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ABSTRACT
Direct Numerical Simulations (DNS) of a typical LPT airfoil cascade at a Reynolds num-
ber of 120,000 have been carried out with the high-order compressible flow solver Argo
developed at Cenaero. The objective of these simulations is to generate highly-refined
comprehensive databases in a systematic and reproducible manner, which allows the re-
construction of all terms of the Favre-averaged Navier-Stokes, Reynolds stress, and dis-
sipation equations. These databases can then be exploited to improve the prediction of
lower-fidelity approaches such as RANS turbulence models, which allow for an exten-
sive exploration of the design space thanks to their low computational cost. This paper
presents a systematic approach for generating such databases. Particular points of in-
terest are the reproducibility of the boundary conditions (e.g. , injection of freestream
turbulence) and the completeness of the databases. Comparison between the numerical
and experimental results will also be presented as a validation of the numerical setup.

KEYWORDS
DIRECT NUMERICAL SIMULATION, DISCONTINUOUS GALERKIN METHOD, AIR-
FOIL CASCADE, TURBULENCE INJECTION, ADVANCED STATISTICS FOR TURBU-
LENCE MODELING

NOMENCLATURE

cax axial chord Ωij rotation rate tensor
Lp pitch τij viscous stress tensor
ρ density δij Kronecker symbol
p pressure ν kinematic viscosity
T temperature ωi i-th vorticity component
ui i-th velocity component DGM Discontinuous Galerkin Method
k kinetic energy DHIT Decay of Homogeneous Isotropic Turbulence
Sij strain rate tensor LPT Low Pressure Turbine

INTRODUCTION
Turbomachinery design currently relies on the Reynolds Averaged Navier-Stokes (RANS)

turbulence modeling approach (e.g. see Wilcox et al. (1998), Menter et al. (2003), Spalart
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(2010)), which allows for an extensive exploration of the design space. However, RANS mod-
els suffer from lower reliability for complex geometries and flow configurations which feature
laminar to turbulent flow transition and flow separation to name a few (Hunt and Savill (2005)).
One way to address the deficiencies of current statistical models of turbulence consists in tak-
ing a more direct and holistic approach to the direct derivation of such models. The present
work aims at generating highly-refined comprehensive DNS databases in a systematic and re-
producible manner which allows the reconstruction of all terms of the Favre-averaged Navier-
Stokes, the Reynolds stress and the dissipation equations. The resulting databases can then be
used not only for the calibration of existing turbulence models, but also the development of new
models, through for instance machine learning (Duraisamy et al. (2019)).

A key ingredient for the generation of high quality databases in an industrial context is the
advent of unstructured high order accurate methods, such as the Discontinuous Galerkin method
(DGM, Cockburn et al. (2012)). These methods have paved the way for high-resolution adaptive
Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of complex geometries
characteristic of turbomachinery. Although a direct application of scale-resolving simulations
including boundary layers to full components is currently out of reach, detailed simulations of
blade sections and cascades at very high resolution can already be performed relatively rou-
tinely. In that context, direct numerical simulations of the midsection of a typical low pressure
turbine (LPT) airfoil cascade have been carried out at a Reynolds number of 120,000 with the
high-order compressible DGM flow solver Argo developed at Cenaero.

In the next sections, the workflow used to setup these DNS will be presented, including
the injection of freestream turbulence based on an homogeneous isotropic turbulence precursor
simulation. Comparison between the numerical and experimental results in terms of isentropic
Mach number distribution on the blade and total pressure losses in the wake will also be pre-
sented as a validation of the numerical setup. The TKE and dissipation fields near the trailing
edge on the suction side of the blade, which are part of the resulting high-fidelity databases, will
finally be briefly presented along with their residual budget.

NUMERICAL APPROACH
Argo is based on a high-order Discontinuous Galerkin Method (DGM) which discretizes

the compressible Navier-Stokes equations (e.g. Carton de Wiart et al. (2014), Carton de Wiart
et al. (2015)). This code can deal with any arbitrary unstructured hybrid curved meshes where
elements of different topology and accuracy can be accommodated, as well as localised re-
finement in the zones of interest. In this work, an implicit time integrator based on Jacobian-
free Newton-GMRES preconditioned with block-Jacobi is used. High-order methods including
DGM are characterized by highly compact stencil which lends themselves to efficient parallel
implementations. This computational efficiency can lead to important reductions in restitution
time with respect to conventional codes (see Vincent et al. (2016)).

FREE-STREAM TURBULENCE INJECTION
Turbulence Injection Methods
A broad range of methods has been proposed in the literature to inject a turbulent flow with

prescribed properties through an inlet boundary condition. These approaches can be roughly
classified into two categories: synthetic methods and recycling methods.

Synthetic turbulence methods generate fluctuations using analytical expressions (Dhamankar
et al. (2018)). Although many extensions are proposed to satisfy basic relations in turbulent
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flows, which mimic flow structures and provide the necessary temporal and spatial correlations,
the fluctuations generated by these methods are not fully compliant with real turbulent flows
(Keating and Piomelli (2006)). Thus, they usually require extending the computational domain
upstream so that a realistic turbulent flow can develop, which incurs a larger computational cost.

Recycling turbulence methods (Wu (2017)) use an auxiliary computation to generate a tur-
bulent flow, that is imposed as boundary data at the inlet of the main simulation. These methods
include precursor or co-simulation approaches, which provide high-quality inlet data since only
very minor deviations from the actual configuration (e.g. Taylor’s frozen turbulence hypothesis)
are used to generate them. Moreover, no or minor transition is to be expected due to numerical
issues. For these reasons, recycling approaches seem better suited to generate reference data
for model development. This quality comes however at the expense of some loss of flexibility
(e.g. simulation setup, domain size), which can only be obtained through synthetic methods.

Precursor Simulation
The free-stream turbulence injection procedure used in this work consists in performing

a precursor simulation yielding a realisation of a turbulent free-stream flow with zero mean
velocity. The resulting velocity fluctuations u′′ are then combined with the mean flow ũin at
the inlet of the main simulation. The technique is based on two hypotheses. The Taylor frozen
turbulence hypothesis uses u′′ ≪ ũin to neglect the non-linear interaction between turbulence
and mean advection. Moreover, the turbulence time scales are supposed to be much larger than
the convection time scales. Therefore the turbulent fluctuations can be considered as merely
convected by the mean flow. The second hypothesis is that the flow is spatially homogeneous,
even in the direction of the flow. Under both hypotheses, it is sufficient to use a precursor
solution, frozen at a given time corresponding to the desired turbulent kinetic energy (TKE) and
length scale. The inlet plane is then swept through this solution at the main inlet velocity ũin.
Adding the velocity fluctuations interpolated on the inlet plane to the mean velocity gives the
full turbulent inlet velocity ũin + u′′. From this full turbulent inlet velocity and the imposed
total pressure and total temperature, the conservative variables are computed and imposed at
the interpolation points of the main inlet. This Dirichlet boundary condition will finally be
propagated to the main domain by the computation of the fluxes through the inlet plane and a
Riemann solver. It should be noted that using the perturbed velocity allows to maintain the total
temperature as imposed. However due to the higher dissipation the total pressure is destroyed
more rapidly in the domain and this effect has to be compensated to respect the mean value
from the measurements near the blade, especially for large velocity fluctuations.

Decay of Homogeneous Isotropic Turbulence
The precursor simulation considered in this work computes the canonical case of the de-

cay of homogeneous isotropic turbulence (DHIT) in a triply periodic cube (Pope (2000)). The
precursor simulation is setup in order to obtain statistical properties in its final frozen solution
that match the level of turbulence intensity through the level of TKE and the correlation length
specified for the inlet of the main simulation. Although the flow around the blade section is
compressible, it is assumed that the inlet turbulent fluctuations are incompressible. Thus, an
initial incompressible velocity field with zero mean is imposed in the precursor simulation fol-
lowing the method proposed by Rogallo (1981). Its energy content follows a spectrum defined
by Passot and Pouquet (1987). The amplitude and the spectral width of this spectrum control
the initial TKE and the initial integral length (with respect to the precursor domain size). The
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Figure 1: Concatenation process applied to the frozen DHIT precursor solution

initial total temperature and pressure are set to be uniform.

Implementation
In practice, several difficulties related to the computational cost of such a procedure arise.

First, the precursor simulation becomes too costly if its spatial extent in the directions parallel
to the boundary covers the whole inlet plane of the main simulation. The problem is overcome
by performing a precursor simulation of limited size and using several copies of the precursor
field in the pitchwise and/or spanwise directions. This solution may however introduce spurious
spatial correlations in the inlet turbulent field.

Second, due to the limited (and common) extent in all directions of the precursor simulation,
one would have a very high correlation in the streamwise direction, which is considered as much
more detrimental than in the pitchwise and spanwise directions. This problem is addressed by
a concatenation and blending technique inspired by Xiong et al. (2004) and Larsson (2009).
Several realisations of the DHIT domain, obtained by random rotations and translation of the
original DHIT solution, are concatenated in the streamwise direction to obtain a longer period in
time, as illustrated in Figure 1. The resulting domain retains periodicity in spanwise and pitch-
wise directions, as well as in the streamwise direction along which its size has been multiplied.
In this way, the main simulation can run for an indefinite duration by cycling in time through the
concatenated precursor domain along its streamwise direction. However, a plain concatenation
procedure would create discontinuities in the injected turbulent flow. Therefore, the concatena-
tion is complemented with a blending technique that ensures a smooth turbulent solution over
the whole streamwise extent. A final projection of the velocity field on a divergence-free space
removes compressibility artifacts introduced by the blending.

In summary, this free-stream turbulence injection procedure consists of three steps: 1) Setup
and execution of the precursor simulation, 2) duplication, transformation, concatenation and
blending of the precursor solution field, and 3) setup and execution of the main simulation.

ADVANCED STATISTICS FOR RANS MODELLING
Notations
In what follows, Cartesian components are indicated with indices i, j or k. For instance, the

velocity components are denoted as ui. The derivatives of first and second order are respectively
noted as

a,i=̂
∂a

∂xi

and a,ij=̂
∂2a

∂xi∂xj

(1)

The Einstein notation is used throughout the text, entailing summation on repeated indices.
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Consequently, the inner product of two vectors and the divergence of a vector are respectively
noted as

aibi=̂
3∑

i=1

aibi = a · b and ai,i=̂
3∑

i=1

ai,i = ∇ · a (2)

The Reynolds average of a quantity q and its associated fluctuation result from the ensemble
average

q(x, y, z, t) =
1

N

N∑
l=1

ql(x, y, z, t) (3)

q′(x, y, z, t) = q(x, y, z, t)− q(x, y, z, t) (4)

with the index l running on the N realisations of the flow field. For statistically stationary flows,
l will correspond to a snapshot in a time series. The Favre average is based upon the density
weighted ensemble average and the associated fluctuations

q̃ =
ρ q

ρ
(5)

q′′(x, y, z, t) = q(x, y, z, t)− q̃(x, y, z, t) (6)

Statistics for RANS Modeling
To improve RANS models, the statistical accumulation of all the terms deriving from three

distinct equations are considered here, namely the Favre averaged Navier-Stokes, the Reynolds
stress and the dissipation equations. The Favre averaged Navier-Stokes equations (not devel-
oped here) follows the formulation proposed by Knight (1997) whereas the Reynolds stress
equation follows the formulation proposed by Gerolymos and Vallet (2001):

Rij,t + (Rijũk),k = Pij +Dij + Φij + Φ′
ij − ϵij +Kij (7)

where

Rij = ρu′′
i u

′′
j Reynolds stress (8)

Pij = −Rikũj,k −Rjkũi,k production term (9)

D1
ij = −

(
ρu′′

i u
′′
ju

′′
k

)
,k

turbulent diffusion term (10)

D2
ij = −

(
p′(u′′

i δjk + u′′
j δik)

)
,k

pressure diffusion term (11)

D3
ij =

(
u′′
i τ

′
jk + u′′

j τ
′
ik

)
,k

viscous diffusion term (12)

Φij = p′(u′′
i,j + u′′

j,i −
2

3
u′′
k,kδij) pressure strain term (13)

Φ′
ij =

2

3
p′u′′

k,kδij pressure-dilatation term (14)

ϵij = τ ′jku
′′
i,k + τ ′iku

′′
j,k viscous dissipation term (15)

Kij = −u′′
i (p,j − τjk,k)− u′′

j (p,i − τik,k) density fluctuation effects (16)

The equation for the TKE is found by computing the trace of all the terms in the Reynolds
stress equations. These quantities are therefore not stored separately. More details about the
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formulation for the Favre averaged Navier-Stokes and Reynolds stress equations used in this
work are provided by Hillewaert and Rodi (2022).

The most complex equation is the one governing the kinetic energy dissipation ϵ. The com-
pressible form of ϵ is divided into a solenoidal ϵs, a dilatation ϵd and finally an non-homogeneous
part ϵi. Kreuzinger et al. (2006) state that the last two contributions are negligible for moder-
ately compressible flows, and therefore these are not considered here. The solenoidal part of
the dissipation is given by

ϵs = ν̃ω′
iω

′
i (17)

and its evolution equation
Dϵs
Dt

= P 1
ϵ + P 2

ϵ + P 3
ϵ + P 4

ϵ + Tϵ +Dϵ −Υ+ Fϵ + TC
ϵ +Bϵ +

ϵs
ν̃

Dν

Dt
(18)

where

P 1
ϵ = 4ν̃ Ω′

iju
′
k,j ui,k 1st turbulent production term (19)

P 2
ϵ = 4ν̃ Ω′

iju
′
i,k uk,j 2nd turbulent production term (20)

P 3
ϵ = 4ν̃ Ω′

iju
′
k ui,jk production term by mean vorticity gradient (21)

P 4
ϵ = 4ν̃ Ω′

iju
′
i,ku

′
k,j production term by vortex stretching (22)

Tϵ = 2ν̃
(
u′
kΩ

′
iju

′
i,j

)
,k

turbulent transport term (23)

TC
ϵ = −2ν̃Ω′

iju
′
i,ju

′
k,k the compressible turbulent transport term (24)

Dϵ = −4ν̃
(
vΩ′

ijτik,j
)
,k

the viscous diffusion term (25)

Υ = −4ν̃
(
vΩ′

ij

)
,k
τik,j the viscous destruction term (26)

Fϵ = −4ν̃ Ω′
ijv,jτik,k the viscous stress term (27)

Bϵ = 4ν̃ Ω′
ij p,iv,j the baroclinic term (28)

Statistics Acquisition
While direct averages such as ui and baseline correlation such as the density velocity corre-

lation ρui are straightforward to compute, some care has to be taken when considering correla-
tions between fluctuations, since they are supposed to be computed with respect to a converged
average, according to Equations 4 and 6. Considering the Reynolds stress Rij = ρu′′

i u
′′
j , the

prior convergence of ũi is fortunately not necessary to approximate the evaluation of Rij . The
most straightforward way to compute correlations of fluctuations, which also is the least sen-
sitive to round-off error, is to accumulate simple baseline correlations from which correlations
between fluctuations can be reconstructed only when needed, e.g. as a post-processing step
when exporting the output data to disk. Considering again the Reynolds stress, Rij can be
computed from the expression

Rij = ρu′′
i u

′′
j = ρuiuj − ρũiũj (29)

Similarly, the triple velocity correlation ρu′′
i u

′′
ju

′′
k found in the turbulent diffusion term of the

Reynolds stress equation in Equation 10 can be computed according to the combination

ρu′′
i u

′′
ju

′′
k = ρuiujuk − ρujukũi − ρukuiũj − ρuiujũk + 2ρũiũjũk (30)
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Consequently, only direct averages and baseline correlations are accumulated throughout the
computation and stored in checkpoints, whereas the actual correlations between fluctuations are
computed via post-processing. As a result, the lists of averages and baseline correlations needed
for reconstructing the data sets include about 200 terms.

If the flow possesses a homogeneous direction (i.e. spanwise direction for a bi-periodic air-
foil cascade), the averaging procedure implemented in this work includes first a spatial average
of 3D instantaneous quantities of interest over this direction before being accumulated in time.
The result may then be stored on the associated periodic plane, which drastically reduces the IO
bandwidth when saving a checkpoint, the disk storage, and the associated post-processing bur-
den without implying any simplification (i.e. reduction of indices) of the resulting correlations.

AIRFOIL CASCADE
The considered geometry is the midsection profile of a typical LPT airfoil cascade. This

LPT blade is a modern low-Reynolds profile which has been investigated intensively in the wind
tunnel of the University of Armed Forces in Munich. Considering the indices 1 and 2 related
to the inlet and outlet of the domain respectively, the operating point of this profile is defined
by an isentropic Reynolds number Re2th = 120000, an isentropic Mach number M2th ≈ 0.6, a
total pressure pt1 ≈ 16000 Pa, a total temperature Tt1 ≈ 300 K, a static pressure p2 ≈ 12000 Pa
and an inflow angle β1 = 120◦.

Numerical setup
A second-order 2D curved mesh with structured elements in the boundary layer and un-

structured elements in the passage is first generated using the open source mesh generator Gmsh
(Geuzaine and Remacle (2009)) and then extruded in the spanwise direction, resulting in about
1.9M hexahedra. Computations are then carried out with the high-order DGM code Argo.
Fourth-order (P4) Lagrange polynomials are used for the representation of the solution, corre-
sponding to a fifth-order accurate simulation with about 236M degrees of freedom per equation.
In the laminar region of the flow, the mesh resolution s+/p and z+/p on the blade surface (cell
size in the streamwise and spanwise direction in wall units divided by the polynomial degree)
is equal to respectively 4 and 3 upstream the separation of the boundary layer. Further down-
stream, s+/p and z+/p are both less than 3 in the separation region and around 6 in the turbulent
region after the reattachment of the boundary layer. Note that the spanwise resolution is con-
stant in the whole domain and isotropic in the separation and turbulent region of the blade. In
the wall-normal direction, n+ is less than 1 in the laminar and turbulent regions, and less than
0.5 in the separation region. The h/ηK ratio between an estimation of the mesh size and the Kol-
mogorov length scale near the trailing edge on the suction side of the blade is finally presented
in Figure 2. The mesh size h is computed as the cubic root of the hexahedra volume divided
by the polynomial degree and the Kolmogorov length scale as ηK = 4

√
(µ3/ρ2)/(τ

′
ijS

′′
ij). The

h/ηK ratio is less than 1 in most of the domain except after the reattachment in the turbulent
region of the blade where it rises to 2 and in the close wake of the blade where a maximum
value of 4 is computed.

An adiabatic no-slip wall boundary condition is applied to the blade profile whereas total
conditions (pt1 and Tt1) are imposed at the inlet and static pressure p2 at the outlet. Periodic
boundary conditions are finally imposed in the spanwise and pitchwise directions.

The advanced statistics for the generation of high-fidelity databases were formerly vali-
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Figure 2: Mesh size to Kolmogorov length scale ratio near the trailing edge on the suction
side of the blade

dated with traditional benchmarks such as the channel flow test case and then collected over 17
convective time units (CTU) for the LPT blade; a CTU corresponds to a flow over the chord
considering the inlet velocity. 2M core hours on 8192 cores of the in-house AMD EPYC super-
computer Lucia hosted at Cenaero were used to compute these 17 CTU.

Precursor Simulation Setup
To limit the cost of the simulation, a span equal to 20% of the pitch is prescribed to the

main simulation domain. Consequently, the size of the cubic domain of the precursor DHIT
simulation (illustrated in the left part of Figure 1) is also set equal to this span length. In this
way, the inlet surface of the main simulation domain can be covered in the pitchwise direction by
five copies of the long blended DHIT turbulent box (illustrated in the right part of Figure 1). A
span equal to 20% of the pitch corresponds to about 20% of the axial cord, which was checked
to be wide enough to ensure an acceptable reduction of the correlation level of all velocity
components to 10% at most in the close wake of the blade.

For the setup of the precursor DHIT simulation, experimental measurements of the TKE and
the integral length scales upstream of the airfoil cascade in the wind tunnel were provided from
hot-wire measurements. However, the experimental integral length scale, estimated through
auto-correlations of velocity fluctuations and the Taylor hypothesis of frozen turbulence, cor-
responds to 86% of the axial chord and was therefore too large to be matched numerically due
to limitations of the span length and the computational cost. The largest integral length scale
allowed by the simulation was therefore about 10% of the experimental length scale. These
smaller turbulent scales also lead to a higher dissipation of the TKE than desired, which had
to be counterbalanced by the injection of a higher level of TKE at the inlet of the numerical
domain to target the same level of TKE estimated at the streamwise location of the blade in
the middle passage from three experimental measurements upstream the blade (marked as kref
hereafter). Note that although some anisotropy in the velocity fluctuations was measured exper-
imentally between the streamwise direction and the two other directions normal to the flow, the
homogeneous isotropic turbulence assumption was deemed acceptable.

The TKE evolution in the precursor DHIT simulation is illustrated in Figure 3. Relying
on the Taylor hypothesis, a correspondence can be established between the elapsed time of the
DHIT simulation and the distance covered by the flow from the inlet of the main simulation
domain to the streamwise location of the blade based on the convection velocity. The initial
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Figure 3: Evolution of the TKE in the DHIT precursor simulation normalized by the esti-
mated experimental TKE at the blade

Figure 4: Evolution of k/ϵ in the DHIT
precursor simulation

Figure 5: Energy spectra of the DHIT
precursor simulation

TKE of the Passot-Pouquet spectrum is set to about 124 kref in this precursor simulation. The
magenta dotted line in Figure 3 corresponds to the target k = kref at the blade. The blue
dashed line corresponds to the selected state of the DHIT simulation (k = 30 kref ) which was
frozen to generate the blended turbulent box illustrated in Figure 1 and injected later in the
blade domain. Ideally, the time difference between the blue dashed line (frozen turbulence for
the main simulation) and the magenta dotted line (k = kref ) corresponds to the time required
by turbulent structures injected at the inlet of the main simulation domain to reach the blade.

Afterwards, the canonical state of the frozen turbulence at k = 30 kref is assessed. As
illustrated in the right log-log plot of Figure 3, the precursor simulation is characterized by a
transient TKE plateau due to the non-physical character of the initial Passot-Pouquet spectrum.
After the initial transient, the canonical TKE decay establishes with a decay exponent n ranging
between 1.15 and 1.45 as discussed by Cocle et al. (2009) and Pope (2000). As shown in
Figure 4 with the evolution of the TKE over the dissipation, the canonical decay of turbulence
is also expected to start once k/ϵ has reached a minimum and follows a typical slope of 1/n. In
both figures, the selected frozen state of the DHIT simulation at k = 30 kref (blue dashed line)
appears at the beginning of the canonical region of TKE decay. Finally, the energy spectra of
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Figure 6: Evolution of the TKE and total pressure in the blade domain

the DHIT simulation at k = 30 kref and k = kref are plotted in Figure 5. Despite the strong
decay of turbulence due to a smaller integral length scale, the expected energy spectrum at the
blade still includes a κ−5/3 inertial subrange.

Airfoil cascade simulation
The evolution of the TKE and total pressure from the inlet of the blade domain along the

middle passage and stagnation lines is shown in Figure 6. Although the Taylor and incom-
pressibility hypotheses are questionable with the large TKE value injected at the inlet, the rapid
TKE decay ensures a short transient upstream of the blade. In the middle passage of the blade,
(0 ≤ x/cax ≤ 1), 0.7kref ≤ k ≤ 0.85kref , which is still close to the target experimental value
and corresponds to an absolute difference in terms of turbulence intensity of 0.7%. As a side ef-
fect of the rapid TKE decay, a total pressure drop of about 1% is also observed close to the inlet
and had to be compensated to target the same total pressure at the blade as in the experiments.

A visualisation of the flow highlighting the separation, the recirculation bubble, and the
reattachment near the trailing edge of the blade is then presented in Figure 7, with line integral
convolution (LIC) of the mean shear stress on the blade and the mean velocity field on the
periodic plane. This visualisation of quantities represented by fourth-order polynomials on a
second-order mesh was performed using a ParaView plugin developed by Rasquin et al. (2019).

Afterwards, the distribution of isentropic Mach number Mis over the critical region of the
blade is shown in Figure 8, along with the total pressure loss profile in the wake of the blade.
In both cases, a good agreement with experimental data is obtained, while RANS simulations
typically suffer to predict the Mis distribution and total pressure loss in the wake, as illustrated
by Fard Afshar et al. (2023). Not shown here, the outflow angle is also well predicted by these
DNS simulations compared to the experiments.

Finally, the TKE and dissipation ϵs fields normalized by their respective maximum value in
the close wake of the blade are presented in Figures 9a and 9b. These two fields are included in
the advanced statistics database generated for the LPT blade and highlight the increase of TKE
and dissipation in the turbulent region of the blade after the reattachment of the boundary layer
and in the close wake. The residual budget of the TKE derived from Equation (7) and the resid-
ual budget of the dissipation in Equation (18) are presented in Figures 9c and 9d respectively.

10



Separation line

Recirculation bubble

Reattachment line

Figure 7: Visualisation of the flow separation and reattachment near the trailing edge, with
line integral convolution (LIC) of the mean shear stress on the blade and the mean velocity
field on the periodic plane

Figure 8: Comparison of the isentropic Mach number Mis near the trailing edge (left) and
total pressure loss ζ in the wake of the LPT blade (right) with experimental data

Each residual is normalized by respectively the maximum value of the production term in Equa-
tion 9 and the viscous destruction term in Equation 26 located in the close wake of the blade.
This normalization choice is based on the observation that these two terms provide the largest
contribution in absolute value to the TKE and dissipation budget respectively in the close wake
region. These residual budgets appear to be well close except in a few cells in the close wake
of the blade where the normalized TKE residual budget rises to 20% of the production term
and the normalized dissipation residual budget to 60% of the viscous destruction term, which is
coherent with the mesh resolution shown in Figure 2

CONCLUSIONS
A workflow to generate high-fidelity databases for the improvement of turbulence models

has been presented. This workflow relies on the compressible high-order DGM flow solver
named Argo developed at Cenaero. A particular emphasis has been given to the injection of
representative turbulence fluctuations at the inlet of the computational domain, which is based
on a precursor simulation featuring a decay of homogeneous isotropic turbulence.

The target high-fidelity databases include all the terms required for the reconstruction of

11



(a) TKE field (b) Dissipation field (log scale)

(c) TKE residual budget (d) Dissipation residual budget

Figure 9: Normalized TKE and dissipation fields, along with their respective normalized
residual budget near the trailing edge

three equations useful for various families of RANS turbulence models: the Favre averaged
Navier-Stokes, Reynolds stress (and therefore kinetic energy), and dissipation equations.

The turbulence injection procedure has been validated on a typical LPT airfoil cascade at
Re2th = 120000, M2th ≈ 0.6 and pt1 ≈ 16000 Pa, with a good agreement of the Mis distribution
on the blade and pt loss in the wake. The next step of this work will consist in analyzing and
exploiting these high-fidelity database for the improvement of RANS models applied to this
LPT airfoil cascade.
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