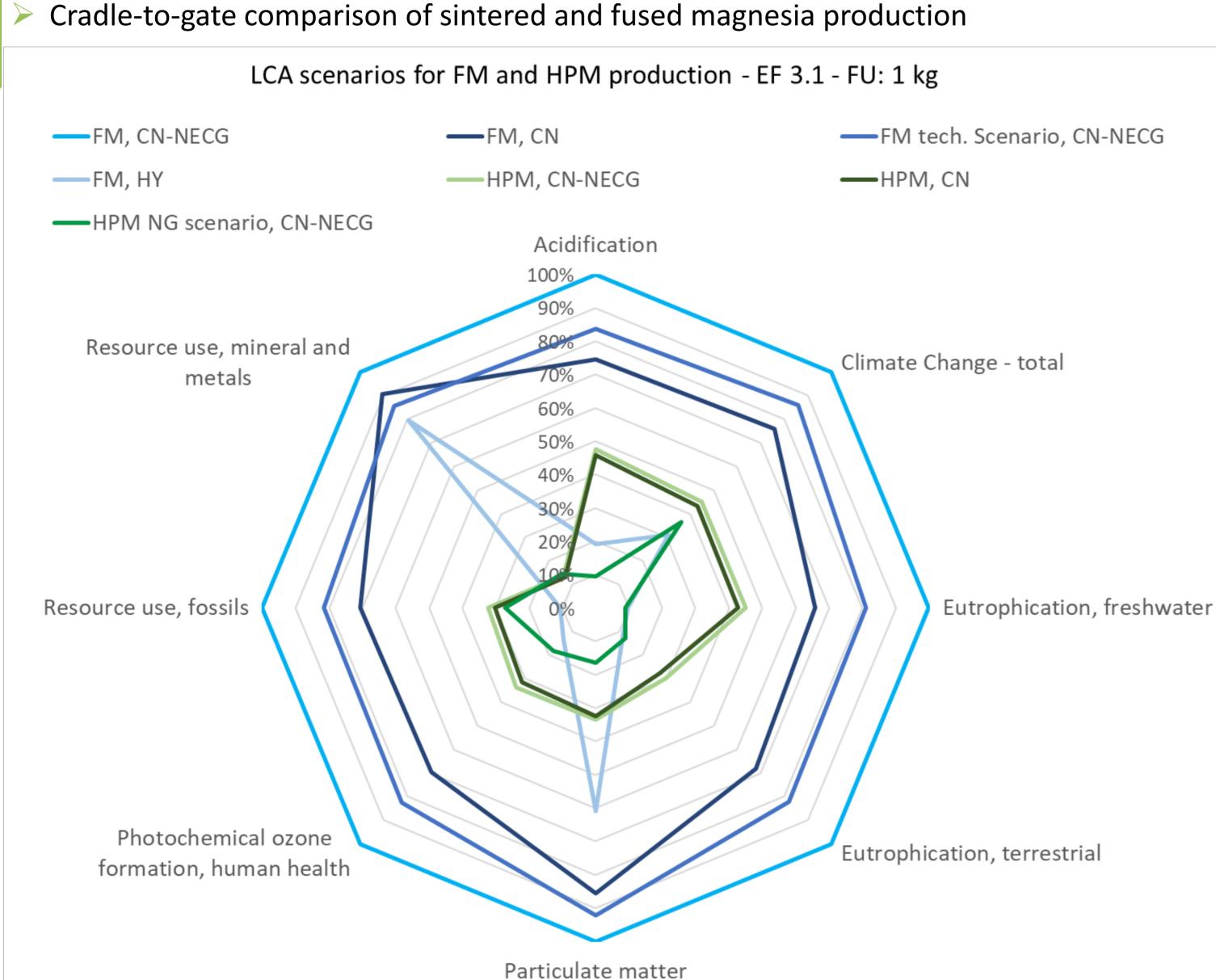
State of the Art, Challenges and Future Development of **Environmental Assessments of Magnesia Supply Chain**

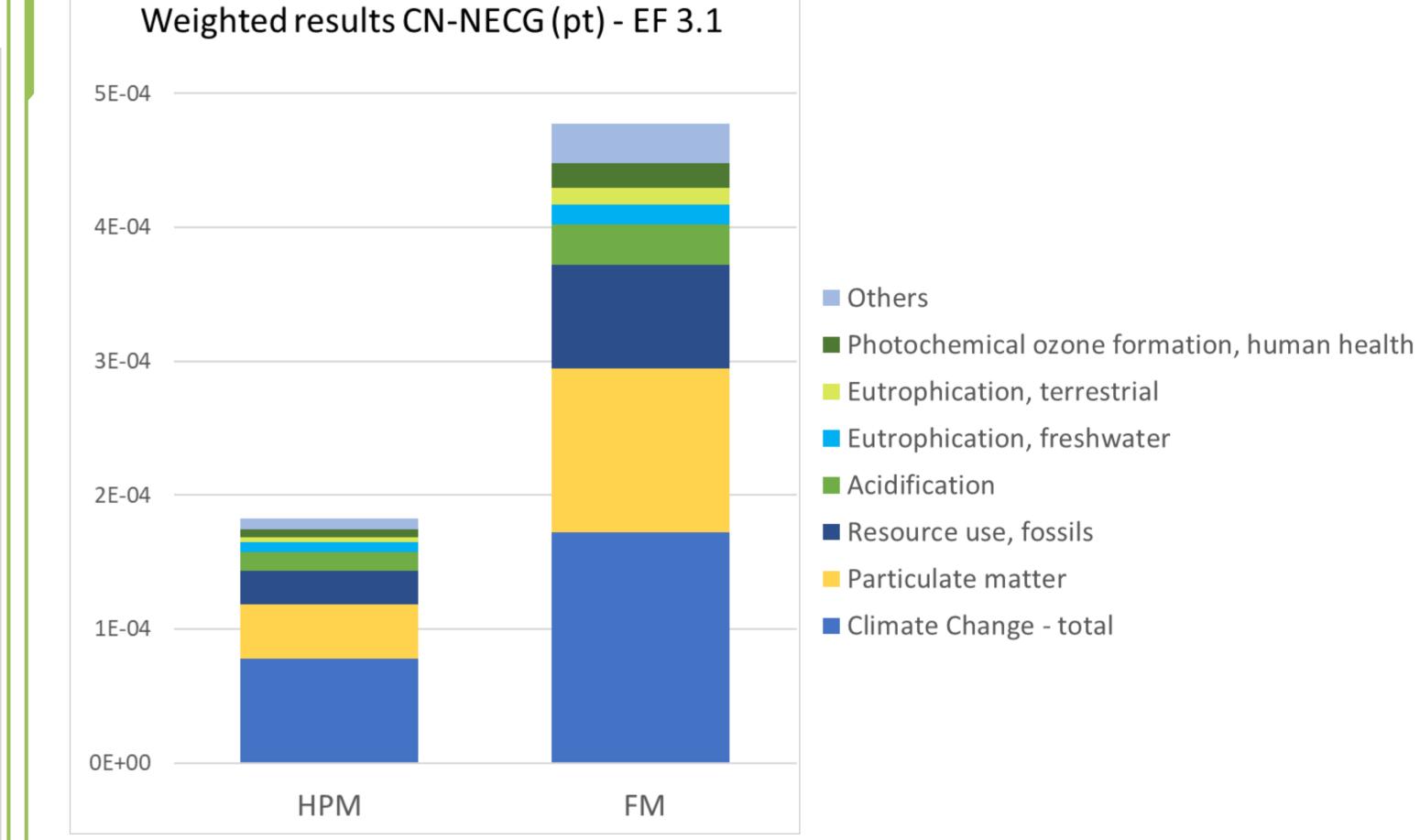
Sarah Badioli^{1,2}, Thibault Champion², Marielle Dargaud², Angélique Léonard¹

1. University of Liège, Chemical Engineering research unit – PEPs, Belgium, https://www.chemeng.uliege.be/ 2. Saint-Gobain Research Provence, Performance Ceramics and Refractories – PCR, France, https://www.ceramicsrefractories.saint-gobain.com/

Context

- Current literature: 1 inventory, 1 LCA (life cycle assessment), 3 CF (carbon footprint)
- Raw materials are responsible of the main impacts in refractory production
- Literature gaps
 - Lack of LCA
 - Technical parameters and new technologies (old data)
 - Materials quality assessment and definition of functional unit (FU)


LCA scenarios of FM and HPM production

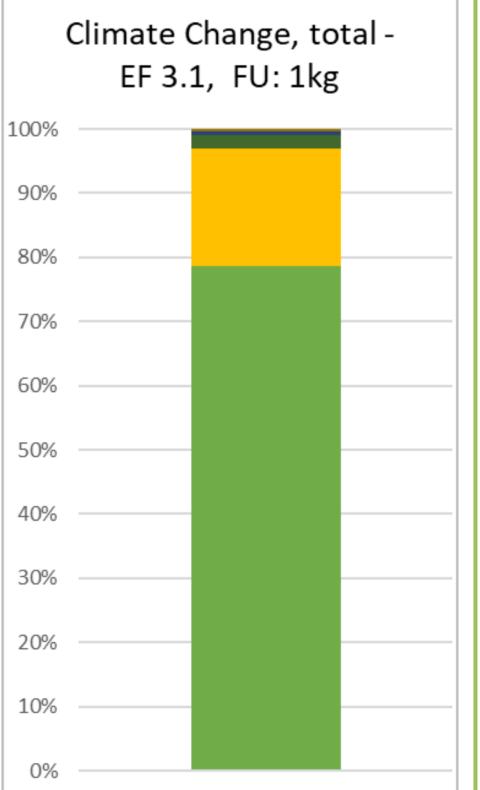

- **Goal**: Analysis of dry-route production of fused (FM) and sintered (HPM) magnesia for refractory application
- Issues addressed in this poster
 - Environmental hotspots and key impact categories
 - Characterization factor for resource depletion of magnesite
 - Comparison of magnesia products
 - Scenarios for technical improvement

Identification of the most relevant impact categories

Most relevant impact categories: climate change, resource use fossils, particulate matter

LCA characterisation results – EF 3.1, FU 1 kg						
HPM, CN-NECG	FM, CN-NECG					
1.3E-02	2.7E-02					
2.8	6.2					
3.9E-04	8.6E-04					
1.8E-02	5.9E-02					
2.72E-07	8.15E-07					
5.3E-03	1.6E-02					
19.5	60.3					
	HPM, CN-NECG 1.3E-02 2.8 3.9E-04 1.8E-02 2.72E-07 5.3E-03					

	Scenarios description
FM	Fused magnesia
HPM	High purity magnesia (sintered)
CN-NECG	Chinese regional electricity mix
CN	Chinese national electricity mix
HY	Electricity mix 87% hydro
Tech. scenario	High-power (~5000 KVA) furnace
NG scenario	Gas fired kiln


- Better environmental performance of HPM over FM in China
- Energy mix is the key parameter to reduce impacts
- Technology improvements' effects depend on energy efficiency and fuel choice
- Primary data needed to improve current dataset (technology energy consumption)

Ab	iotic Depletion	n [kg Sb eq.] –	CML2001 (Au	ig. 2016), FU 1	.kg	[Disease incidences]	7.5E-07	3.2E-07	42%	30%	
Tot. HPM	Magnesite	Magnesite	Mining	HPM	HPM fuels	Resource use, fossils [MJ]	73.7	41.1	56%	20%	
production 4.11E-07	transport 6.4%	extraction 0.3%	activity 6.1%	electricity 37.8%	49.4%	Ionising radiation, human health [kBq U235 eq.]	9.9E-02	3.5E-02	35%	10% 0%	
The impact of	magnesite min	ning is neglecta	able: low relev	ance of the de	eposit quality	Eutrophication, freshwater [kg P eq.]	1.1	0.7	66%	■ FM	FM-C brick Additives
Substitute appTrack MgO		•	• • •	•	roducts quality)	EF 3.1 Eutrophication, terrestrial [Mole of N eq.]	63.9	30.5	48%	 Electricity Consumable 	■ Heat es
CESAREF Ph	D 02:			Industrial a	nd Academic s	upervisors:	Ackno	owledgem	ents:		
Sarah BADIOLI			Prof. Angéli	que Léonard	LIÈGE : CHEMICAL université : ENGINEERING	This project has received funding from the European Union's Horizon Europe					
	MSCA Docto mail: sarah.badi		ate	Thibault Ch		SAINT-GOBAIN research and innovation progra				0	der
					Bene	ficiaries					
cnrs 2 Elker	n RWITHAACHEN UNIVERSITY s		TA Preceder of Ingelinarie on Macangue of Materia			Gemme Cemme	LIÈGE université Chemical Engi	neering TATA	STEEL ArcelorMitt	tal inCer institut de recherche sur les céramiques IMERYS	

Effect on downstream processes: use of magnesia

- Refractory application: MgO-C brick
 - Magnesia is responsible of the main impacts
 - Substitution of materials with equivalent performance
 - Magnesia performance depends on its quality
 - Need for updated and improved inventories

'rimary data needed to improve current dataset (technology, energy	y consumption)					70%		
		LCA scenarios of MgO-C	brick prod	uction – E	F 3.1, FU 1 kg	60%		
source use and materials quality		FM	HPM	% comparison	50%			
Context: lack of ADP characterisation factor for magnesite and low q	Climate Change - total [kg CO2 eq.]	6.3	3.6	57%	40%			
Abiotic Depletion [kg Sb eq.] – CML2001 (Aug. 2016), Fl	U 1kg	Particulate matter [Disease incidences]	7.5E-07	3.2E-07	42%	30%		
Tot. HPM Magnesite Magnesite Mining HPM	HPM fuels	Resource use, fossils [MJ]	73.7	41.1	56%	20%		
productiontransportextractionactivityelectricity4.11E-076.4%0.3%6.1%37.8%	y 49.4%	Ionising radiation, human health [kBq U235 eq.]	9.9E-02	3.5E-02	35%	10% 0%		
he impact of magnesite mining is neglectable: low relevance of the	Eutrophication, freshwater [kg P eq.]	1.1	0.7	66%	FM	FM-C brick Additives		
Substitute approximated dataset (100% purity) with primary data Track MgO purity along the processes (concentration step, waste,	EF 3.1 Eutrophication, terrestrial [Mole of N eq.]	63.9	30.5	48%	ElectricityConsumabl	■ Heat es		
ESAREF PhD 02: Industrial	l and Academic su	pervisors:	Ackno	owledge	ments:			
Sarah BADIOLI Prof. Ange	of. Angélique Léonard UIÈGE ::: CHEMICAL			This project has received funding from the European Union's Horizon Europe				
MSCA Doctoral candidate mail: sarah.badioli@uliege.be	Champion	SAINT-GOBAIN	research and innovation program under grant agreement no.101072625					
	Benef	iciaries						
S Elkem RNTHAACHEN UNVERSITY SAINT-GOBAIN RHI MAGNESITA S SAFRAN		Gemme Gemme Resourceful Engineers	LIÈGE université Chemical Engi	neering TAT	A STEEL Arcelor/Mittal	inccer institut de recherche sur les céramiques	s •	

