises Ramon Castilla province, and is the smallest zone, with 9% of the study 

villages and 6.7% of Loreto population. A significant proportion of villages (45.3%) were at 

P. vivax high-risk, and 11.3% at very-high-risk. Seven villages were at P. falciparum high-risk. 
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Chapter 5: Discussion, conclusions, limitations and perspectives. 

 

This chapter presents the findings in perspective with the information 
presented in the introduction and literature review, describes the 
conclusions, contributions and avenues for future research. 

 

 

5.1. Discussion 

 

The Peruvian malaria fight against malaria has experienced a significant decline since 2012, 

after enormous achievements recorded in the previous years under the interventions of the 

PAMAFRO Project (2005–2011). In recent years, the Zero Malaria Plan (ZMP) a task force 

between MoH, Regional Health Direction (DIRESA - Loreto) started its interventions 

nationwide by the end of 2018, with the goal of Peruvian malaria eradication at the end of the 

year 2030. This new wave of financial support is strengthened by the global struggle, that 

pretends to reduce the global malaria burden by at least 90% of the number of cases compared 

to 2015 and malaria eradication from those countries where it is feasible (7). This is a huge 

challenge that requires malaria insight, uphill labor, and permanent actions that also embrace 

scientific innovations, new technologies, and tools to eliminate malaria more effectively and 

efficiently. 

 

This thesis applied spatial tools to assess and predicted the co-endemic Plasmodium vivax and 

Plasmodium falciparum occurrence at villages in the Peruvian Amazon using Boosted 

Regression Trees.  

Malaria infection/exposure was analyzed with environmental and social predictors deriving out 

of satellite imagery and products at village level between 2010 and 2017, and identified the 

most critical factors associated with this distribution. Yearly BRT models built with predictor 

data were able to efficiently discriminate the species-specific malaria risk in villages of such a 

given year, and most of these models also performed well when predictor data was used to 

discriminate malaria risk in the following year.  The high discriminatory capacity of the 2016 

BRT models supported the generation of maps pinpointing villages with a high probability of 

having high malaria incidence (API>10 cases x 1,000 people) and very high incidence (API>50 

cases/1,000 people) in 2017.  
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Previous risk map studies (132,135–140) are consistent with our findings and recognize the 

mapping value to target resources for vector control or intensifying mosquito and disease 

surveillance, some of these researches suggest replicating the methodology in other 

geographical areas and using data of other diseases. The entomological inoculation rate (EIR) 

and the parasite prevalence are the best metrics of malaria transmission intensity but their 

estimations require several community surveys per year (to capture annually seasonal 

variations), very large sample sizes, and specialized laboratory techniques, making them cost-

prohibitive for National Malaria Control Programs (NMCPs) (141). Instead, NMCPs have used 

the incidence of microscopically cases detected by routine surveillance to map the risk of 

malaria transmission, prioritize intervention areas, and monitor the impact of control 

interventions (142). However, these maps have coarser spatial resolution also are not 

necessarily correlated to condition factors limiting the usability to strategic plans elaboration 

or appropriate intervention within their national strategic agenda. The results we presented in 

this thesis can support more tailored intervention plans to improve the distribution of 

Insecticide-Treated Net (ITN) or using Focused Screening and Treatment (FSAT) or Mass 

Drug Administration (MDA) strategies to interrupt transmission. These massive treatment 

strategies are proposed in the WHO document to malaria control and eliminating 2016 - 2030 

(31) also are contemplated in the implementation and elimination plan of the “Zero Malaria 

Plan”, this alternative consists of treating all parasitemia in the population defined 

geographically. MDA can potentially reduce malaria mortality and morbidity interrupting 

various stages of the parasite life-cycle, and it can inhibit the sporogony cycle in the mosquito, 

reducing its vectorial capability (7). According to evidence, MDA is preferable in areas where 

populations are static and the risk of importation is low (143,144). Another consideration is 

that at least three “rounds” of administration are needed to affect transmission (145) and 

minimal risk for reintroduction of infection. Although, knowledge gaps remain, especially 

regarding the optimal size of the target population, methods to improve coverage, selection of 

drug-resistant parasites, and primaquine safety.  

The mapping of malaria risk plays a key role in decision-making for designing and 

implementing malaria control measures (146), but it requires the use of metrics that ensure an 

accurate description of the malaria heterogeneity and the identification of changes in 

transmission intensity across time and geographical scales (141).  
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Our study confirmed that predicted malaria risk from BRT models built with RS-derived 

predictors was able to accurately characterize the spatial distribution of the malaria incidence 

in Loreto.  

The ability of P. vivax parasites to relapse from persistent liver parasite stages (hypnozoites) 

weeks or months after a primary parasitaemia (147) may explain the lower discriminatory 

efficiency of P. vivax models compared with P. falciparum models in most study years. BRT 

models were built with available data for predictor variables reported to affect the malaria 

transmission. However, such variables are not yet proposed in the literature to be primary 

triggers of P. vivax relapses (147). When factors determining the hypnozoite reactivation are 

clearly identified, they could be incorporated to improve discriminatory capacity of the models 

for P. vivax risk. Improved models would be useful in the Peruvian Amazon, where 

epidemiological studies and parasite genotyping analyses suggest that relapses contribute 

substantially to the burden of P. vivax infections (148).  Moreover, data on main control 

interventions could also be used during the model building process to account for the greater 

resilience of P. vivax to malaria control efforts in comparison with P. falciparum (149).  

Environmental factors such as temperature and rainfall directly affect the lifecycles of both 

parasite and vector; higher temperatures accelerate parasitic Plasmodium growth within 

mosquitoes, while rainfall contributes to the accumulation of stagnant water that is ideal for 

mosquito breeding (63). Results from partial dependence plots (PDPs) showing higher malaria 

risk when the yearly average LST ranged between 26ºC and 29ºC are in good agreement with 

the reported optimal temperatures for the development of the exogenous P. vivax and P. 

falciparum cycles within the main malaria vector An. darlingi (63). However due to the low 

variability of LST across villages, this variable was not among the most important factors for 

discriminating the malaria risk between villages. Instead, the variable satellite-derived rainfall 

(CAR) was the best predictor for both species, with increased importance each year through 

2015. Unusually heavy rains in the last trimester of each year between 2011 and 2014 generated 

abrupt increases of river levels, and flooded to villages along the Amazonas River and its 

tributaries between 2012 and 2015 (148,150–152).  The river levels not only peaked earlier and 

higher compared to historical averages, but also, they remained high longer. Levels of Amazon 

river in 2015 exceeded the threshold for imminent flooding (117 metres above sea level) from 

March through June (153). River levels in 2011, 2012 and 2016 surpassed that threshold during 

5, 14, and 4 weeks, respectively.  
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The proximity to breeding sites is an important determinant for the heterogeneity of both 

mosquito exposure and malaria occurrence in the Peruvian Amazon(154).  After seasonal rains, 

permanent breeding sites around villages become more productive, and additional breeding 

sites arise (155).  With severe flooding, breeding sites further enlarge and remain longer, 

leading to a wider dispersal of An. darlingi and increased vector-human contact rates. Villages 

with shorter distances to rivers (SDR) had increased malaria receptivity and consequently, 

more malaria incidence as shown in PDPs. Increased vector contact would explain both the 

higher contribution of CAR in P. vivax and P. falciparum models and the better discriminatory 

efficiency of P. vivax models in the years of severe floods (2012-2015).  Therefore, our findings 

suggest that new infections contributed more than hypnozoite-triggered relapses to the rise in 

the P. vivax malaria incidence since 2012.   

NDWI, recognized for appropriately identifying water bodies(156), was also shown an 

important factor in BRT models for both species (median in the study period slightly lower 

than 10%); but unlike with CAR,  its RC did not present any identifiable temporal trend during 

the study period. Yearly average NDWI values around 0.4 associated with increased malaria 

risk suggest that most of the 2-km side square grid around villages with high malaria incidence 

was covered by open water, and/or wetlands, but were not able to characterize those that are 

suitable for the development of An. darlingi.  A recent study conducted in rural villages in the 

Peruvian Amazon found that the An. darlingi larval habitats were significantly associated with 

water bodies in landscapes with more recent deforestation, lower light intensity, emergent 

vegetation and a lower vegetation index (154). The vegetation covering and surrounding these 

breeding sites could provide food for larvae, shelter from predators, and favourable oviposition 

conditions (157). The yearly average NDVI values in the 2-km side square grid around villages 

would not differentiate this vegetation as suggested by the low contribution of this variable to 

the malaria risk models, and the increased malaria incidence with NDVI values higher than 

0.6.   

Deforestation and environmental changes driven by human activity have been associated with 

An. darlingi breeding and malaria transmission (12); however, the different definitions of 

deforestation in these studies have prevented a clear conclusion (13). According to our BRT 

models, higher recent tree cover losses in a 2-km side square grid around villages (FL) were 

associated with higher malaria occurrence, however this forest-related variable was not among 

the top predictors for discriminating the malaria risk likely due to its limited variability across 

villages. The positive relationship between yearly deforestation and malaria risk is in line with 
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entomological studies showing that An. darlingi larvae were more likely to be found in water 

bodies with recent deforestation (12,154). Several studies in the Brazilian Amazon have found 

high densities of larval and adult Anopheles in forest fringes, as well as increased malaria 

morbidity in populations living or working near forest edges (62,158). A relationship between 

forest coverage (FC) and forest edges might explain why villages with lower FC have reduced 

malaria risk than those with higher FC. As deforested areas increase, the distance to forest 

edges also increases but malaria transmission remains high because of the quantity and 

extension of forest edges around villages.  Reductions in FC would make forest edges more 

distant, thus reducing malaria risk unless residents need to engage in activities near forest 

edges. However, reduced FC can also indicate increased socio-economic development, which 

is associated with improvements in living conditions and malaria preventive practices (159).  

Vector-human contact requires that mosquitoes fly from breeding sites and forest edges to 

access human blood meals (154). Therefore, contact rates and malaria transmission strongly 

depend on both the dispersal of An. darlingi and the population density (POPD) near breeding 

sites and forest edges. Our analysis highlighted the POPD as the second most important 

predictor for malaria risk. However, a positive relationship was only observed in the most 

densely populated villages. Further research is needed to confirm the negative relationship 

found in less densely populated villages. Nevertheless, the sparsely distributed population in 

the Peruvian Amazon may be at increased malaria risk because of precarious conditions, with 

limited access to health care, and exposure to mosquito bites due to subsistence farming and 

fishing, hunting and other activities near or within the forest (16,17). On the other hand, time 

to major populated villages (TPV) had a positive relationship with malaria risk since this 

variable can be a proxy for diminished access to health care facilities, reducing diagnosis and 

treatment, and sustaining malaria transmission, and hindering the delivery of malaria 

prevention interventions (19).  
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5.2. Conclusions 

 

The Peruvian government is committed to eradicating malaria in the country by 2030 through 

the implementation of the Zero Malaria Plan (ZMP), which began nationwide interventions by 

the end of 2018. The success of this plan is supported by global efforts to reduce the global 

malaria burden and eradicate malaria from feasible countries, but it requires significant effort, 

innovation, and resources. 

 

This thesis used spatial and machine learning tools to analyze and predict the occurrence of co-

endemic Plasmodium vivax and Plasmodium falciparum malaria in villages in the Peruvian 

Amazon.  The study analyzed environmental and social predictors using satellite imagery and 

products at the village level between 2010 and 2017. Yearly BRT models were built to 

discriminate the species-specific malaria risk in villages of a given year, and most of these 

models also performed well when predictor data was used to discriminate malaria risk in the 

following year. The study generated maps that identified villages with a high probability of 

having high malaria incidence and very high incidence in 2017. 

 

Higher temperatures and rainfall positively affects the growth and development of the malaria 

parasite and mosquito vector. Partial dependence plots (PDPs) showed that satellite-derived 

rainfall (CAR) was the best predictor for both species P. vivax and P. falciparum, with 

increasing importance each year through 2015. Malaria risk is higher when the yearly average 

land surface temperature (LST) ranges between 26ºC and 29ºC, which is in agreement with the 

optimal temperatures for the development of P. vivax and P. falciparum cycles within the main 

malaria vector An. darlingi. However, due to the low variability of LST across villages, this 

variable was not among the most important factors for discriminating malaria risk between 

villages. 

 

The proximity to breeding sites is recognized as an important determinant for mosquito 

exposure and malaria occurrence in the Peruvian Amazon. Severe flooding increases the 

number and enlarge existant breeding sites contributing to the dispersal of the vector. 

Normalized Difference Water Index (NDWI), a variable related to the presence of water bodies, 

was an important predictor in BRT models for both P. vivax and P. falciparum. Yearly average 

NDWI values around 0.4 suggest that a significant portion of the area surrounding villages with 
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high malaria incidence was covered by open water or wetlands. However, it was not able to 

characterize specific water bodies suitable for the development of An. darlingi, the main 

malaria vector. 

 

Increased malaria incidence was observed with NDVI values higher than 0.6. An. darlingi 

larval habitats were found to be significantly associated with water bodies in landscapes with 

recent deforestation, lower light intensity, emergent vegetation, and a lower vegetation index 

(NDVI). These habitats provide food for larvae, shelter from predators, and favorable 

conditions for mosquito oviposition. Higher recent tree cover losses in a 2-km side square grid 

around villages were associated with higher malaria occurrence, but this forest-related variable 

was not among the top predictors for discriminating malaria risk likely due to its limited 

variability across villages. The positive relationship between yearly deforestation and malaria 

risk is consistent with entomological studies showing that An. darlingi larvae were more likely 

to be found in water bodies with recent deforestation. 

 

Studies in the Brazilian Amazon have found high densities of larval and adult Anopheles in 

forest fringes, as well as increased malaria morbidity in populations living or working near 

forest edges. A relationship between forest coverage and forest edges might explain why 

villages with lower forest coverage have reduced malaria risk than those with higher forest 

coverage. Reductions in forest coverage would make forest edges more distant, thus reducing 

malaria risk unless residents need to engage in activities near forest edges. However, reduced 

forest coverage can also indicate increased socio-economic development, which is associated 

with improvements in living conditions and malaria preventive practices. 

 

Population density (POPD) was found to be the second most important predictor for malaria 

risk, with a positive relationship observed only in the most densely populated villages. Time to 

major populated villages (TPV) had a positive relationship with malaria risk, as it can be a 

proxy for reduced access to healthcare facilities, hindering the delivery of malaria prevention 

interventions, and sustaining malaria transmission. The sparsely distributed population in the 

Peruvian Amazon may be at increased malaria risk due to limited access to healthcare, exposure 

to mosquito bites, and engagement in subsistence farming, fishing, hunting, and other activities 

near or within the forest. 
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About the contribution of this thesis 

 

This study makes a significant contribution to the field of public health by presenting a novel 

method to improve our understanding of spatial and temporal malaria dynamics, identifying 

influential predictors and providing accurate risk assessment. This model accurately predicts 

the high-risk and very-high risk areas where intense malaria control activities should be 

concentrated. This work can be used as part of an early warning model. 

 

The results presented in this thesis can support more tailored intervention plans to improve the 

distribution of Insecticide-Treated Net (ITN) or using Focused Screening and Treatment 

(FSAT) or Mass Drug Administration (MDA) strategies to interrupt transmission. MDA can 

potentially reduce malaria mortality and morbidity by inhibiting the sporogony cycle in the 

mosquito, reducing its vectorial capability. In countries like Peru that have limited public health 

resources, this model could help to direct those resources to the areas where the can be used 

most effectively.  

 

As part of the contributions of this research, the results have been communicated to the 

scientific community through the article. https://www.nature.com/articles/s41598-019-51564-

4 

 

About the limitations of this thesis 

 

First, the assumption of constant population size for villages across years could have reduced 

the discriminatory efficiency of the BRT models since they did not account for human 

migration, that is, people changing their residency from one place to another.  

 

Secondly, NDWI and NDVI might not be the best proxies for environmental ground conditions 

that affect malaria transmission. NDWI and NDVI are yearly averages that might not capture 

the particular characteristics of seasonal variations that affect the breeding and resting sites of 

An. darlingi.  

 

Thirdly, population density within mosquito dispersal ranges should include not only the 

population living near breeding sites or forest edges but also human mobility, that is, people 
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who temporarily enter these areas for economic activity.  This information was not available 

at the village level. 

 

Fourthly, data on the principal control interventions in each village during the study period was 

not available. These data would improve the discriminatory efficiency of the models and allow 

a better assessment of the differential contribution of predictor factors between species.  

 

Fifthly, the resampling of predictor raster data to a higher resolution results in an output raster 

as precise as the coarsest inputs. This can add a systematic bias to models developed at high 

resolution. Higher resolution data for cumulative annual rainfall was not available for the study 

period. However, this variable has a low spatial variation in the Amazon region because of its 

flat topography, and the corresponding bias is expected to be limited. 

 

About the perspectives of this thesis 

 

This study highlights the need to consider the impact of human migration and mobility, which 

can change village population over time and affect malaria incidence and transmission. The 

integration of information about human migration and mobility would improve the accuracy of 

predictive models.   

 

Future studies should account for seasonal variations in the characteristics of An. darlingi 

breeding and resting sites that are not captured by NDWI and NDVI annual averages.    

 

Further investigations should include information about control intervention activities at the 

village level. This data would enhance the ability of models to distinguish between different 

factors and provide a more accurate assessment of their affects on different species.  

 

The spatial resolution of satellite imagery has increased in recent years, and this will allow 

more accurate assessments of cumulative annual rainfall (CAR) in specific areas. 

However, knowledge gaps remain, especially regarding the optimal size of the target 

population, methods to improve coverage, selection of drug-resistant parasites, and primaquine 

safety. 
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Appendix A: Article Sci Rep 9, 15173 (2019) 
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Appendix B: Complementary information 

 

 

1. Plasmodium life cycle 

 

 

 

 

(Appendix) Figure 1: Plasmodium life cycle, from (160) 
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Infective mosquitoes inject sporozoites into the bloodstream during feeding. These sporozoites 

infect liver cells (b) where they undergo asexual reproduction (exoerythrocytic schizogony), 

producing schizonts (c). In 6 to 14 days (sometimes longer), the schizonts rupture, releasing 

merozoites into the bloodstream (d). Merozoites invade red blood cells and undergo a second 

phase of asexual reproduction (erythrocytic schizogony), developing into rings (e), 

trophozoites (f), and finally blood stage schizonts (g). The schizonts rupture, destroying the red 

blood cell and releasing more merozoites into the bloodstream, starting another cycle of asexual 

development and multiplication (h). This erythocytic cycle will continue until the infected 

individual is successfully treated, mounts an immune response that clears the infection, or dies. 

During this cycle, sexual forms called gametocytes are produced (i) and can be ingested by a 

mosquito during a blood meal (j). Sexual reproduction occurs in the mosquito (k). Sporozoites 

are formed (l), which migrate to the salivary glands, making the mosquito infective to humans. 

The timing of events in the life cycle of malaria parasites and the number of merozoites 

produced during schizogony vary by species. Additionally, two species of malaria, P. vivax 

and P. ovale, have a form, “hypnozoites” (m), that can persist in the liver for months to years, 

causing periodic relapses of peripheral parasitemia and illness” adapted from Malaria Cycle 

life (Malaria control during mass population movements and natural disasters). 
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2. List of Anopheles  

 

(Appendix) Table 1: Primary and secondary vectors currently recognized in the Region of the 

Americas. 

 

 

From: Strategic guidance document for the surveillance and control of malaria vectors in Latin 

America and the Caribbean. 

  

Subregion Primary vectors Secundary vectors

Mesoamérica  Anopheles albimanus An. vestitipennis
An. pseudopunctipennis An. darlingi

An. puntimacula
An. apicimacula
An. pseudopunctipennis

Areas no Amazon An. albimanus An. pseudopunctipennis
An. darlingi An. punctimacula
An. nuneztovari
An. aquasalis

Amazon basin An. darlingi An. benarrochi
An. oswaldoi
An. rangeli
An. triannulatus
An. marajoara
An. aquasalis
An. deaneorum
An. janconnae
An. nuñeztovari
An. braziliensis
An. triannulatus
An. peryassui
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3. Sensors and applications 

 

(Appendix) Table 2: ‘Earth Science Satellite Applications: Current and Future. Modified from (Flores 

et al. 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EO-derived measurement and/or product Sensor, satellite 

Elevation data SRTM 

  ASTER, Terra 

Rainfall Imager, GOES series 

  MVIRI, Meteosat-7/5 

  VISSR, GMS 

  TMI, TRMM 

  SSM/I, DMSP series 

  AMSR-E, Aqua 

  AMSU-B, NOAA series 

Multispectral VNIR reflectance/radiance AVHRR, POES series 

  MODIS, Aqua/Terra 

  ASTER, Terra 

  ALI, EO-1 

  Landsat series 

  SPOT 

  GeoEye-1 

  Ikonos 

  QuickBird 

  Worldview-1 & 2 

  
Formosat-2 
Sentinel-2 

Hyperspectral VNIR reflectance/radiance Hyperion, EO-1 

Fire and thermal anomalies MODIS, Aqua/Terra 

Burned area MODIS, Aqua/Terra 

Surface temperature Landsat Thermal Infrared (TIR) 

Land cover, tree cover maps MODIS, Aqua/Terra 

  MERIS, Envisat 

  Landsat series 

  ASTER, Terra 

  SPOT 

  L-Band SAR (PALSAR), ALOS 

Relative Humidity  AIRS and AMSU, Aqua 

Synthetic Aperture Radar (SAR) images 
Sentinel-1 
C-band SAR, Radarsat-1 & Radarsat-2 

  C-band SAR, ERS-2 

  L-Band SAR (PALSAR), ALOS 

SRTM-water body SRTM 

Gridded population distribution DMS series 

Near real-time cloud movement Imager, GOES series 
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(Appendix) Map 1:Homogeneous zones for PAMAFRO project, considering contiguity in borders or similar 

socioeconomic processes. Similarities of climate and landscape. Endemic or potentially endemic status for 

malaria. 

4. PAMAFRO map scope 
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5. gbm package 

 

Greg Ridgeway, Brian Kriegler, Stefan Schroedl. 

Description 

Workhorse function providing the link between R and the C++ gbm engine. gbm is a front-

end to gbm.fit that uses the familiar R modeling formulas. However, model.frame is very 

slow if there are many predictor variables. For power-users with many variables use gbm.fit. 

For general practice gbm is preferable.  

Usage  

gbm.fit( x, y, offset = NULL, misc = NULL, distribution = "bernoulli", w = NULL, 

var.monotone = NULL, n.trees = 100, interaction.depth = 1, n.minobsinnode = 10, shrinkage 

= 0.001, bag.fraction = 0.5, nTrain = NULL, train.fraction = NULL, keep.data = TRUE, 

verbose = TRUE, var.names = NULL, response.name = "y", group = NULL )  

Arguments  

x   A data frame or matrix containing the predictor variables. The number of rows 

in x must be the same as the length of y.  

y   A vector of outcomes. The number of rows in x must be the same as the length 

of y.  

offset   A vector of offset values.  

misc   An R object that is simply passed on to the gbm engine. It can be used for 

additional data for the specific distribution. Currently it is only used for passing 

the censoring indicator for the Cox proportional hazards model.  

distribution  Either a character string specifying the name of the distribution to use or a list 

with a component name specifying the distribution and any additional 

parameters needed. If not specified, gbm will try to guess: if the response has 

only 2 unique values, bernoulli is assumed; otherwise, if the response is a 

factor, multinomial is assumed; otherwise, if the response has class "Surv", 

coxph is assumed; otherwise, gaussian is assumed. gbm.fit 13 Currently 
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available options are "gaussian" (squared error), "laplace" (absolute loss), 

"tdist" (t-distribution loss), "bernoulli" (logistic regression for 0-1 outcomes), 

"huberized" (huberized hinge loss for 0-1 outcomes), classes), "adaboost" (the 

AdaBoost exponential loss for 0-1 outcomes), "poisson" (count outcomes), 

"coxph" (right censored observations), "quantile", or "pairwise" (ranking 

measure using the LambdaMart algorithm).  

If quantile regression is specified, distribution must be a list of the form 

list(name = "quantile",alpha = 0.25) where alpha is the quantile to estimate. 

The current version’s quantile regression method does not handle nonconstant 

weights and will stop. If "tdist" is specified, the default degrees of freedom is 4 

and this can be controlled by specifying distribution = list(name = "tdist",df = 

DF) where DF is your chosen degrees of freedom. If "pairwise" regression is 

specified, distribution must be a list of the form 

list(name="pairwise",group=...,metric=...,max.rank=...) (metric and max.rank 

are optional, see below). group is a character vector with the column names of 

data that jointly indicate the group an instance belongs to (typically a query in 

Information Retrieval applications). For training, only pairs of instances from 

the same group and with different target labels can be considered. metric is the 

IR measure to use, one of list("conc") Fraction of concordant pairs; for binary 

labels, this is equivalent to the Area under the ROC Curve : Fraction of 

concordant pairs; for binary labels, this is equivalent to the Area under the 

ROC Curve list("mrr") Mean reciprocal rank of the highest-ranked positive 

instance : Mean reciprocal rank of the highest-ranked positive instance 

list("map") Mean average precision, a generalization of mrr to multiple positive 

instances : Mean average precision, a generalization of mrr to multiple positive 

instances list("ndcg:") Normalized discounted cumulative gain. The score is the 

weighted sum (DCG) of the user-supplied target values, weighted by 

log(rank+1), and normalized to the maximum achievable value. This is the 

default if the user did not specify a metric. ndcg and conc allow arbitrary target 

values, while binary targets 0,1 are expected for map and mrr. For ndcg and 

mrr, a cut-off can be chosen using a positive integer parameter max.rank. If left 

unspecified, all ranks are taken into account. Note that splitting of instances 

into training and validation sets follows group boundaries and therefore only 
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approximates the specified train.fraction ratio (the same applies to cross-

validation folds). Internally, queries are randomly shuffled before training, to 

avoid bias. Weights can be used in conjunction with pairwise metrics, however 

it is assumed that they are constant for instances from the same group. For 

details and background on the algorithm, see e.g. Burges (2010).  

Data   an optional data frame containing the variables in the model. By default the 

variables are taken from environment(formula), typically the environment from 

which gbm is called. If keep.data=TRUE in the initial call to gbm then gbm 

stores a copy with the object. If keep.data=FALSE then subsequent calls to 

gbm.more must resupply the same dataset. It becomes the user’s responsibility 

to resupply the same data at this point.  

weights  an optional vector of weights to be used in the fitting process. Must be positive 

but do not need to be normalized. If keep.data=FALSE in the initial call to gbm 

then it is the user’s responsibility to resupply the weights to gbm.more 

Value   A gbm.object object.  

var.monotone an optional vector, the same length as the number of predictors, indicating 

which variables have a monotone increasing (+1), decreasing (-1), or arbitrary 

(0) relationship with the outcome.  

n.trees  Integer specifying the total number of trees to fit. This is equivalent to the 

number of iterations and the number of basis functions in the additive 

expansion. Default is 100. interaction.depth Integer specifying the maximum 

depth of each tree (i.e., the highest level of variable interactions allowed). A 

value of 1 implies an additive model, a value of 2 implies a model with up to 2-

way interactions, etc. Default is 1.  

n.minobsinnode Integer specifying the minimum number of observations in the terminal 

nodes of the trees. Note that this is the actual number of observations, not the 

total weight.  

shrinkage  a shrinkage parameter applied to each tree in the expansion. Also known as the 

learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller 

learning rate typically requires more trees. Default is 0.1.  
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bag.fraction  the fraction of the training set observations randomly selected to propose the 

next tree in the expansion. This introduces randomnesses into the model fit. If 

bag.fraction < 1 then running the same model twice will result in similar but 

different fits. gbm uses the R random number generator so set.seed can ensure 

that the model can be reconstructed. Preferably, the user can save the returned 

gbm.object using save. Default is 0.5.  

train.fraction  The first train.fraction * nrows(data) observations are used to fit the gbm and 

the remainder are used for computing out-of-sample estimates of the loss 

function.  

cv.folds  Number of cross-validation folds to perform. If cv.folds>1 then gbm, in 

addition to the usual fit, will perform a cross-validation, calculate an estimate 

of generalization error returned in cv.error. 

keep.data  a logical variable indicating whether to keep the data and an index of the data 

stored with the object. Keeping the data and index makes subsequent calls to 

gbm.more faster at the cost of storing an extra copy of the dataset.  

verbose  Logical indicating whether or not to print out progress and performance 

indicators (TRUE). If this option is left unspecified for gbm.more, then it uses 

verbose from object. Default is FALSE.  

class.stratify.cv Logical indicating whether or not the cross-validation should be stratified by 

class. Defaults to TRUE for distribution = "multinomial" and is only 

implemented for "multinomial" and "bernoulli". The purpose of stratifying the 

cross-validation is to help avoiding situations in which training sets do not 

contain all classes.  

n.cores  The number of CPU cores to use. The cross-validation loop will attempt to 

send different CV folds off to different cores. If n.cores is not specified by the 

user, it is guessed using the detectCores function in the parallel package. Note 

that the documentation for detectCores makes clear that it is not failsafe and 

could return a spurious number of available cores. 
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6. Codes implemented 

 

Codes implemented for R 

 

################################## GBM models ################################## 
##    tuning 
##------------------------------------------------------------------ 
##-- (0) Do not tuning (default) 
##--     Lists must contain 1 value 
##------------------------------- 
##-- (1) for doing TUNING (disable). //Enable for tuning// 
##--     then the lists must contain >=1 value (The more values in the lists, the more models 
to evaluate) 
if (tuning==0){ 
    tree_cmplx <- NO.TUNING_tree_complexity        # 5 
    learn_rate <- NO.TUNING_learning_rate    # 0.0005 
    bag_fracc  <- NO.TUNING_bag_fraction 
    pdp1  <- 1    ## Specifies that PDPs are to be obtained 
     print("%%%%%%%%%%--------------- MODELS WITH FIXED PARAMETERS ARE RUN ---------------% 
%%%%%%%%%%") 
}else if (tuning==1){ 
    tree_cmplx <- TUNING_tree_complexity 
    learn_rate <- TUNING_learning_rate 
    bag_fracc  <- TUNING_bag_fraction 
    pdp1 <- 0    ## Specifies to don’t obtain PDPs 
   print("%%%%%%---------- We run de models with variable parameters (Tuning) ----------
%%%%") 
}else{tuning <- 0} 
 
##---------------------  End of PARAMETERS ---------------------- 
 
#--- Tibble (dataframe) "tb_vdep" associated with Dependent Variables (Total of 6 dependent 
variables) 
num_vdep <- c(34:39) 
nombres_vdep <- c("ctot_IPA50", "cviv_IPA50", "cfal_IPA50","ctot_IPA10", "cviv_IPA10", 
"cfal_IPA10" ) 
nombres_modelos <- c("Malaria Total IPA>50", "Malaria vivax IPA>50", "Malaria falciparum 
IPA>50","Malaria Total IPA>10", "Malaria Vivax IPA>10", "Malaria Falciparum IPA>10") 
 
tb_vdep <- tibble(num_vdep, nombres_vdep, nombres_modelos) 
 
#--- Generates list of predictor var names from input 
k <- tibble(1:ncol(data),  colnames(data)) 
a <- c() 
text_p  <- "" 
for (i in lista_predictoras) {   a[length(a)+1]<- k[i,2]  } 
for (i in lista_predictoras) {   text_p<- paste(text_p, k[i,2], sep=",")  } 
ltexto_predictoras <- unlist(a) 
rm(a) 
 
##---------- Defining models 
 
## Specifies family variable (type of model)familia="bernoulli" 
## simple modelo 
callm <- paste("gbm.step(data=data0, gbm.x=lista_predictoras, gbm.y=vd, distribution = 
as.character(familia), "  , 
                  "learning.rate=lr, tree.complexity=tc, bag.fraction = bf, max.trees = 
50000, plot.main=FALSE, verbose=FALSE)", sep="") 
 
## model keep.vector=TRUE (save fold.vector) 
callm_keep <- paste("gbm.step(data=data0, gbm.x=lista_predictoras, gbm.y=vd, distribution = 
as.character(familia), "  , 
                      "learning.rate=lr, tree.complexity=tc, bag.fraction = bf, max.trees = 
50000, plot.main=FALSE, verbose=FALSE, " , 
                      "keep.fold.vector=TRUE)", sep="") 
 
## model using fold.vector of a previously saved model (model "mkeep") 
callm_foldv <- paste("gbm.step(data=data0, gbm.x=lista_predictoras, gbm.y=vd, distribution = 
as.character(familia), "  , 
                       "learning.rate=lr, tree.complexity=tc, bag.fraction = bf, max.trees = 
50000, plot.main=FALSE, verbose=FALSE, " , 
                       "fold.vector=keep_fold_vector)", sep="") 
 
##-- Lists to capture the relevant data from the models 
lista_modelo  <- list() 
lista_vdep  <- list() 
lista_year  <- list() 
lista_bf  <- list() 
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lista_lr  <- list() 
lista_tc  <- list() 
## 
l_y  <- list() 
## 
l_cv.dev        <- list() 
l_cv.dev.se     <- list() 
l_cv.auc1       <- list() 
l_cv.cor        <- list() 
l_cv.cor.se     <- list() 
l_cv.auc        <- list() 
l_cv.auc.se     <- list() 
l_ntrees        <- list() 
l_tiempo        <- list() 
l_sf.auc     <- list() 
l_sf.cor     <- list() 
l_sf.null    <- list() 
l_sf.m.null  <- list() 
l_sf.resid   <- list() 
l_sf.res.dv  <- list() 
l_cv.stat    <- list() 
l_self.stat  <- list() 
l_call       <- list() 
l_contrib    <- list() 
 
#-- Containers for crossprediction 
e_auc <- c() 
e_cor <- c() 
e_tp <- c() 
e_fp <- c() 
e_fn <- c() 
e_tn <- c() 
y_    <- c() 
d_    <- c() 
l_vd  <- c() 
l_nvd <- c() 
e_trh<- c() 
e_tss <- c() 
e_sensibility <- c() 
e_specificity <- c() 
e_fpr <- c() 
 
# Container for the predictions (from crosspred) to map (7 columns)  
data_pr <- data_2017[,1:7] 
 
##-- Container object resulting table of RCs (relative contributions of #the explanatory V. 
of the models)ocontributions <- tibble() 
 
#sink("Modelos_BRT_20190313_v0.txt") 
 
year <- sort(year)  ## Order the years so that the models are executed in #a predictable 
sequence (important for keep.fvector//fvector) 
  print("---- Data are modeled separately for the years ") 
  print( year ) 
  cat("\n") 
 
for (vd in vdep){ 
    nomb_modelo  <- tb_vdep %>%   filter(num_vdep == vd)  %>%  dplyr::select(nombres_modelos) 
%>% pull() 
    nomb_vdep  <- tb_vdep %>%   filter(num_vdep == vd)  %>%  dplyr::select(nombres_vdep) %>% 
pull() 
    print(paste("=======----------------%%%  MODELOS  ",nomb_modelo,  "  (var_depend =", vd 
,")  %%%-------------=======")) 
    print("---- Predictor variables are used ") 
    print( ltexto_predictoras ) 
    cat("\n") 
 
    for (y in year) { 
        cat("\n") 
        print(paste("======= model year  =====>>>    ",y, "    <<<=====")) 
        ## Set seed for each model corresponding to the INITIAL YEAR 
        if (y==min(year) & abs(nseed)>=0  & tuning==0)  { 
            set.seed(nseed) 
            print(paste("Apply SET.SEED =", nseed, " al a?o INICIAL (", y, ")")) 
            } else{ print(paste("No se aplica set.seed al a?o ", y)) } 
        if (y==min(year) & y==max(year))  { 
            print("Se obtiene el modelo de un UNICO a?o") 
            } else{ print("") } 
        ##Construye nombre del objeto donde se almacenar?_cada_modelo 
        data0 <- eval(parse(text= paste("data_",y,sep=""))) 
        for (bf in bag_fracc) { 
            for (lr in learn_rate){ 
                for (tc in tree_cmplx){ 
                    print(paste("-- Bag fraction: ",bf,", Learning rate: ",lr,", Tree 
complexity: ",tc)) 
                    ##--Se construye el nombre del modelo 
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                    nmodelo <- paste("m_", nomb_vdep,"_",y,"_",sprintf("%0.05f", 
bf),"_",sprintf("%0.04f", lr),"_",tc, sep="") 
                    ##-- Se generan las listas que conformaran la tabla/dataframe donde se 
almacenaran los resultados 
                    lista_modelo[(length(lista_modelo) + 1)] <- nmodelo 
                    lista_vdep[(length(lista_vdep) + 1)]  <- nomb_vdep 
                    lista_year[(length(lista_year) + 1)]  <- y 
                    lista_bf[(length(lista_bf)     + 1)]  <- bf 
                    lista_lr[(length(lista_lr)     + 1)]  <- lr 
                    lista_tc[(length(lista_tc)     + 1)]  <- tc 
                    print(paste("Codigo del modelo ---->",nmodelo)) 
                    ###=========  Se ejecuta la llamada al modelo GBM 
                    if (k_f_vector==1 & tuning==0 ) { 
                        ## Se captura el fold vector del a?o inicial de la lista de a?os 
(ejemplo 2010, si 2010) 
                        if (y==min(year) ) { 
                            print(paste("Mediante keep.fold.vector se captura el fold.vector 
del modelo del a?o  --> ", y)) 
                            cat("\n-----------------------------") 
                            m <- eval(parse(text = callm_keep)) 
                            keep_fold_vector <-  m$fold.vector 
                        } else if (y>min(year) ) { 
                            print(paste("Se aplica fold.vector del a?o ", min(year), " al 
modelo del a?o  --> ", y)) 
                            cat("\n-----------------------------") 
                            m <- eval(parse(text = callm_foldv)) 
                        } else {print("dont apply keep.fold.vector ...")} 
                    } else { 
                        print("The Model call is executed randomly without using 
'keep.fold.vector' ni 'fold.vector'") 
                        cat("\n---------------------------") 
                        m <- eval(parse(text = callm)) 
                    } 
                    
#==================================CROSSPREDICTABILITY======================================= 
 
                    #======================== CrossPredictability if models run ok == 
                        cat("\n-------------------------\n") 
                    if (crosspredict==1) { 
                        anos07 <- 2017-y   #-- numbers of years until 2017 
                        sumy=0 
                        for (py in 0:anos07) { 
                                sumy <- sumy+1 
                                my <- y + py        # years since (y+0) until (y+anos07), x 
ej. if y=2011, the range (2011+0)=2011 hasta (2011+6)=2017 
                                datamy <- eval(parse(text= paste("data_", my, sep=""))) 
                                #crpr_m <- paste0("crpr_m_", my) 
                                #=========>>   The call to predict is made, creating the 
container object "crpr_m" 
                                crpr_call <- paste0(' predict.gbm(m, datamy, 
n.trees=m$gbm.call$best.trees, type="response")') 
                                
#############################================================================================ 
                                if(!is.null(m$cv.statistics$deviance.mean)==TRUE) { 
                                #-------------------------------------------------- 
                                    print(paste("Se obtiene Cross-predicts Modelo a?o ",y, " 
en Datos a?o",my)) 
                                    crpr_m <- eval(parse(text = crpr_call)) 
                                    ##--------------------------- 
                                    ####----------- CONTAINER for the results of the 
PREDICTIONS -> Columns of the df "data_pr" (for MAPS)-------------####                                    
if (tuning==0) { 
                                        var_pr <- paste0("data_pr$pr_", vd, "_m",y, "_d",my) 
                                        ## The predictions are transferred to var_pr which 
represents a columna del df "data_pr" 
                                        eval(parse(text= paste(var_pr," <-  crpr_m"))) 
                                    } else { 
                                        print("No predictions for maps (tuning activated)") 
                                    } 
 
                                    #---   Asses (evaluate) 
                                    #-- Predictions are identified in data with a positive 
and negative indicator (eg IPA>50 or IPA<=50 respectively) 
                                    crpr_ipositivas <- crpr_m[datamy[,vd]==1]   # predictions 
on positive data in datamy 
                                    crpr_inegativas <- crpr_m[datamy[,vd]==0]   # predictions 
on negative data in datamy                                    ##------- 
                                    e <- evaluate(crpr_ipositivas, crpr_inegativas) 
                                    ##------- 
                                    l_vd[length(l_vd)+1] <- vd              #--( const inside 
model) Indicates the vd (dependent variable) of the model 
                                    l_nvd[length(l_nvd)+1] <- nomb_vdep     #--( const inside 
model) Indicates name of the vd of the model 
                                    y_ [length(y_)+1] <- paste0("m",y)     #--( const inside 
model) Model year list (and 2010-and 2017) 
                                    d_ [length(d_)+1] <- paste0("d",my)    #--( Var inside 
model) List year of the data in which the model is crs-predicted (d2010-d2017) 
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                                    #-- to obtain AUC and COrrelation 
                                    e_auc[length(e_auc)+1] <- e@auc     #--(Var within model) 
AUC of the crs-predict of the model with data from different years >=Year of the model 
                                    e_cor[length(e_cor)+1] <- e@cor 
                                    #-- Get optimal threshold probability 
                                    trh <- e@t[which(e@TPR+e@TNR==max(e@TPR+e@TNR))] 
                                    trh <- max(trh) 
                                    e_trh[length(e_trh)+1] <- trh 
                                    #-- Get confusion matrix for optim threshold 
                                    #    (  mc[1]=tp,  mc[2]=fp,  mc[3]= fn,  mc[4]= tn ) 
                                    mc <- e@confusion[which(e@TPR+e@TNR==max(e@TPR+e@TNR)), ] 
                                    e_tp[length(e_tp)+1] <- mc[1] 
                                    e_fp[length(e_fp)+1] <- mc[2] 
                                    e_fn[length(e_fn)+1] <- mc[3] 
                                    e_tn[length(e_tn)+1] <- mc[4] 
                                    #--   Get Sensitivity or TRUE Positive rate (TPR) in 
(treshold) optimo (tp/(tp+fn)) 
                                    tpr <-  mc[1] / (mc[1] + mc[3])    # <- Denominator (true 
positives) 
                                    e_sensibility[length(e_sensibility)+1]  <- tpr 
                                    #--   Obtains Specificity or TRUE Negative rate (TNR) at 
the optimal threshold (treshold)                                    tnr <- mc[4] / (mc[4] + 
mc[2])    # <- Denominator (true negatives) 
                                    e_specificity[length(e_specificity)+1]  <- tnr 
                                    #--   Get False Positive Rate (fp/(tn+fp)) 
                                    fpr <- 1-tnr 
                                    e_fpr[length(e_fpr)+1] <- fpr 
                                    #--  Obtiene TSS (True Skill Statistic)   ## do not use 
                                    num_tss <- (mc[1]*mc[4])-(mc[3]*mc[2]) 
                                    den_tss <- (mc[1]+mc[2])*(mc[3]+mc[4]) 
                                    tss <- num_tss/den_tss 
                                    e_tss[length(e_tss)+1] <- tss 
                                } else { 
                                    l_vd[length(l_vd)+1] <- NA 
                                    l_nvd[length(l_nvd)+1] <- NA 
                                    y_[length(y_)+1]  <- NA 
                                    d_[length(d_)+1]  <- NA 
                                    e_auc[length(e_auc)+1]  <- NA 
                                    e_cor[length(e_cor)+1]  <- NA 
                                    e_trh[length(e_trh)+1]  <- NA 
                                    e_tp[length(e_tp)+1]  <- NA 
                                    e_fp[length(e_fp)+1]  <- NA 
                                    e_fn[length(e_fn)+1]  <- NA 
                                    e_tn[length(e_tn)+1]  <- NA 
                                    e_sensibility[length(e_sensibility)+1]  <- NA 
                                    e_specificity[length(e_specificity)+1]  <- NA 
                                    e_fpr[length(e_fpr)+1]  <- NA 
                                    e_tss[length(e_tss)+1]  <- NA 
                                    print(paste("does NOT generate Cross-preds Model year 
",y, " in Data year",my, "--> lr large. NA is stored"))                                } 
                           } 
                    }   else{ print("Cross Predictions are not obtained between models of 
different years")                        } 
                    
#========================================================================= 
                    if(!is.null(m$cv.statistics$deviance.mean)==TRUE) { 
                        #============================================== 
                        l_y[   (length(l_y)              + 1)]    <- m$gbm.call$gbm.y                      
#Var dependiente (extraida del modelo) 
                        l_cv.dev[   (length(l_cv.dev)    + 1)]    <- 
m$cv.statistics$deviance.mean         # CV deviance mean 
                        l_cv.dev.se[(length(l_cv.dev.se) + 1)]    <- 
m$cv.statistics$deviance.se           # CV deviance standard error 
                        l_cv.cor[   (length(l_cv.cor)    + 1)]    <- 
m$cv.statistics$correlation.mean      # CV correlation mean 
                        l_cv.cor.se[(length(l_cv.cor.se) + 1)]    <- 
m$cv.statistics$correlation.se        # CV correlation standard error 
                        l_cv.auc1[  (length(l_cv.auc1)   + 1)]    <- mean(m$cv.roc.matrix)                 
# CV AUC mean (average folds) 
                        l_cv.auc[   (length(l_cv.auc)    + 1)]    <- 
m$cv.statistics$discrimination.mean   # CV AUC mean (must match above) 
                        l_cv.auc.se[(length(l_cv.auc.se) + 1)]    <- 
m$cv.statistics$discrimination.se     # CV AUC standard error 
                        l_sf.auc[   (length(l_sf.auc)    + 1)]    <- 
m$self.statistics$discrimination      # AUC mean (sin cv) 
                        l_sf.cor[   (length(l_sf.cor)    + 1)]    <- 
m$self.statistics$correlation         # Correlation (sin cv) 
                        l_sf.null[  (length(l_sf.null)   + 1)]    <- m$self.statistics$null                
# Total deviance 
                        l_sf.m.null[(length(l_sf.m.null) + 1)]    <- 
m$self.statistics$mean.null           # Mean total deviance 
                        l_sf.resid[ (length(l_sf.resid)  + 1)]    <- m$self.statistics$resid               
# Resid deviance 
                        l_sf.res.dv[(length(l_sf.res.dv) + 1)]    <- 
m$self.statistics$mean.resid          # Mean Resid deviance 
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                        l_ntrees[   (length(l_ntrees) + 1)]    <- m$gbm.call$n.trees                  
# Num of trees 
                        l_tiempo[   (length(l_tiempo) + 1)]    <- 
m$gbm.call$elapsed.time.minutes     # Tiempo 
 
                        #l_cv.stat[  (length(l_cv.stat) + 1)]   <- 
ifelse(!is.null(m$cv.statistics)==TRUE ,m$cv.statistics, NA)             #cv 
                        #l_self.stat[(length(l_self.stat) + 1)] <- 
ifelse(!is.null(m$self.statistics)==TRUE ,m$self.statistics, NA)             #Self 
 
                        con <- as_tibble(m$contributions) 
                        con <- add_column(con, cmodelo = nmodelo                       , 
.before="var")  # Add as first column (antes de "var") 
                        con <- add_column(con, nvdep  = vd                             , 
.before="var")  # Add as first column (antes de "var") 
                        con <- add_column(con, vdepend= nomb_vdep                      , 
.before="var")  # Add as first column (antes de "var") 
                        con <- add_column(con, malaria_api= nomb_modelo                , 
.before="var")  # Add as first column (antes de "var") 
                        con <- add_column(con, malaria = str_sub(con$malaria_api, start= 1, 
end=-8))       # Add columna derivaded "malaria" 
                        con <- add_column(con, api     = str_sub(con$malaria_api, start= -6))             
# Add columna derivated  "api" 
                        con <- add_column(con, year   = y                              , 
.before="var")  # Add a column (antes de "var") 
                        con <- add_column(con, bf     = bf                             , 
.before="var")  # Add as column (antes de "var") 
                        con <- add_column(con, lr     = lr                             , 
.before="var")  # Add as column (antes de "var") 
                        con <- add_column(con, tc     = tc                             , 
.before="var")  # Add as column (antes de "var") 
                        con <- add columna (con, cv.auc = m$cv.statistics$discrimination.mean  
, .before="var")  # Add last column (antes de "var") 
                        con <- con %>% 
                         #select(var) %>% 
                            mutate(var1 = case_when( 
                                                 var == "rain"      ~"CAR"  , 
                                                 var == "logpop5k"  ~"POPD" , 
                                                 var == "access"    ~"TPV"  , 
                                                 var == "ndwi2k"    ~"NDWI" , 
                                                 var == "covfor2k"  ~"FC"   , 
                                                 var == "ndvi2k"    ~"NDVI" , 
                                                 var == "temp"      ~"LST"  , 
                                                 var == "distriver" ~"SDR"  , 
                                                 var == "loss2k"    ~"FL"   , 
                                                 var == "logpop"    ~"POP"  , 
                                                 TRUE               ~"otra" ) , 
                                      order = case_when( 
                                                  var == "rain"      ~1  , 
                                                  var == "logpop5k"  ~2 , 
                                                  var == "access"    ~3 , 
                                                  var == "ndwi2k"    ~4 , 
                                                  var == "covfor2k"  ~5 , 
                                                  var == "ndvi2k"    ~6 , 
                                                  var == "temp"      ~7 , 
                                                  var == "distriver" ~8 , 
                                                  var == "loss2k"    ~9 , 
                                                  var == "logpop"    ~10  )   ) 
                         #------------------------------------------------------------------- 
                         #------ The partial predictions of the models are obtained (logit 
form: type="link" by default) 
                          # those that are stored in the "pmarginal" df 
                         cat("\n-------------------\n") 
                         if (gpdp==1 & exists("pmarginal") & tuning==0) { 
                             print("tuning=0 & existe el insumo 'pmarginal' ----> OK  ") 
                             print("Se obtienen las predicciones para los PDPs ... ") 
                             print("-----") 
                             ##--- predictor variable name containers (For fixed model) 
                             lvars_yy  <- c() 
                             ##  The predictions will be stored in the table "PMARGINAL" 
                              ## The use of the same values of predictors and covariates for 
the estimation of the PDPs 
                              ## ensures that the magnitudes of the predictions of PDPs from 
different years can be compared. 
                             for (pv in ltexto_predictoras){ 
                                 lvars_yy[length(lvars_yy) + 1]  <- paste0("yy_", pv)   ## 
lista de variables y_17 
                                #COn objeto de obtener  marginal predicts for "vpred" Change 
the names of the variables "yy_vpred" to "vpred" 
                                 # the original "vpred" is in turn renamed to "vpred_1", to 
temporarily override it                                 names(pmarginal)[names(pmarginal)== 
pv]                <- paste0(pv, "_1") 
                                 names(pmarginal)[names(pmarginal)== paste0("yy_", pv)] <- pv 
                                # Is the text string (syntax) to call generated? to the 
prediction 
                                 # The predictions of the 2010-2017 models are obtained 
(logit form: type="link", which is? tb by default) 
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                                 pr_call <- paste0("pmarginal$pr_",vd,"_",pv,"_",y,' <- 
predict.gbm(m, pmarginal, n.trees=m$gbm.call$best.trees, type="link")') 
                                 print(paste0("Se obtuvo la prediccion->  
pr_",vd,"_",pv,"_",y)) 
                                # Se ejecutan los predicts 
                                 eval(parse(text = pr_call)) 
                                # Las variables renombradas previamente retoman su nominaci?n 
original 
                                 names(pmarginal)[names(pmarginal)== pv] <- paste0("yy_", pv) 
                                 names(pmarginal)[names(pmarginal)== paste0(pv, "_1")] <- pv 
                            } 
                         }else{print("NO predictions are obtained for PDPs || There is NO 
pmarginal to store the marginal predictions of the models !!")}                    } 
                    else{ 
                       l_y[   (length(l_y)              + 1)]    <- NA   #Var dependiente 
(extraida del modelo) 
                       l_cv.dev[   (length(l_cv.dev)    + 1)]    <- NA   # CV deviance mean 
                       l_cv.dev.se[(length(l_cv.dev.se) + 1)]    <- NA   # CV deviance 
standard error 
                       l_cv.cor[   (length(l_cv.cor)    + 1)]    <- NA   # CV correlation 
mean 
                       l_cv.cor.se[(length(l_cv.cor.se) + 1)]    <- NA   # CV correlation 
standard error 
                       l_cv.auc1[  (length(l_cv.auc1)   + 1)]    <- NA   # CV AUC mean 
(average folds) 
                       l_cv.auc[   (length(l_cv.auc)    + 1)]    <- NA   # CV AUC mean  
                       l_cv.auc.se[(length(l_cv.auc.se) + 1)]    <- NA   # CV AUC standard 
error 
                       l_sf.auc[   (length(l_sf.auc)    + 1)]    <- NA   # AUC mean (sin cv) 
                       l_sf.cor[   (length(l_sf.cor)    + 1)]    <- NA   # Correlation (sin 
cv) 
                       l_sf.null[  (length(l_sf.null)   + 1)]    <- NA   # Total deviance 
                       l_sf.m.null[(length(l_sf.m.null) + 1)]    <- NA   # Mean total 
deviance 
                       l_sf.resid[ (length(l_sf.resid)  + 1)]    <- NA   # Resid deviance 
                       l_sf.res.dv[(length(l_sf.res.dv) + 1)]    <- NA   # Mean Resid 
deviance 
                       l_ntrees[   (length(l_ntrees) + 1)]    <- NA     # Num of trees 
                       l_tiempo[   (length(l_tiempo) + 1)]    <- NA     # Tiempo 
                       con <- NA 
                    } 
                    ocontributions <- rbind(ocontributions, con) 
                    #print(contr) 
}}}}} 
 
ocrosspred <- tibble("vardep"=l_vd, "nvardep"=l_nvd, "model_year"=y_, "data"=d_, e_auc, 
e_cor, e_trh, e_tp, e_fp, e_fn, e_tn, e_sensibility, e_specificity, e_fpr, e_tss) 
 
 
ostatistics <- data.frame(unlist(lista_modelo),unlist(l_y), 
unlist(lista_vdep),unlist(lista_year),unlist(lista_bf),unlist(lista_lr),unlist(lista_tc), 
                        unlist(l_cv.dev), unlist(l_cv.auc1), unlist(l_cv.auc), 
unlist(l_cv.auc.se), unlist(l_cv.cor), unlist(l_cv.cor.se), 
                        unlist(l_sf.auc), unlist(l_sf.cor), unlist(l_sf.null), 
unlist(l_sf.m.null), unlist(l_sf.resid ), unlist(l_sf.res.dv), 
                        unlist(l_ntrees), unlist(l_tiempo)) 
 
                                        #print(lista_modelo) 
names(ostatistics) <- c("modelo","vdep.n", "vdepend","year","bf","lr","tc", 
                      "cv.dev", "cv.auc", "cv.auc1", "cv.auc.se", "cv.cor","cv.cor.se", 
                      "sf.auc", "sf.cor", "sf.null", "sf.m.null", "sf.resid" , "sf.res.dv", 
                      "n.trees","time.min") 
 
## MARGINAL PREDICTIONS on values selected from the range of each predictor variable. 
## The marginal prediction for a predictor variable "v1" is the average of the 
## individual predictions (from each ccpp) for various values of v1 ( values 
## equally spaced from the range of v1) keeping the others as is 
## predictor variables of each CCPP. The average of these predictions for 
## each ccpp for each selected value of "v1" results in the marginal effect ? 
## average effect of "v1" on the response variable, which averages over the 
## effects of the other predictor variables. 
 
#-------------------------------------------------------------------------------------------- 
oice <-  pmarginal %>% 
                dplyr::rename_at(vars(starts_with('yy_')), list(~sub('yy_', 'x_', .))) %>% 
                 dplyr::select(COD_OBJ, year, starts_with("x_"), starts_with("pr_")) 
 
#-------------------------------------------------------------------------------------------- 
 
lvars_yy <- unique(lvars_yy, incomparables = FALSE) 
 
if (pdp1==1 & exists("pmarginal") ){ 
 
     grouping_vars <- syms(lvars_yy) 
     pmarginal_mean <- 
         pmarginal %>%                  ### <<<<<<---------  input "PMARGINAL" 
         group_by( !!!grouping_vars )  %>% 
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         summarise_at( vars( starts_with("pr_")), mean) 
 
     lpdp <- pmarginal_mean %>% 
       gather(key, value, -lvars_yy )  %>% 
         tidyr::extract(col = key, into = c("variable", "year"), "(pr_3[4-9]_[a-
z]+[25]?k?)_(201[0-7])$") %>% 
         spread(variable, value) 
 
     l2pdp <- pmarginal_mean %>% 
       gather(key, value, -lvars_yy )  %>% 
         tidyr::extract(col = key, into = c("variable", "year"), "(pr_3[4-9]_[a-
z]+[25]?k?)_(201[0-7])$") 
 
     #------------------------------------------------------------ 
 
    olpdp <- lpdp %>% 
                dplyr::rename_at(vars(starts_with('yy_')), list(~sub('yy_', 'x_', .))) %>% 
                 dplyr::select(year, starts_with("x_"), starts_with("pr_")) 
 
     #------------------------------------------------------------ 
 
     } else{print("Predictions are not processed for PDPs ")} 
 
##------------------------------- End  ------------------------------## 

 

 

Codes implemented for Google Earth Engine (GEE) 

Rainfall_Anual 
//Area of study 
var region = ee.FeatureCollection('ft:1WEJQbaw4txw5f66-lBStlILHCIvjX2OZnVYV-
Rog');//Nuevoextend 
Map.addLayer(region); 
//var region = Loreto; 
 
Map.setCenter(-75,-4, 6); //lat, long, zoom 
 
//Definición de Trimestres 
var Calendar= ee.Filter.calendarRange(1,365); 
//var trimestreB = ee.Filter.calendarRange(91,180); 
//var trimestreC = ee.Filter.calendarRange(181,270); 
//var trimestreD = ee.Filter.calendarRange(271,366); 
 
// Collect bands and scale 
var collection = ee.ImageCollection('TRMM/3B42').select('precipitation'); 
 
var func = function(image){ 
  return image.clip(region);//maybe create a property to group the reducer 
}; 
 
//var sum = collection.map(func).mean();   
 
//========================================================================= 
//2010  
//========================================================================= 
var FromDate='2010-01-01'; 
var ToDate='2010-12-31'; 
//========================================================================= 
//TrimestreA  
//========================================================================= 
var etiqueta='RR2010'; 
var RR2010t = ee.ImageCollection(collection.filterDate(FromDate,ToDate).filter(Calendar)); 
var RR2010 = RR2010t.map(func).reduce(ee.Reducer.sum());  
Map.addLayer (RR2010, {'min': 0, 'max': 3000, 
'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000"}, 'RR2010'); 
 
//========================================================================= 
//2011  
//========================================================================= 
var FromDate='2011-01-01'; 
var ToDate='2011-12-31'; 
//========================================================================= 
//TrimestreA  
//========================================================================= 
var etiqueta='RR2011'; 
var RR2011t = ee.ImageCollection(collection.filterDate(FromDate,ToDate).filter(Calendar)); 
var RR2011 = RR2011t.map(func).reduce(ee.Reducer.sum());  
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Map.addLayer (RR2011, {'min': 0, 'max': 3000, 
'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000"}, 'RR2011'); 
 
//========================================================================= 
//2012  
//========================================================================= 
var FromDate='2012-01-01'; 
var ToDate='2012-12-31'; 
//========================================================================= 
//TrimestreA  
//========================================================================= 
var etiqueta='RR2012'; 
var RR2012t = ee.ImageCollection(collection.filterDate(FromDate,ToDate).filter(Calendar)); 
var RR2012 = RR2012t.map(func).reduce(ee.Reducer.sum());  
Map.addLayer (RR2012, {'min': 0, 'max': 3000, 
'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000"}, 'RR2012'); 
 
//========================================================================= 
//2013  
//========================================================================= 
var FromDate='2013-01-01'; 
var ToDate='2013-12-31'; 
//========================================================================= 
//TrimestreA  
//========================================================================= 
var etiqueta='RR2013'; 
var RR2013t = ee.ImageCollection(collection.filterDate(FromDate,ToDate).filter(Calendar)); 
var RR2013 = RR2013t.map(func).reduce(ee.Reducer.sum());  
Map.addLayer (RR2013, {'min': 0, 'max': 3000, 
'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000"}, 'RR2013'); 
//========================================================================= 
//2014  
//========================================================================= 
var FromDate='2014-01-01'; 
var ToDate='2014-12-31'; 
//========================================================================= 
//TrimestreA  
//========================================================================= 
var etiqueta='RR2014'; 
var RR2014t = ee.ImageCollection(collection.filterDate(FromDate,ToDate).filter(Calendar)); 
var RR2014 = RR2014t.map(func).reduce(ee.Reducer.sum());  
Map.addLayer (RR2014, {'min': 0, 'max': 3000, 
'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000"}, 'RR2014'); 
 
//========================================================================= 
//2015  
//========================================================================= 
var FromDate='2015-01-01'; 
var ToDate='2015-12-31'; 
//========================================================================= 
//TrimestreA  
//========================================================================= 
var etiqueta='RR2015'; 
var RR2015t = ee.ImageCollection(collection.filterDate(FromDate,ToDate).filter(Calendar)); 
print(RR2015t); 
var RR2015 = RR2015t.map(func).reduce(ee.Reducer.sum());  
Map.addLayer (RR2015, {'min': 0, 'max': 3000, 
'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000"}, 'RR2015'); 
 
//========================================================================= 
//2016  
//========================================================================= 
var FromDate='2016-01-01'; 
var ToDate='2016-12-31'; 
//========================================================================= 
//TrimestreA  
//========================================================================= 
var etiqueta='RR2016' 
var RR2016t = ee.ImageCollection(collection.filterDate(FromDate,ToDate).filter(Calendar)); 
var RR2016 = RR2016t.map(func).reduce(ee.Reducer.sum());  
Map.addLayer (RR2016, {'min': 0, 'max': 3000, 
'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000"}, 'RR2016'); 
 
//========================================================================= 
//2017 
//========================================================================= 
var FromDate='2017-01-01'; 
var ToDate='2017-12-31'; 
//========================================================================= 
//TrimestreA  
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//========================================================================= 
var etiqueta='RR2017' 
var RR2017t = ee.ImageCollection(collection.filterDate(FromDate,ToDate).filter(Calendar)); 
var RR2017 = RR2017t.map(func).reduce(ee.Reducer.sum());  
Map.addLayer (RR2017, {'min': 0, 'max': 3000, 
'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000"}, 'RR2016'); 
 
//========================================================================= 
 
var 
RRtrimestral2010=RR2010;//.addBands(RR2010tB).addBands(RR2010tC).addBands(RR2010tD).addBands(
RR2011tA).addBands(RR2011tB).addBands(RR2011tC).addBands(RR2011tD).addBands(RR2012tA).addBand
s(RR2012tB).addBands(RR2012tC).addBands(RR2012tD).addBands(RR2013tA).addBands(RR2013tB).addBa
nds(RR2013tC).addBands(RR2013tD).addBands(RR2014tA).addBands(RR2014tB).addBands(RR2014tC).add
Bands(RR2014tD).addBands(RR2015tA).addBands(RR2015tB).addBands(RR2015tC).addBands(RR2015tD).a
ddBands(RR2016tA).addBands(RR2016tB).addBands(RR2016tC).addBands(RR2016tD); 
 
Export.image.toDrive({ 
  image: RRtrimestral2010, 
  description: 'TRMM_AcumuladoANual2010', 
  scale: 27000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var RRtrimestral2011=RR2011; 
 
Export.image.toDrive({ 
  image: RRtrimestral2011, 
  description: 'TRMM_AcumuladoANual2011', 
  scale: 27000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var RRtrimestral2012=RR2012; 
 
Export.image.toDrive({ 
  image: RRtrimestral2012, 
  description: 'TRMM_AcumuladoANual2012', 
  scale: 27000, 
  region: region, 
  maxPixels: 1e12, 
}); 
//========================================================================= 
 
var RRtrimestral2013=RR2013; 
 
Export.image.toDrive({ 
  image: RRtrimestral2013, 
  description: 'TRMM_AcumuladoANual2013', 
  scale: 27000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var RRtrimestral2014=RR2014; 
 
Export.image.toDrive({ 
  image: RRtrimestral2014, 
  description: 'TRMM_AcumuladoANual2014', 
  scale: 27000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var RRtrimestral2015=RR2015; 
 
Export.image.toDrive({ 
  image: RRtrimestral2015, 
  description: 'TRMM_AcumuladoANual2015', 
  scale: 27000, 
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  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var RRtrimestral2016=RR2016; 
 
Export.image.toDrive({ 
  image: RRtrimestral2016, 
  description: 'TRMM_AcumuladoANual2016', 
  scale: 27000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var RRtrimestral2017=RR2017; 
 
Export.image.toDrive({ 
  image: RRtrimestral2017, 
  description: 'TRMM_AcumuladoANual2017', 
  scale: 27000, 
  region: region, 
  maxPixels: 1e12, 
  //driveFolder: 'MODELOS_BRT', 
}); 
 

Accessibility 
 
var region = ee.FeatureCollection('ft:1WEJQbaw4txw5f66-lBStlILHCIvjX2OZnVYV-Rog');//Nuevo extend 
Map.addLayer(region); 
 
var dataset = ee.Image('Oxford/MAP/accessibility_to_cities_2015_v1_0'); 
var accessibility = dataset.select('accessibility'); 
 
var accessibilityVis = { 
  min: 0.0, 
  max: 41556.0, 
  gamma: 4.0, 
}; 
 
Map.setCenter(18.98, 6.66, 2); 
Map.addLayer(accessibility.clip(region), accessibilityVis, 'Accessibility'); 
 
//Map.addLayer(accessibility, accessibilityVis, 'Accessibility'); 
 
Export.image.toDrive({ 
  image: accessibility, 
  description: 'Accesibilidad_Geo', 
  //crs: 'EPSG:32718', 
  scale: 1000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//Map.addLayer(singleImage.clip(geometry.buffer(1000)), {min: 5000.0, max: 25000.0}, 'False Color - 
Circle'); 
 

Forest 2015 (loss year) 
 
//Area de Estudio 
var region = ee.FeatureCollection('ft:1WEJQbaw4txw5f66-lBStlILHCIvjX2OZnVYV-Rog');//Nuevoextend 
Map.addLayer(region); 
//var region = Loreto; 
 
var dataset = ee.Image('UMD/hansen/global_forest_change_2015'); 
var treeCanopyCover = dataset.select('treecover2000'); 
var treeCover = treeCanopyCover.clip(region); 
var treeCoverVis = { 
  min: 0.0, 
  max: 100.0, 
  palette: 
      ['3d3d3d', '080a02', '080a02', '080a02', '106e12', '37a930', '03ff17'], 
}; 
Map.setCenter(-72, -3.0, 6); 
Map.addLayer(treeCover.clip(region), treeCoverVis, 'treecover2000'); 
 
Export.image.toDrive({ 
  image: treeCover, 
  description: 'treecover2000_data2015', 
  folder: "_Finales_ResOriginal", 
  scale: 30, 
  region: region, 
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  maxPixels: 1e12, 
}); 
 
//********************************************************************** 
 
var dataset = ee.Image('UMD/hansen/global_forest_change_2017_v1_5'); 
var lossyear16 = dataset.select('lossyear'); 
var lossyear16r = lossyear16.clip(region); 
var lossyear16rc = lossyear16r 
.remap([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], 
           [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]); 
Map.addLayer(lossyear16rc, {min: 0, max: 1}, 'lossyear2016'); 
 
Export.image.toDrive({ 
  image: lossyear16r, 
  description: 'lossyear_data2015', 
  scale: 30, 
  folder: "_Finales_ResOriginal", 
  region: region, 
  maxPixels: 1e12, 
}); 
 
 

Forest 2015 
//Area de Estudio 
var region = ee.FeatureCollection('ft:1WEJQbaw4txw5f66-lBStlILHCIvjX2OZnVYV-Rog');//Nuevoextend 
Map.addLayer(region); 
//var region = Loreto; 
 
var Calendar= ee.Filter.calendarRange(1,365); 
var FromDate='2015-01-01'; 
var ToDate='2015-12-31'; 
 
var Calendar= ee.Filter.calendarRange(1,365); 
 
var dataset = ee.Image('UMD/hansen/global_forest_change_2017_v1_5'); 
var treeCanopyCover = dataset.select('treecover2000'); 
var treeCover = treeCanopyCover.clip(region); 
var treeCoverVis = { 
  min: 0.0, 
  max: 100.0, 
  palette: 
      ['3d3d3d', '080a02', '080a02', '080a02', '106e12', '37a930', '03ff17'], 
}; 
Map.setCenter(-72, -3.0, 6); 
Map.addLayer(treeCover.clip(region), treeCoverVis, 'treecover2000'); 
 
Export.image.toDrive({ 
  image: treeCover, 
  description: 'treecover2000_Data2017', 
  folder: "_Finales_ResOriginal", 
  scale: 30, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//********************************************************************** 

 
 
Forest 2017 
 
var dataset = ee.Image('UMD/hansen/global_forest_change_2017_v1_5'); 
var lossyear16 = dataset.select('lossyear'); 
var lossyear16r = lossyear16.clip(region); 
var lossyear16rc = lossyear16r 
.remap([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], 
           [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]); 
Map.addLayer(lossyear16rc, {min: 0, max: 1}, 'lossyear2016'); 
 
Export.image.toDrive({ 
  image: lossyear16r, 
  description: 'lossyear_Data2017', 
  scale: 30, 
  folder: "_Finales_ResOriginal", 
  region: region, 
  maxPixels: 1e12, 
}); 
 
/* 
Export.image.toDrive({ 
  image: lossyear16rc, 
  description: 'lossyear2016base', 
  scale: 30, 
  region: Loreto, 
  maxPixels: 1e12, 
}); 
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LST annual 
 
//Area de Estudio Loreto más 5km. de borde. 
var region = ee.FeatureCollection('ft:1WEJQbaw4txw5f66-lBStlILHCIvjX2OZnVYV-Rog');//Nuevo 
extend 
Map.addLayer(region); 
 
//Definición de Trimestres 
var trimestreA= ee.Filter.calendarRange(1,365); 
//var trimestreB = ee.Filter.calendarRange(91,180); 
//var trimestreC = ee.Filter.calendarRange(181,270); 
//var trimestreD = ee.Filter.calendarRange(271,366); 
 
// Collect bands and scale 
var modisLSTday = ee.ImageCollection('MODIS/006/MOD11A1').select('LST_Day_1km'); 
 
var modLSTday = modisLSTday.map(function(img){ 
return 
img.multiply(0.02).subtract(273.15).copyProperties(img,['system:time_start','system:time_end'
]); 
}); 
 
Map.setCenter(-80,-4, 4); //lat, long, zoom 
 
//========================================================================= 
//2010  
//========================================================================= 
var FromDate='2010-01-01'; 
var ToDate='2010-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='LST2010' 
var LST2010t = ee.ImageCollection(modLSTday.filterDate(FromDate,ToDate).filter(trimestreA)); 
var LST2010 = LST2010t.mean().clip(region) 
Map.addLayer (LST2010, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2011  
//========================================================================= 
var FromDate='2011-01-01'; 
var ToDate='2011-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='LST2011' 
var LST2011t = ee.ImageCollection(modLSTday.filterDate(FromDate,ToDate).filter(trimestreA)); 
var LST2011 = LST2011t.mean().clip(region) 
Map.addLayer (LST2011, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2012  
//========================================================================= 
var FromDate='2012-01-01'; 
var ToDate='2012-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='LST2012' 
var LST2012t = ee.ImageCollection(modLSTday.filterDate(FromDate,ToDate).filter(trimestreA)); 
var LST2012 = LST2012t.mean().clip(region) 
Map.addLayer (LST2012, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2013  
//========================================================================= 
var FromDate='2013-01-01'; 
var ToDate='2013-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='LST2013' 
var LST2013t = ee.ImageCollection(modLSTday.filterDate(FromDate,ToDate).filter(trimestreA)); 
var LST2013 = LST2013t.mean().clip(region) 
Map.addLayer (LST2013, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2014  
//========================================================================= 
var FromDate='2014-01-01'; 
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var ToDate='2014-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='LST2014' 
var LST2014t = ee.ImageCollection(modLSTday.filterDate(FromDate,ToDate).filter(trimestreA)); 
var LST2014 = LST2014t.mean().clip(region) 
Map.addLayer (LST2014, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2015  
//========================================================================= 
var FromDate='2015-01-01'; 
var ToDate='2015-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='LST2015' 
var LST2015t = ee.ImageCollection(modLSTday.filterDate(FromDate,ToDate).filter(trimestreA)); 
var LST2015 = LST2015t.mean().clip(region) 
Map.addLayer (LST2015, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2016  
//========================================================================= 
var FromDate='2016-01-01'; 
var ToDate='2016-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='LST2016' 
var LST2016t = ee.ImageCollection(modLSTday.filterDate(FromDate,ToDate).filter(trimestreA)); 
print(LST2016t); 
var LST2016 = LST2016t.mean().clip(region) 
 
Map.addLayer (LST2016, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2017  
//========================================================================= 
var FromDate='2017-01-01'; 
var ToDate='2017-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='LST2017' 
var LST2017t = ee.ImageCollection(modLSTday.filterDate(FromDate,ToDate).filter(trimestreA)); 
print(LST2017t); 
var LST2017 = LST2017t.mean().clip(region) 
 
Map.addLayer (LST2017, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//========================================================================= 
 
//var 
LSTtrimestral20102016=LST2010tA.addBands(LST2010tB).addBands(LST2010tC).addBands(LST2010tD).a
ddBands(LST2011tA).addBands(LST2011tB).addBands(LST2011tC).addBands(LST2011tD).addBands(LST20
12tA).addBands(LST2012tB).addBands(LST2012tC).addBands(LST2012tD).addBands(LST2013tA).addBand
s(LST2013tB).addBands(LST2013tC).addBands(LST2013tD).addBands(LST2014tA).addBands(LST2014tB).
addBands(LST2014tC).addBands(LST2014tD).addBands(LST2015tA).addBands(LST2015tB).addBands(LST2
015tC).addBands(LST2015tD).addBands(LST2016tA).addBands(LST2016tB).addBands(LST2016tC).addBan
ds(LST2016tD); 
 
var 
LSTAnual2010=LST2010;//.addBands(RR2010tB).addBands(RR2010tC).addBands(RR2010tD).addBands(RR2
011tA).addBands(RR2011tB).addBands(RR2011tC).addBands(RR2011tD).addBands(RR2012tA).addBands(R
R2012tB).addBands(RR2012tC).addBands(RR2012tD).addBands(RR2013tA).addBands(RR2013tB).addBands
(RR2013tC).addBands(RR2013tD).addBands(RR2014tA).addBands(RR2014tB).addBands(RR2014tC).addBan
ds(RR2014tD).addBands(RR2015tA).addBands(RR2015tB).addBands(RR2015tC).addBands(RR2015tD).addB
ands(RR2016tA).addBands(RR2016tB).addBands(RR2016tC).addBands(RR2016tD); 
 
Export.image.toDrive({ 
  image: LSTAnual2010, 
  description: 'LSTAnual2010', 
  scale: 1000, 
  region: region, 
  maxPixels: 1e12, 
}); 
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//========================================================================= 
 
var LSTAnual2011=LST2011; 
 
Export.image.toDrive({ 
  image: LSTAnual2011, 
  description: 'LSTAnual2011', 
  scale: 1000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var LSTAnual2012=LST2012; 
 
Export.image.toDrive({ 
  image: LSTAnual2012, 
  description: 'LSTAnual2012', 
  scale: 1000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var LSTAnual2013=LST2013; 
 
Export.image.toDrive({ 
  image: LSTAnual2013, 
  description: 'LSTAnual2013', 
  scale: 1000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var LSTAnual2014=LST2014; 
 
Export.image.toDrive({ 
  image: LSTAnual2014, 
  description: 'LSTAnual2014', 
  scale: 1000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var LSTAnual2015=LST2015; 
 
Export.image.toDrive({ 
  image: LSTAnual2015, 
  description: 'LSTAnual2015', 
  scale: 1000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var LSTAnual2016=LST2016; 
 
Export.image.toDrive({ 
  image: LSTAnual2016, 
  description: 'LSTAnual2016', 
  scale: 1000, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var LSTAnual2017=LST2017; 
 
Export.image.toDrive({ 
  image: LSTAnual2017, 
  description: 'LSTAnual2017', 
  scale: 1000, 
  region: region, 
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  maxPixels: 1e12, 
}); 
 

NDVI 
 
//Area of study Loreto more 5km. of buffer. 
var region = ee.FeatureCollection('ft:1WEJQbaw4txw5f66-lBStlILHCIvjX2OZnVYV-Rog');//Nuevo 
extend 
Map.addLayer(region); 
 
//Defining trimestre 
var Calendar= ee.Filter.calendarRange(1,365); 
 
// Collect bands and scale 
var modisNDVI = ee.ImageCollection('MODIS/006/MOD13Q1').select('NDVI'); 
print(modisNDVI)  
 
 
Map.setCenter(-80,-4, 4); //lat, long, zoom 
 
 
//========================================================================= 
//2010  
//========================================================================= 
var FromDate='2010-01-01'; 
var ToDate='2010-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='NDVI2010'; 
var NDVI2010t = ee.ImageCollection(modisNDVI.filterDate(FromDate,ToDate).filter(Calendar)); 
print(NDVI2010t); 
var NDVI2010 = NDVI2010t.mean().clip(region); 
var NDVI2010d = NDVI2010.multiply(0.0001); 
Map.addLayer (NDVI2010d, {'min': 0, 'max':1000, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2011  
//========================================================================= 
var FromDate='2011-01-01'; 
var ToDate='2011-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='NDVI2011' 
var NDVI2011t = ee.ImageCollection(modisNDVI.filterDate(FromDate,ToDate).filter(Calendar)); 
var NDVI2011 = NDVI2011t.mean().clip(region) 
var NDVI2011d = NDVI2011.multiply(0.0001); 
Map.addLayer (NDVI2011d, {'min': -1, 'max':1, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2012  
//========================================================================= 
var FromDate='2012-01-01'; 
var ToDate='2012-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='NDVI2012' 
var NDVI2012t = ee.ImageCollection(modisNDVI.filterDate(FromDate,ToDate).filter(Calendar)); 
var NDVI2012 = NDVI2012t.mean().clip(region) 
var NDVI2012d = NDVI2012.multiply(0.0001); 
Map.addLayer (NDVI2012d, {'min': -1, 'max':1, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2013  
//========================================================================= 
var FromDate='2013-01-01'; 
var ToDate='2013-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='NDVI2013' 
var NDVI2013t = ee.ImageCollection(modisNDVI.filterDate(FromDate,ToDate).filter(Calendar)); 
var NDVI2013 = NDVI2013t.mean().clip(region) 
var NDVI2013d = NDVI2013.multiply(0.0001); 
Map.addLayer (NDVI2013d, {'min': -1, 'max':1, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2014  
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//========================================================================= 
var FromDate='2014-01-01'; 
var ToDate='2014-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='NDVI2014' 
var NDVI2014t = ee.ImageCollection(modisNDVI.filterDate(FromDate,ToDate).filter(Calendar)); 
var NDVI2014 = NDVI2014t.mean().clip(region) 
var NDVI2014d = NDVI2014.multiply(0.0001); 
Map.addLayer (NDVI2014d, {'min': -1, 'max':1, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2015  
//========================================================================= 
var FromDate='2015-01-01'; 
var ToDate='2015-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='NDVI2015' 
var NDVI2015t = ee.ImageCollection(modisNDVI.filterDate(FromDate,ToDate).filter(Calendar)); 
var NDVI2015 = NDVI2015t.mean().clip(region); 
var NDVI2015d = NDVI2015.multiply(0.0001); 
Map.addLayer (NDVI2015d, {'min': -1, 'max':1, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2016  
//========================================================================= 
var FromDate='2016-01-01'; 
var ToDate='2016-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='NDVI2016' 
var NDVI2016t = ee.ImageCollection(modisNDVI.filterDate(FromDate,ToDate).filter(Calendar)); 
print(NDVI2016t); 
var NDVI2016 = NDVI2016t.mean().clip(region) 
var NDVI2016d = NDVI2016.multiply(0.0001); 
Map.addLayer (NDVI2016d, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
 
//========================================================================= 
//2017  
//========================================================================= 
var FromDate='2017-01-01'; 
var ToDate='2017-12-31'; 
//========================================================================= 
//========================================================================= 
var etiqueta='NDVI2017' 
var NDVI2017t = ee.ImageCollection(modisNDVI.filterDate(FromDate,ToDate).filter(Calendar)); 
print(NDVI2017t); 
var NDVI2017 = NDVI2017t.mean().clip(region) 
var NDVI2017d = NDVI2017.multiply(0.0001); 
Map.addLayer (NDVI2017d, {'min': 0, 'max': 40, 'palette':"0000ff,32cd32,ffff00,ff8c00,ff0000 
"}); 
//========================================================================= 
//========================================================================= 
//var 
LSTtrimestral20102016=LST2010tA.addBands(LST2010tB).addBands(LST2010tC).addBands(LST2010tD).a
ddBands(LST2011tA).addBands(LST2011tB).addBands(LST2011tC).addBands(LST2011tD).addBands(LST20
12tA).addBands(LST2012tB).addBands(LST2012tC).addBands(LST2012tD).addBands(LST2013tA).addBand
s(LST2013tB).addBands(LST2013tC).addBands(LST2013tD).addBands(LST2014tA).addBands(LST2014tB).
addBands(LST2014tC).addBands(LST2014tD).addBands(LST2015tA).addBands(LST2015tB).addBands(LST2
015tC).addBands(LST2015tD).addBands(LST2016tA).addBands(LST2016tB).addBands(LST2016tC).addBan
ds(LST2016tD); 
 
var 
NDVIAnual2010=NDVI2010d;//.addBands(RR2010tB).addBands(RR2010tC).addBands(RR2010tD).addBands(
RR2011tA).addBands(RR2011tB).addBands(RR2011tC).addBands(RR2011tD).addBands(RR2012tA).addBand
s(RR2012tB).addBands(RR2012tC).addBands(RR2012tD).addBands(RR2013tA).addBands(RR2013tB).addBa
nds(RR2013tC).addBands(RR2013tD).addBands(RR2014tA).addBands(RR2014tB).addBands(RR2014tC).add
Bands(RR2014tD).addBands(RR2015tA).addBands(RR2015tB).addBands(RR2015tC).addBands(RR2015tD).a
ddBands(RR2016tA).addBands(RR2016tB).addBands(RR2016tC).addBands(RR2016tD); 
 
Export.image.toDrive({ 
  image: NDVIAnual2010, 
  description: 'NDVIAnual2010', 
  folder: "_Finales_ResOriginal", 
  scale: 250, 
  region: region, 
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  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var NDVIAnual2011=NDVI2011d; 
 
Export.image.toDrive({ 
  image: NDVIAnual2011, 
  description: 'NDVIAnual2011', 
  folder: "_Finales_ResOriginal", 
  scale: 250, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var NDVIAnual2012=NDVI2012d; 
 
Export.image.toDrive({ 
  image: NDVIAnual2012, 
  description: 'NDVIAnual2012', 
  folder: "_Finales_ResOriginal", 
  scale: 250, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var NDVIAnual2013=NDVI2013d; 
 
Export.image.toDrive({ 
  image: NDVIAnual2013, 
  description: 'NDVIAnual2013', 
  folder: "_Finales_ResOriginal", 
  scale: 250, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var NDVIAnual2014=NDVI2014d; 
 
Export.image.toDrive({ 
  image: NDVIAnual2014, 
  description: 'NDVIAnual2014', 
  folder: "_Finales_ResOriginal", 
  scale: 250, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var NDVIAnual2015=NDVI2015d; 
 
Export.image.toDrive({ 
  image: NDVIAnual2015, 
  description: 'NDVIAnual2015', 
  folder: "_Finales_ResOriginal", 
  scale: 250, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
//========================================================================= 
 
var NDVIAnual2016=NDVI2016d; 
 
Export.image.toDrive({ 
  image: NDVIAnual2016, 
  description: 'NDVIAnual2016', 
  folder: "_Finales_ResOriginal", 
  scale: 250, 
  region: region, 
  maxPixels: 1e12, 
}); 
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//========================================================================= 
 
var NDVIAnual2017=NDVI2017d; 
 
Export.image.toDrive({ 
  image: NDVIAnual2017, 
  description: 'NDVIAnual2017', 
  folder: "_Finales_ResOriginal", 
  scale: 250, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
 
 
 

Population 
 
 
//Area de Estudio 
var region = ee.FeatureCollection('ft:1WEJQbaw4txw5f66-lBStlILHCIvjX2OZnVYV-
Rog');//Nuevoestend 
Map.addLayer(region); 
//var region = Loreto; 
 
var Calendar= ee.Filter.calendarRange(1,365); 
var FromDate='2015-01-01'; 
var ToDate='2015-12-31'; 
 
//Map.addLayer(dataset); 
var dataset = ee.ImageCollection("WorldPop/POP") 
print(dataset) 
Map.addLayer(dataset) 
var pop = ee.ImageCollection(dataset.filterDate(FromDate,ToDate).filter(Calendar)); 
var population = pop.select('population'); 
var populationr = population.mean().clip(region); 
var populationrVis = { 
  min: 1.0, 
  max: 10.0, 
  palette: ['24126c', '1fff4f', 'd4ff50'], 
}; 
Map.setCenter(-75, -3); 
Map.addLayer(populationr, populationrVis, 'Population'); 
 
Export.image.toDrive({ 
  image: populationr, 
  description: 'Population2015', 
  folder: "_Finales_ResOriginal", 
  scale: 100, 
  region: region, 
  maxPixels: 1e12, 
}); 
 
 

Water Mask 
 
var region = ee.FeatureCollection('ft:1WEJQbaw4txw5f66-lBStlILHCIvjX2OZnVYV-Rog');//Nuevo 
extend 
Map.addLayer(region); 
 
 
 
///////////////////////////////////////////////////////////// 
// Asset List 
////////////////////////////////////////////////////////////// 
 
var gsw = ee.Image('JRC/GSW1_0/GlobalSurfaceWater'); 
//print(gsw); 
var occurrence = gsw.select('occurrence'); 
var occurrencer = occurrence.clip(region); 
 
var occurrencerVis = { 
  min: 0.0, 
  max: 41556.0, 
  gamma: 4.0, 
}; 
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//print(occurrencer); 
Map.addLayer(occurrencer.clip(region), occurrencerVis, 'ocurrencia'); 
 
////////////////////////////////////////////////////////////// 
// Constants 
////////////////////////////////////////////////////////////// 
 
var occurrenceVis = { 
  min:0, 
  max:100, 
  palette: ['red', 'blue'] 
}; 
 
var water_mask50 = occurrencer.gt(50).unmask(0); 
//Map.addLayer(water_mask50); 
 
Export.image.toDrive({ 
  image: water_mask50, 
  description: 'WaterMask30m', 
  //crs: 'EPSG:32718', 
  scale: 30, 
  region: region, 
  maxPixels: 1e12, 
}); 
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Appendix C: Curriculum Vitae 
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