

Toward sustainability A good design reduces energy consumption, saves raw material

A creep survey: from creep mechanisms to macroscopic and microscopic models

AM Habraken, G. Bryndza, F. Chen, L. Duchêne, A. Mertens, C. Rojas, J. Tchuindjang

Metallic Materials Science

M.M.5

What is creep?

Typical creep curves

Plasticity and Creep of Metals and

College, USA, and *Michael F Ashby*,

Cambridge University, UK

Ceramics, by *Harold J Frost*, Dartmouth

https://defmech.engineering.dartmouth.edu/

Plastic domain High $\dot{\varepsilon}$ Uislocation Diffusion E Homologous Temperature

♣: Dynamic recrystallization (DRX)

Fig. 8.7. A 1% Cr-Mo-V steel, of grain size 100 µm, showing data.

2 29/04/2024

Why is creep studied ?

• Many sectors have creep issues

- \rightarrow Correct design of parts
- \rightarrow Optimal industrial maintenance and investment plan
- → Reduce product development time (validation tests)

TRANSPORT,

AERONAUTIC

STEEL industry

3

29/04/2024 SOLAR plant,

Contents

- Introduction
- Phenomenological approaches
 - Scalars
 - Larson Miller etc...
 - Curves and constitutive laws FE
 - Norton
 - Graham Wales
- Micro physical based approaches
 - The basis
 - Incoloy 718 application
- Fatigue-Creep, Dwell effect and FE Morch constitutive macro law
- Nitriding effect
- AID4Greenest EU project ...

Contents

- Introduction
- Phenomenological approaches
 - Scalars
 - Larson Miller etc...
 - Curves and constitutive laws FE
 - Norton
 - Graham Wales
- Micro physical based approach
 - The basis
 - Incoloy 718 application
- Fatigue-Creep, Dwell effect and FE Morch constitutive macro law
- Nitriding effect
- AID4Greenest EU project ...

About master curves, Larsen-Miller Parameter LMP

* Wilshire B, Battenbough AJ. Materials Science and Engineering: A 2007

6

1

(psi)

7 29/04/2024 Wilshire B, Battenbough AJ. Creep and fracture of polycrystalline copper MSEA 2007

Issues of LMP approach and exponential function (Norton)

10⁻³

10-4

WIN CKEEP RATE (s⁻¹) 10⁻⁸ 1 10⁻⁷ 10⁻⁸ 10⁻⁸ 10⁻⁹ 10⁻¹⁰ 10⁻¹⁰

10-11

10-12-

Wilshire equations Q_c^* = cte = grain boundary diffusion k_i , u, $v \neq$ for $\sigma < \sigma_v$ and $\sigma > \sigma_v$ $\sigma/_{\sigma_{UTS}} = exp\left\{-k_u \left[t_f \cdot exp\left(-Q_c^*/_{RT}\right)\right]^u\right\}$ $\sigma/\sigma_{uTS} = exp\left\{-k_v\left[\dot{\varepsilon}_m exp\left(-Q_c^*/RT\right)\right]^v\right\}$

Issues of Wilshire approach

2.25 CR - 1Mo - NIMS data

Wilshire equations Q_c^* , k_i , v, $v \neq$ multiple ctes

3 Different mechanisms For 2.25 CR - 1Mo

- High *T* and long *t* : bainite degradation \rightarrow ferrite
- Low *σ*: mainly GB effect
- High *o*: increase of dislocation density

 $\sigma/\sigma_{uts} = exp\left\{-k_u \left[t_f \cdot exp\left(-Q_c^*/_{RT}\right)\right]^u\right\}$

$$\sigma/\sigma_{uTS} = exp\left\{-k_v\left[\dot{e}_m exp\left(-Q_c^*/_{RT}
ight)
ight]^v
ight\}$$

Needs many data Just scalars t_R or $\dot{\epsilon}_m$ identified Strong effect of microstructure evolution

Need to chose correct functions integrating all information for FE simulations to model creep under variable T, σ and long t

Issue in Monkman-Grant assumption of $\dot{\epsilon}_m \cdot t_r = cte$

Issues in Design of piping and support components in high-temperature fluidized bed combustor systems

11 29/04/2024 Swindeman RW, Marriott DL. J Eng Gas Turbines Power 1993

Machine learning to predict t_r

Data base used : 27 compositions (ferritic heat resistant steel) a total of 212 creep curves from carbon steel to low-alloy and high-alloy steels (Fe+ Pe, Fe+Pe+Ba, Ma+Ba), o to 9%Cr

<u>Input</u>: composition, test condition (T, σ) + yield stress σ_v (to express process manufacturing difference) Output: $\log_{10} t_r$

Model developed on a single family Fe+ Pe, Fe+Pe+Ba, Ma+Ba had no higher accuracy than the global model on the whole data set

Accuracy of

support vector regression (SVR) > random forest (RF) or gradient tree boosting (GTB) methods

4

3

2

(b) with 0.2% proof stress

Extrapolationfrom these "scalars" toward FE

- Define a **constitutive law** with internal variables 1.
- Use of them to jump between 1D reference curves $\varepsilon = f(\sigma, T, t)$ 1. (1 curve for σ = cte *T*=cte)
- \rightarrow The use of state variables is better than horizontal or vertical shift

Experiments Creep under TP° and stress jump

(Experiment in grey)

Elasto-visco-plastic creep damage model

Helene Morch [Uliege Ph.D. 2022 Walloon Region project], Norton type + damage

R. Ahmed, et al. Proceedings of the ASME 2012 Pressure Vessels & Piping Conf.2012

14 29/04/2024 Implemented in Lagamine FE code PhD Morch ULiege 2022

Elasticity

T	Temperature (C°)	550
E	Young's modulus (MPa)	1.7×10^{5}
v	Poisson's Ratio	0.3

Damage: Rabotnov-Kachanov equation:

$$\dot{D_c} = k_3 \left(\frac{Y(\sigma^d * k_4)}{S_c}\right)^{S_c} \frac{1}{(1-D)^k}$$

h	Mico-defects closure parameter	0.2
D _{crit}	Critical damage value (<1)	0.99
τ	Specific time for the appearance of creep	1×10 ⁵
<i>k</i> ₃	Global safety coefficient on creep damage	1
<i>k</i> ₄	Safety coefficient applied to stress level on creep damage	1
S _c	Creep damage parameter	38.00
s _c	Creep damage exponent	3.50
k _c	Kachanov creep damage exponent	4.00

Law identified for 30CrMoNiV5-11

Used Creep curves from literature for 3oCrMoNiV5-11

Schemmel J. Beschreibung des Verformungs-, 2003.

徐鸿,倪永中,王树东. 中国电机工程学报,2009,29(32):88-91.

Single element test (performed by ULiege Lagamine)

4 AID4Greenest project WP3 Uliege- result of Morch law identification

Single element test (Creep strain rate & Damage value-time)

17 29/04/2024 AID4Greenest project WP3 Uliege- result of Morch law identification

Creep modeling issues with Norton type law

Norton viscosity function

 $\dot{p} = \left\langle \frac{\sigma_{\nu}}{K} \right\rangle^n$

OK for classic creep behavior:

for materials with non-classical creep

Non-classical creep response: 2-step creep rate minima (800H) Experimental curve (example) (1)- Numerical prediction limited by Norton-law S rate strain Creep $2^{nd} \dot{\epsilon}_{min}$ $1^{\rm st} \dot{\epsilon}_{
m min}$ Creep strain (-)*: Experimental curves after (V. Gutmann & R. Bürgel, 1983)

Graham-Walles viscosity function

\rightarrow higher flexibility

Non-conventional approach, addition of i functions, implemented in Lagamine FE code

Graham-Walles viscosity function

Case study: creep response of 800H alloy at 1000°C

29/04/2024 On going PhD C. Rojas ULiege, ACOMEN 2022

20

Contents

- Introduction
- Phenomenological approaches
 - Scalars
 - Larson Miller etc...
 - Curves and constitutive laws FE
 - Norton
 - Graham Wales
- Micro physical based approach
 - The basis
 - Incoloy 718 application
- Fatigue-Creep, Dwell effect and FE Morch constitutive macro law
- Nitriding effect
- AID4Greenest EU project ...

Classical curve (low microstructure evolution)

Time Identified **non-classical** creep stages **Creep strain** ϵ_{creep} (–) time v/s time(-)Plastic domain Normalized shear stress (1)Dislocation Creep (2)domain Diffusion creep Elastic (4)(3)Homologous Temperature ♣: Dynamic recrystallization (DRX)

Creep mechanisms

Dislocation glide, shearing or looping around obstacles, are freed by vacancy diffusion \rightarrow generation intra granular deformation

Semi-physical creep model → macro FE Coupled approach ?

(S. M

Creep properties of materials depend on:

- Permanent microstructural features
- Evolving microstructural features
 Initial microstructural

Creep test - Temperature - Stress - Environment

Accurate creep modeling requires microstructure evolution Orowan equation to link macro strain and microstructure

esarovic et al., Springer, 2019)					
		Semi-physical	Phenomenological		
	Deterministic Nano-scale Complex	StatisticalMeso-scaleModerate	EmpiricalMacro-scaleSimplified		

A Macro law (used in macro FE simulations)

T, \dot{T} , σ or ε loading, q state variables $\rightarrow \dot{\varepsilon}$ or $\dot{\sigma}$, updated q state variables

→ Macro law identified through predicted creep curves computed by a creep Meso-scale model *OR*

→ Macro law sequentially or continuously updated based on state variable(s) kinetic of reflecting microstructure state computed

-from a set of equations

-from interpolation within in a data base -from a meso or nano model (phase-field...)

OR

-multi scale ...

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

$$\begin{aligned} \dot{\epsilon} &= \frac{\rho_m b v_g}{M} & \text{Creep strain rate} \\ \dot{\rho}_m &= v_g \left[\rho_m^{3/2} + \frac{\beta \rho_s R_{sb}}{h_b^2} - \frac{\rho_m}{2R_{sb}} - \delta_a (\rho_m^2 - \rho_m \rho_s) \right] - 8\rho_m^{3/2} v_{cm} & \text{Mobile dislocation density} \\ \dot{\rho}_s &= v_g \left[\frac{\rho_m}{2R_{sb}} - \delta_a \rho_m \rho_s \right] - 8\frac{\rho_s}{h_b} v_c & \text{Static (dipole) dislocation density} \\ \dot{\rho}_b &= 8(1 - 2\zeta) \frac{\rho_s}{h_b} v_c - \frac{\rho_b}{R_{sb}} M_{sb} \left[P_{sb} - 2\pi \left(\sum_i r_{p_i}^2 \cdot N_{p_i} \right) \gamma_{sb} \right] & \text{Boundary dislocation density} \\ \dot{R}_{sb} &= M_{sb} \left[P_{sb} - 2\pi \left(\sum_i r_{p_i}^2 \cdot N_{p_i} \right) \gamma_{sb} \right] - \mu \eta_v K_c R_{sb} \left[(\rho_m + \rho_s)^{1/2} - \frac{K_c}{2R_{sb}} \right] \frac{\Omega D_s}{KT} & \text{Subgrain radius} \end{aligned}$$

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

C. Rojas ULiege

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

Each = specific microstructural feature involved in the creep mechanism.

C. Rojas ULiege

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

Each = specific microstructural feature involved in the creep mechanism.

C. Rojas ULiege

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

Each = specific microstructural feature involved in the creep mechanism.

C. Rojas ULiege

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

Each = specific microstructural feature involved in the creep mechanism.

31 29/04/2024 N.M. Ghoniem et al., 1990 Res Mechanica

N.M. Ghoniem et al., 1990 \rightarrow a comprehensive mean-field model

5 co-dependent non-linear equations.

^{32 29/04/2024} N.M. Ghoniem et al., 1990 Res Mechanica

Martensitic steel HT9 - Ghoniem model application

Creep curve predictions : validated

- Earlier stade I → II transition point if T ∧
- $\dot{\epsilon}_m \propto \sigma^5$ (steel type forming dislocation cells)
- $T \nearrow \dot{\epsilon} \nearrow$ (recovery and glide velocity \nearrow)
- ρ ↗ with ċ until saturation

Strain related to stress history is logic

 1^{st} stress $\checkmark \dot{\epsilon} \checkmark$ than \nearrow

Effective stress applied on dislocation $\checkmark \dot{\epsilon} \quad \checkmark$

ρ, internal stress readjust, threshold is again reached $\dot{\epsilon}$ /

Elongation as a function of time for HT-9 at 550 °C and 227 MPa.

Time-dependence of accumulated strain for a variable stress history for HT-9 at 550 °C.

33 29/04/2024 N.M. Ghoniem et al., 1990 Res Mechanica

Accommodation of more particles (MX and M₂₃C₆) phase effects,

New functions for Cavitation damage (D_{cav}) and precipitate coarsening (D_{ppt})

Addition of effective velocity (v_{eff}) calculated as the sum of glide + climb velocity contributions

35 29/04/2024 **F. Riedlsperger et al., Materialia 2020**

The base model is modified to include more complex intragranular precipitate-dislocation interaction terms, and a **diffusional creep rate term**

Knowledge on the microstructure evolution is mandatory

- Thermodynamic simulations
- Microstructure characterization after (interrupted) tests to validate **precipitate state and kinetic**
- Phase fraction (mol. %)
- Mean diameter (m)
- Nucleation site (dislocation paths, intra- or interganular,...)?

MatCalc simulations performed for P91 steel

microstructure evolution by 4 physical variables:

$ ho_m$	Mobile dislocation density	(m ⁻²)
$ ho_s$	Static dislocation density	(m^{-2})
$ ho_b$	Dynamic dislocation density	(m^{-2})
R _{sgb}	Sub-grain radius	(m)

creep behavior ($\dot{\epsilon}~$) is conditioned by their:

- Growth
- Production
- Annihilation
- Transformation

38 29/04/2024 X. Wu Chap Life Prediction of Gas Turbine Materials - Intech Gas Turbines edited Gurrappa Injeti 2010

29/04/2024

X. Wu Chap Life Prediction of Gas Turbine Materials - Intech Gas Turbines edited Gurrappa Injeti 2010

\rightarrow Deeper in creep mechanism understanding

Additive or Cast & Wrought Incoly 718 $\rightarrow \neq$ creep behavior

X. Wu, Kock-Mecking-Estrin...

OK for dislocation motion or grain boundary sliding (if the cavitation kinetics slow)

If cavity density or formation is high,

 \rightarrow + cavitation creep strain contribution

In AM materials

- High density of vacancies, high porosity
- Compositional inhomogeneity
- Grain anisotropy
- Out of equilibrium microstructure, so evolving with T and t

Creep behavior of heat treated Inconel 718? Which microstructure?

Pröbstle et al. MSEA 2016

29/04/2024 41

3.5%

Inconel 718: Microstructures LPBF + heat treatment

Creep behavior of Inconel 718 LPBF + heat treatment

Experiments: compression 630°C (TP such that no over aging and strong micro. evolution like recrystallisation)

γ" --> creep strengthdiffrerent amount and length

δ (high Nb) → less γ' γ" +Thick δ → vacancy nucleation → SHT 930 not optimal

Laves (high Nb) \rightarrow less $\gamma' \gamma''$ but higher than SHT 930 \rightarrow Aged state better

No $\delta,$ no Laves, low dislocations Larger $\gamma'' size$ in addition to higher volume But sub grains less stable

LPBF Subgrain size \simeq ct at 630°C

Sub grain generated by high creep stress will be smaller

Creep behavior of Inconel 718 LPBF + Post Heat treatments

2nd example

Experiments: tension 630°C (strong micro. evolution like recrystallisation)

As Built LPBF

Dendritic structure and inter-dendritic Laves phase LPBF manufactring param: 285 W laser power, 960mm/s scan speed

GB particles dissolution \rightarrow cavity nucleation (mostly in GBL building dir.)

Inconel 718: Microstructures LPBF+ Heat Treatment

Laves + δ diappear GB, NbC present

45 29/04/2024 **S. Wu et al. MSEA 2022**

Inconel 718: Microstructures LPBF+ Heat Treatment

SHT, DHT1 : columnar grain structure low angle GBs Grain aspect ratio $\simeq 3.26$

DHT₂ and DHT₃ :

recrystallized equiaxed grains high angle GBs Grain aspect ratio $\simeq 1$ high fraction of annealing twins (effect higher for DHT₂ grain growth decreases them)

DHT₂: average grain size $80\mu m$

Laves + δ disappear GB, NbC present

Creep behavior of Inconel 718 : S. Wu model

$\rm t_r \propto 1/(\rm N_p + \rm N_{gb})$

 N_p potential nucleation site density \simeq GB particle density well oriented

 \rightarrow grain shape effect !!!

N_{gb} triple points and GB ledge density (identified from difference between SHT and DHT1)

 $\dot{\bar{\epsilon}}_m^c \propto \frac{\phi_m \lambda_m}{h} \sinh(\frac{\sigma b^2 \lambda_m}{M k T})$

- λ_m Average dislocation glide distance
- *h* Dislocation climb distance against precipitates
- *b* Burgers vectir
- M Taylor factor

effect of GB particles (SHT>DHT1>DHT2 & DHT3)

γ" density - intra granular effect (larger in DHT₂ & DHT₃>DHT₁>SHT) Grain shape (Larger in SHT and DHT₁ + anisotropy) as cavitation if orientation of GB OK

Creep behavior of Inconel 718 : S. Wu model

8

48 S. Wu et al. Acta Materialia 2022 (Model Dislocation densities + Cavitation \simeq Ghoniem, Yadav, Riedlsperger ...) 29/04/2024

Creep behavior of Inconel 718 LPBF + heat treatment

Experiments: tension 630°C (strong micro. evolution like recrystallisation)

Which dominant mechanism?

GB sliding dominant creep mechanism (cavity formation at triple junction points)

Dislocation dominant creep mechanism (cavity formation due to dislo pile up at GB or GB ledge or at subgrains boundary)

Creep behavior of Inconel 718: S. Wu model's result

50 29/04/2024

Model S. Wu et al. MSEA 2022 / Exp Shi et al. MSEA 2019 and Kuo et al. MSEA 2009

Contents

- Introduction
- Phenomenological approaches
 - Scalars
 - Larson Miller etc...
 - Curves and constitutive laws FE
 - Norton
 - Graham Wales
- Micro physical based approach
 - The basis
 - Incoloy 718 application
- Fatigue-Creep, Dwell effect and FE Morch constitutive macro law
- Nitriding effect
- AID4Greenest EU project ...

Solar receivers - Walloon Region projects (Experiments + Modeling)

29/04/2024 **Projects Solar Perform and Solar Gnext Mecatech**

52

The tubes

Temperature distribution in a tube (Lagamine FE code)

- Fatigue + creep
- Extreme Thermo-mechanical loading (Haynes 230)
- Advanced model

Thermomechanical modelling of the creep-fatigue behaviour and damage of Nickel-alloy receiver tubes used in Concentrated Solar Power plants Morch, Hélène PhD Uliege 2022

"Morch law"

https://hdl.handle.net/2268/295588

Advanced damage Chaboche coupled model

Effect of tensile and compressive hold times on the rupture behavior of nickel-based alloy 230 at 700°C submitted... Morch et al.

→ 40 parameters → Efficient temperature dependence of parameters for thermo-mechanical finite element modeling of alloy 230 Morch et al. European Journal of Mechanics – A/Solids, 85, p. 104-116

54 29/04/2024 **Projects Solar Perform and Solar Gnext Mecatech**

Morch law: 1st version uncoupled, 2nd coupled... D_{creep} + D_{fatigue}

Isotropic EVP model $\underline{\varepsilon} = \underline{\varepsilon}^{\acute{el}} + \underline{\varepsilon}^{vp} + \underline{\varepsilon}^{th}$ $\underline{\sigma} = \underline{E} : \underline{\varepsilon}^{\acute{el}}$ $\underline{\sigma} = \underline{E} : \underline{\varepsilon}^{\acute{el}} + \underline{E} : \underline{\varepsilon}^{\acute{el}}$ $f = \|\underline{\sigma} - \underline{X}\| - \sigma_{0} - R \le 0$

> Viscous stress $\sigma_v = f > 0$ Viscosity Norton $p = \left\langle \frac{\sigma_v}{K} \right\rangle^r$

 $A \, v \, e \, c : \dot{p} = \sqrt{\frac{2}{3} \, \underline{\varepsilon}^{vp}} : \underline{\varepsilon}^{vp}$

Or Graham Wales

55 29/04/2024 **Projects Solar Perform and Solar Gnext Mecatech**

Study of optimal resolution \rightarrow Newton Raphson !!!

Analysis of different resolution approach

A review of higher order Newton type methods and the effect of numerical damping

for the solution of

an advanced coupled Lemaitre damage model

Morch et al. *Finite Elements in Analysis and Design, 209,* p. 103801

Iteration number versus CPU time to solve the equation system

56

Cycle jump approach

Cycle jump approach

^{29/04/2024} Duchêne et al. ICTP 2023 Conf proc.

58

Cycle jump: optimum parameters

59 29/04/2024 Duchêne et al. ICTP 2023 Conf proc.

Contents

- Introduction
- Phenomenological approaches
 - Scalars
 - Larson Miller etc...
 - Curves and constitutive laws FE
 - Norton
 - Graham Wales
- Micro physical based approach
 - The basis
 - Incoloy 718 application
- Fatigue-Creep, Dwell effect and FE Morch constitutive macro law
- Nitriding effect
- AID4Greenest EU project ...

Environmental effects on creep: nitridation

Environmental effects on creep: nitridation

FE simulation of nitridation effect (Lagamine code Uliege)

Maximum nitridation penetration depth

- Temperature
- N-concentration

Experiment for identification (A.M. Young et al., 2023):

Parameters		Aged (MA)	As-received (AR)	Nitrided (MN)
Norton law $ \sigma_v \rangle^n$	<i>k</i> (MPa)	3.10E + 04	7.50E + 04	5.35E + 05
$p = \left\langle \frac{1}{K} \right\rangle$	n (—)	1.18	1.22	1.29

Prediction for homogeneous samples (Norton)

*: Experimental curve after (V. Gutmann & R. Bürgel, 1983)

Carlos Rojas PhD Uliège

Environmental effects on creep: nitridation

FE simulation of nitridation effect (Lagamine code Uliege)

Maximum nitridation penetration depth

- Temperature
- N-concentration

Using the information from (A.M. Young et al., 2023):

Norton law $k(MP_{2}) = 3.10E + 04 = 7.50E + 04 = 5.35E + 0$	Parameters		Aged (MA)	As-received (AR)	Nitrided (MN)
$ \sigma_{v}\rangle^{n}$	Norton law $ \sigma_v \rangle^n$	<i>k</i> (MPa)	3.10E + 04	7.50E + 04	5.35E + 05
$p = \left\langle \frac{1}{K} \right\rangle \qquad 1.18 \qquad 1.22 \qquad 1.29$	$p = \left\langle \frac{1}{K} \right\rangle$	n (—)	1.18	1.22	1.29

Predictions for different aged + nitrided 800H material combinations | 1000°C & 35 MPa

Contents

- Introduction
- Phenomenological approaches
 - Scalars
 - Larson Miller etc...
 - Curves and constitutive laws FE
 - Norton
 - Graham Wales
- Micro physical based approach
 - The basis
 - Incoloy 718 application
- Fatigue-Creep, Dwell effect and FE Morch constitutive macro law
- Nitriding effect
- AID4Greenest EU project ...

AID4Greenest project WP3 30CrMoNiV5-11 (≈ 1 % Cr)

- Manufacturing of a shaft Reinosa
- Characterization and prediction of microstructure Uliege, Oulu, Fraunhofer, MDEA
- Standard creep test ULiege
- 2 Types of Accelerated creep test IMDEA Fraunhofer
- Forging + Cooling simulation OULO
- Creep Simulation: Macro laws (Morch) Uliege

Micro law (under development) Uliege

Machine learning (under development) Fraunofer IMDEA

Efficient way to predict shat lifetime

→ Generic tool development

https://aid4greenest.eu/

Q 🌷 🕩

AID4GREENEST Official

Thank you for your attention Anne. Habraken@uliege.be

https://aid4greenest.eu/