Computational \& Multiscale
Mechanics of Materials

Introduction to quantum computing and non-linear finite-element

(re)formulation for quantum annealing

Van Dung Nguyen, Ling Wu, François Damanet, Françoise Remacle, and Ludovic Noels

V.-D.N acknowledges the support of the Fonds National de la Recherche (F.R.S.-FNRS, Belgium). F.R. acknowledges the support of the Fonds National de la Recherche (F.R.S.-FNRS, Belgium), \#T0205.20. This work is partially supported by a "Strategic Opportunity" grant from the University of Liege

By Dhatfield - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index. php?curid=4279886

Introduction to Quantum Computing

- Bits vs. Qubits:

Bit

- Superposition of states:
- A quantum bit can be 0 or 1 at the same time
- State vector of a qubit
- Computational basis $|0\rangle=\binom{1}{0} \quad$ \& $|1\rangle=\binom{0}{1}$
- Notations: $\left\{\begin{array}{l}|\phi\rangle=\binom{\alpha}{\beta}=\alpha|0\rangle+\beta|1\rangle \\ \langle\phi|=\left(\begin{array}{ll}\alpha^{*} & \beta^{*}\end{array}\right)\end{array} \quad|\alpha|^{2}+|\beta|^{2}=1\right.$
- Qubit represented on the surface of the Bloch Sphere

$$
|\phi\rangle=e^{i \delta}\left(\cos \left(\frac{\theta}{2}\right)|0\rangle+e^{i \varphi} \sin \left(\frac{\theta}{2}\right)|1\rangle\right)
$$

- Global phase $\mathrm{e}^{i \delta}$ has no observable consequence (NB relative phase has consequence)
- At measurement (in the computational basis)

Qubit
0

1

- Either $|0\rangle$ or $|1\rangle$ with respective probability $|\alpha|^{2}$ and $|\beta|^{2}$

Introduction to Quantum Computing

- Multiple (connected) qubits:
- Product state of 2 1-qubit states:

$$
\left\{\begin{array}{l}
\left|\phi_{0}\right\rangle=\alpha_{0}|0\rangle+\beta_{0}|1\rangle \\
\left|\phi_{1}\right\rangle=\alpha_{1}|0\rangle+\beta_{1}|1\rangle
\end{array}\right.
$$

$|\boldsymbol{\phi}\rangle=\left|\phi_{0}\right\rangle \otimes\left|\phi_{1}\right\rangle=\alpha_{0} \alpha_{1}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\beta_{0} \beta_{1}|11\rangle$

- Most general 2-qubit state

$$
|\boldsymbol{\phi}\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

Because of entanglement, a K-qubit state is more general (it cannot always be written as the product of $K 1$-qubit states)

|1)

There is not always K equivalent 1 -qubit states to a K-qubit state, e.g.
$|\phi\rangle=\frac{1}{\sqrt{2}}|00\rangle+0|01\rangle+0|10\rangle+\frac{1}{\sqrt{2}}|11\rangle$

- A system of K coupled qubits
- Is a 2^{K}-state quantum-mechanical system
- Whose state can be represented by any normalised linear combination of 2^{K} basis states:
$|\boldsymbol{\phi}\rangle=\phi_{0}|0\rangle \otimes|0\rangle \ldots \otimes|0\rangle+\phi_{1}|0\rangle \otimes|0\rangle \ldots \otimes|1\rangle+\cdots+\phi_{2^{K}{ }_{-1}}|1\rangle \ldots \otimes|1\rangle \otimes|1\rangle$ with $\sum_{i=0}^{2^{K}-1}\left|\phi_{i}\right|^{2}=1$

Because of superposition, potentially, a quantum computer with K qubits can take 2^{K} bitstrings of size K in parallel at the same time. A classical computer can only take 1 bitstring of size K

Introduction to Quantum Computing

- Quantum computers:
- Trapped-ion quantum computer
- Suspended ions in electromagnetic field
- Ground state and excited states
- Interactions controlled by laser
- E.g. IonQ \& Quantinuum
- Photonic quantum computers
- State corresponds to direction of photon travel
- Superconducting quantum computers

|1
- Superconducting qubits as artificial atoms (ground state and excited state)
- Superconducting capacitors and inductors are used to produce a resonant circuit
- Operate at temperature of 10 mK
- Qubit state controlled by external microwave signals
- IBM, D-Wave
- Different platforms (2 different resolution methodologies)
- IBM
- 2022: 433-qubit Osprey’
- 2023: 1121-qubit Condor
- D-Wave
- 5000+-qubit Advantage (35000 couplers)
- Each qubit is only connected to a reduced number of other qubits
- Universal gate
- Gate on 1 qubit
- E.g. Hadamard $\quad \mathbf{H}^{\mathbf{d}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \quad|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}$

$$
\begin{aligned}
& |0\rangle-\quad-\mathbf{H}^{\mathbf{d}}-\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& \mid 1)-\quad-\mathbf{H}^{\mathrm{d}}-\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

- Gate on 2 qubits
- NB: |01): $\left(\begin{array}{ll}1 & \cdot\binom{0}{1} \\ 0 & \cdot\binom{0}{1}\end{array}\right)=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
- E.g. controlled-not: $\mathbf{C}_{10}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

E.g. for $x=1 y=0: \quad|\boldsymbol{\phi}\rangle=0|00\rangle+0|01\rangle+1|10\rangle+0|11\rangle$
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] \quad\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$

$$
\left|\boldsymbol{\phi}^{\prime}\right\rangle=\mathbf{C}_{10}|\boldsymbol{\phi}\rangle=0|00\rangle+0|01\rangle+0|10\rangle+1|11\rangle
$$

- Gate on n qubits ...
- Universal gate
- Circuit, e.g. on 5-qubits

- Gate-based QC
- Universal approach (like classical computers operations are performed on qubits)
- Highly sensitive to noisedifficulty in controlling error
- Error controlled by using control qubits
- Quantum annealer
- Goal: finding the ground state of a Hamiltonian \mathbf{H}

$$
\left|\boldsymbol{\phi}_{0}\right\rangle=\arg \min _{|\boldsymbol{\phi}\rangle}\langle\boldsymbol{\phi}| \mathbf{H}|\boldsymbol{\phi}\rangle
$$

- Based on quantum adiabatic theorem:
- Considering a time-varying Hamiltonian $\mathbf{H}_{\mathbf{Q A}}(t)$ initially at ground state, if its time evolution is slow enough, it is likely to remain at the ground state
- Adiabatic quantum computing:
- Starts from the ground state of an easy to prepare Hamiltonian \mathbf{H}_{i}
- Evolves to the ground state of the Hamiltonian \mathbf{H} which encodes the sought solution

$$
\mathbf{H}_{\mathbf{Q A}}(t)=\frac{\left(t_{a}-t\right)}{t_{a}} \mathbf{H}_{i}+\frac{t}{t_{a}} \mathbf{H}
$$

- Quantum annealing
- Exploits quantum effect such as quantum tunneling

Thermal

- Less sensitive to noise than Gate-based QC
- Less versatile than Gate-based QC
- Ising Hamiltonian
- Goal: finding the ground state of a Hamiltonian \mathbf{H}

$$
\left|\boldsymbol{\phi}_{0}\right\rangle=\arg \min _{|\boldsymbol{\phi}\rangle}\langle\boldsymbol{\phi}| \mathbf{H}|\boldsymbol{\phi}\rangle
$$

- Some definitions
- Set of K qubits $V=\{0, \ldots K-1\}$
- Set of interactions between 2 qubits $E \subset\{(i, j) \mid i \in V, j \in V, i<j)\}$
- Pauli- Z operator $\mathbf{Z}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and identity $\mathbf{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- Pauli- Z operator applied on qubits i and j :

$$
\mathbf{Z}_{i j}=\underset{\tilde{0}}{\mathbf{I}} \otimes \cdots \otimes \mathbf{I} \otimes \underset{i}{\mathbf{Z}} \otimes \mathbf{I} \otimes \cdots \otimes \mathbf{I} \otimes \underset{j}{\mathbf{Z}} \otimes \mathbf{I} \otimes \cdots \otimes \underset{K-1}{\mathbf{I}}
$$

- Ising Hamiltonian represented by an undirected graph (V, E) :
- $\mathbf{H}=\sum_{i \in V} h_{i} \mathbf{Z}_{i}+\sum_{(i, j) \in E} J_{i j} \mathbf{Z}_{i j}$
- Is a $2^{K} \times 2^{K}$ diagonal operator in the computational basis
- Quadratic Unconstrained Binary Optimization (QUBO)
- Goal: finding the ground state of a Hamiltonian \mathbf{H}

$$
\left|\boldsymbol{\phi}_{0}\right\rangle=\arg \min _{\mid \boldsymbol{\phi}}\langle\boldsymbol{\phi}| \mathbf{H}|\boldsymbol{\phi}\rangle \quad \text { with } \quad \mathbf{H}=\sum_{i \in V} h_{i} \mathbf{Z}_{i}+\sum_{(i, j) \in E} J_{i j} \mathbf{Z}_{i j}
$$

- In terms of spin variables
- Computational basis of $\mathrm{H} \quad|\boldsymbol{\phi}\rangle=\left|b_{0} b_{1} \ldots b_{K-1}\right\rangle \quad$ with $\quad b_{i} \in\{0,1\}$
- We have successively

$$
\begin{aligned}
& \mathbf{Z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \square \mathbf{Z}\left|b_{i}\right\rangle=(-1)^{b_{i}}\left|b_{i}\right\rangle \quad|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \\
& \mathbf{Z}_{i}=\underset{\substack{\mathbf{I}}}{\mathbf{I}} \otimes \cdots \mathbf{I} \otimes \underset{i}{\mathbf{Z}} \otimes \mathbf{I} \otimes \cdots \otimes \underset{K-1}{\mathbf{I}} \quad \square \mathbf{Z}_{i}|\boldsymbol{\phi}\rangle=(-1)^{b_{i}}|\boldsymbol{\phi}\rangle \\
& \mathbf{Z}_{i j}={\underset{\sim}{0}}_{\mathbf{I}}^{\mathbf{I}} \otimes \cdots \otimes \mathbf{I} \otimes \underset{i}{\mathbf{Z}} \otimes \mathbf{I} \otimes \cdots \otimes \mathbf{I} \otimes \underset{\left.\underset{j}{\mathbf{j}} \mathbf{Z} \otimes \mathbf{I} \otimes \cdots \otimes \underset{K-1}{\mathbf{I}} \square \mathbf{Z}_{i j}|\boldsymbol{\phi}\rangle=(-1)^{b_{i}}(-1)^{b_{j}}|\boldsymbol{\phi}\rangle\right) .}{\square}
\end{aligned}
$$

- Defining the vector of spin variables: $\mathbf{s}=\left[(-1)^{b_{i}} \forall i \in V\right]$

- Quadratic Unconstrained Binary Optimization (QUBO)
- Goal: finding the ground state of a Hamiltonian \mathbf{H}

$$
\left|\boldsymbol{\phi}_{0}\right\rangle=\arg \min _{|\boldsymbol{\phi}\rangle}\langle\boldsymbol{\phi}| \mathbf{H}|\boldsymbol{\phi}\rangle \quad \text { with } \quad \mathbf{H}=\sum_{i \in V} h_{i} \mathbf{Z}_{i}+\sum_{(i, j) \in E} J_{i j} \mathbf{Z}_{i j}
$$

- In terms of spin variables
- Computational basis of $\mathrm{H} \quad|\boldsymbol{\phi}\rangle=\left|b_{0} b_{1} \ldots b_{K-1}\right\rangle \quad$ with $\quad b_{i} \in\{0,1\}$
- Vector of spin variables: $\mathbf{s}=\left[(-1)^{b_{i}} \forall i \in V\right]$

The eigenvalue of \mathbf{H} reads $\mathcal{F}_{\text {Ising }}=\sum_{i \in V} h_{i} s_{i}+\sum_{(i, j) \in E} J_{i j} s_{i} s_{j}=\mathbf{s}^{T} \mathbf{h}+\mathbf{s}^{T} \mathbf{J} \mathbf{s}$ with $\mathbf{h}=\left[h_{i} \forall i \in V\right]$
\& $\mathbf{J}=\left[J_{i j} \forall(i, j) \in E\right]$
User programmable
$\left|\boldsymbol{\phi}_{0}\right\rangle=\arg \min _{\boldsymbol{\phi}}\langle\boldsymbol{\phi}| \mathbf{H}|\boldsymbol{\phi}\rangle$

$$
\mathbf{s}=\arg \min _{\mathbf{s}^{\prime}} \mathcal{F}_{\text {Ising }}\left(\mathbf{s}^{\prime} ;\right. \text { h, J) }
$$

- In terms of binary variables
- Vector of binary variables $\mathbf{b}=\left[b_{i} \forall i \in V\right]$
- Spin-binary variable transformation $s_{i}=2 b_{i}-1:\{0,1\} \rightarrow\{-1,1\} \quad$ \& property $b_{i}^{2}=b_{i}$ $\square \mathcal{F}_{\text {Ising }}=\sum_{i \in V} h_{i} s_{i}+\sum_{(i, j) \in E} J_{i j} s_{i} s_{j} \square \mathcal{F}_{\text {QUBO }}=\sum_{(i, j) \in E \cup\{(i, i) \forall i \in V\}} A_{i j} b_{i} b_{j}=\mathbf{b}^{T} \mathbf{A b}$

User programmable parameters

- Summary
- Goal: finding the ground state of a Hamiltonian \mathbf{H}

$$
\left|\boldsymbol{\phi}_{0}\right\rangle=\arg \min _{|\boldsymbol{\phi}\rangle}\langle\boldsymbol{\phi}| \mathbf{H}|\boldsymbol{\phi}\rangle \quad \text { with } \quad \mathbf{H}=\sum_{i \in V} h_{i} \mathbf{Z}_{i}+\sum_{(i, j) \in E} J_{i j} \mathbf{Z}_{i j}
$$

- Adiabatic annealing
- Starts from the ground state of an easy to prepare \mathbf{H}_{i}
- Evolves to the ground state of the Hamiltonian \mathbf{H}

$$
\mathbf{H}_{\mathbf{Q A}}(t)=\frac{\left(t_{a}-t\right)}{t_{a}} \mathbf{H}_{i}+\frac{t}{t_{a}} \mathbf{H}
$$

- Problem reformulated in terms of binary variables
- $\mathbf{b}=\left[b_{i} \forall i \in V\right]$ with $b_{i} \in\{0,1\}$
- Eigenvalue $\mathcal{F}_{\text {QUBO }}=\mathbf{b}^{T} \mathbf{A b}$
- QUBO optimization $\quad \mathbf{b}=\arg \min _{\mathbf{b}^{\prime}} \mathcal{F}_{\mathrm{QUBO}}\left(\mathbf{b}^{\prime} ; \mathbf{A}\right)$ User programmable parameters
- In practice
- Provide the QUBO matrix A
- Set the annealing time t_{a} (typically $20 \mu \mathrm{~s}$)
- One annealing returns a sample of \mathbf{b}
- A single run may not provide the global minimym due to environmental noises, hardware imperfections, pre- and post-processing errors

Quantum computing \& finite elements

- Set of PDEs to be solved
- Strong form
 Weak form:
$\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\boldsymbol{x})+\boldsymbol{b}_{\mathbf{0}}(\boldsymbol{x})=\mathbf{0} \quad \square \int_{V} \boldsymbol{\sigma}(\boldsymbol{x}): \nabla \otimes^{s} \boldsymbol{\delta} \boldsymbol{u}(\boldsymbol{x}) d V=\int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{\delta} \boldsymbol{u} d V+\int_{\partial_{N} V} \boldsymbol{n} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\delta} \boldsymbol{u} d \partial V$
- Constitutive model:

$$
\boldsymbol{\sigma}(\boldsymbol{x}, t)=\boldsymbol{\sigma}\left(\boldsymbol{\nabla} \otimes^{s} \boldsymbol{u}(\boldsymbol{x}, t) ; \mathbf{q}(\boldsymbol{x}, t)\right) \text { with evolution law } \boldsymbol{Q}\left(\boldsymbol{\sigma}(\boldsymbol{x}, t), \mathbf{q}\left(\boldsymbol{\nabla} \otimes^{s} \boldsymbol{u}(\boldsymbol{x}, \tau): \tau \leq t\right)\right)=\mathbf{0}
$$

- Finite element formulation
- Displacement field at quadrature point Ξ from nodal displacements vector \mathbf{U}

$$
\boldsymbol{u}(\Xi)=N_{a}(\Xi) \boldsymbol{U}_{a} \quad \square \boldsymbol{\varepsilon}(\Xi)=\boldsymbol{\nabla} \otimes^{s} \boldsymbol{u}(\Xi)=\mathbf{B}_{a}(\Xi) \boldsymbol{U}_{a}
$$

- Resulting non-linear system of equations on time interval $\left[t_{n} t_{n+1}\right]$

$$
\begin{aligned}
& \int_{V} \boldsymbol{\sigma}(\boldsymbol{x}): \nabla \otimes^{s} \boldsymbol{\delta} \boldsymbol{u}(\boldsymbol{x}, t) d V=\int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{\delta} \boldsymbol{u} d V+\int_{\partial_{N} V} \boldsymbol{n} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\delta} \boldsymbol{u} d \partial V \\
& \boldsymbol{\delta} \boldsymbol{U}_{\boldsymbol{b}}^{\mathrm{T}} \cdot \sum_{\Xi} \mathbf{B}_{b}^{\mathrm{T}}(\Xi) \boldsymbol{\sigma}((\Xi)) \omega^{\Xi}=\boldsymbol{\delta} \boldsymbol{U}_{\boldsymbol{b}}^{\mathrm{T}} \cdot \sum_{\Xi} N_{b}(\Xi) \boldsymbol{b}_{0}(\Xi) \omega^{\Xi} \\
& \boldsymbol{f}_{b}^{\mathrm{int}}=\sum_{\Xi} \mathbf{B}_{b}^{\mathrm{T}}(\Xi) \boldsymbol{\sigma}(\Xi) \omega^{\Xi}=\sum_{\Xi} N_{b}(\Xi) \boldsymbol{b}_{0}(\Xi) \omega^{\Xi}=\boldsymbol{f}_{b}^{\mathrm{ext}} \\
& \text { with }\left\{\begin{array}{l}
\boldsymbol{\sigma}\left(\Xi, t_{n+1}\right)=\boldsymbol{\sigma}\left(\mathbf{B}_{a}(\Xi) \boldsymbol{U}_{a n+1} ; \mathbf{q}\left(\Xi, t_{n+\mathbf{1}}\right)\right) \\
\boldsymbol{Q}\left(\boldsymbol{\sigma}\left(\Xi, t_{n+1}\right), \mathbf{q}\left(\Xi, t_{n+1}\right), \mathbf{q}\left(\Xi, t_{n}\right)\right)=\mathbf{0}
\end{array}\right.
\end{aligned}
$$

Quantum computing \& finite elements

- Finite element formulation
- Resulting non-linear system of equations on time interval $\left[t_{n} t_{n+1}\right]$

$$
\left\{\begin{array}{l}
\boldsymbol{f}_{b}^{\mathrm{int}}=\sum_{\Xi} \mathbf{B}_{b}^{\mathrm{T}}(\Xi) \boldsymbol{\sigma}(\Xi) \omega^{\Xi}=\sum_{\Xi} N_{b}(\Xi) \boldsymbol{b}_{0}(\Xi) \omega^{\Xi}=\boldsymbol{f}_{b}^{\mathrm{ext}} \\
\boldsymbol{\sigma}\left(\Xi, t_{n+1}\right)=\boldsymbol{\sigma}\left(\mathbf{B}_{a}(\Xi) \boldsymbol{U}_{a n+1} ; \mathbf{q}\left(\Xi, t_{n+1}\right)\right) \quad \& \quad \boldsymbol{Q}\left(\boldsymbol{\sigma}\left(\Xi, t_{n+1}\right), \mathbf{q}\left(\Xi, t_{n+1}\right), \mathbf{q}\left(\Xi, t_{n}\right)\right)=\mathbf{0}
\end{array}\right.
$$

Quantum computing \& finite elements

- Consider classical finite element resolution on Quantum Computers?

$$
\mathrm{U}_{n+1}^{(i)}-=\left(\frac{\partial f^{\mathrm{int}}}{\partial \mathrm{U}}\right)^{-1}\left[f^{\mathrm{int}}\left(\sigma\left(\boldsymbol{U}_{a n+1}^{(i)}\right)\right)-f^{\mathrm{ext}}\right]
$$

- What can be solved on a Quantum Computer?
- Optimization problems can be solved (Actually Quantum Annealers look for a ground state)
- Some operations can be achieved efficiently on classical computers like assembly
- Do we need the same resolution structure?
- Do we need intricated NR loops?
- Do we even need to use the discretized form of the weak form?

$$
\int_{V} \boldsymbol{\sigma}(\boldsymbol{x}): \nabla \otimes^{s} \boldsymbol{\delta} \boldsymbol{u}(\boldsymbol{x}) d V=\int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{\delta} \boldsymbol{u} d V \quad \square \boldsymbol{f}_{b}^{\mathrm{int}}=\sum_{\Xi} \mathbf{B}_{b}^{\mathrm{T}}(\Xi) \boldsymbol{\sigma}(\Xi) \omega^{\Xi}=\boldsymbol{f}_{b}^{\mathrm{ext}}
$$

Quantum computing \& finite elements

- Linear finite element resolution on Quantum Computers?
- Assuming linear elasticity
- Existence of a free energy $\Psi=\frac{1}{2} \boldsymbol{\varepsilon}(x): \mathbb{C}(x): \boldsymbol{\varepsilon}(x) \quad$ with $\quad \boldsymbol{\varepsilon}(x)=\nabla \otimes^{s} \boldsymbol{u}(\boldsymbol{x})$
- Stress results from $\boldsymbol{\sigma}(\boldsymbol{x})=\frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}}=\mathbb{C}(x): \boldsymbol{\varepsilon}(x)=\mathbb{C}(x):\left(\nabla \otimes^{s} \boldsymbol{u}(\boldsymbol{x})\right)$
- Finite element form:
- At quadrature point using nodal shape function derivatives: $\boldsymbol{\sigma}(\Xi)=\boldsymbol{C}(\Xi) \mathbf{B}_{a}(\Xi) \boldsymbol{U}_{a}$
- FE equations $\boldsymbol{f}_{b}^{\mathrm{int}}=\sum_{\Xi} \mathbf{B}_{b}^{\mathrm{T}}(\Xi) \boldsymbol{\sigma}(\Xi) \omega^{\Xi}=\boldsymbol{f}_{b}^{\text {ext }}$

$$
\sum_{\Xi} \mathbf{B}_{b}^{\mathrm{T}}(\Xi) \boldsymbol{C}(x) \mathbf{B}_{a} \omega^{\Xi} \boldsymbol{U}_{a}=\mathbf{K}_{a b} \boldsymbol{U}_{a}=\boldsymbol{f}_{b}^{\mathrm{ext}}
$$

- Defining the internal energy and work of external forces

$$
\Phi=\frac{1}{2} \boldsymbol{U}_{b} \mathbf{K}_{a b} \boldsymbol{U}_{a}-W^{\text {ext }} \quad \text { with } \quad W^{\text {ext }}=\boldsymbol{f}_{b}^{\text {ext }} \boldsymbol{U}_{b}
$$

The solution of the FE equations minimizes the energy

$$
\mathbf{U}=\arg \min _{\mathbf{U} \prime}\left(\frac{1}{2} \mathbf{U}^{\prime \mathrm{T}} \mathbf{K} \mathbf{U}^{\prime}-\mathbf{f}^{\mathrm{ext}}{ }^{\mathrm{T}} \mathbf{U}^{\prime}\right)
$$

- We are looking for the ground state of a Hamiltonian

$$
\mathbf{H}=\sum_{i \in V} h_{i} \mathbf{z}_{i}+\sum_{(i, j) \in E} J_{i j} \mathbf{z}_{i j}
$$

Quantum computing \& finite elements

- Non-linear finite element resolution on Quantum Computers?
- Weak form: $\int_{V} \boldsymbol{\sigma}(\boldsymbol{x}): \nabla \otimes^{s} \boldsymbol{\delta} \boldsymbol{u}(\boldsymbol{x}) d V=\int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{\delta} \boldsymbol{u} d V$
- Assuming non-linear elasticity
- Existence of a free energy $\Psi(\boldsymbol{\varepsilon}(x))$ with $\boldsymbol{\varepsilon}(x)=\nabla \otimes^{s} \boldsymbol{u}(\boldsymbol{x})$
- Stress results from $\boldsymbol{\sigma}(\boldsymbol{x})=\frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}}$

The weak form becomes $\int_{V} \frac{\partial \Psi(\boldsymbol{x})}{\partial \boldsymbol{\varepsilon}}: \boldsymbol{\delta} \boldsymbol{\varepsilon}(\boldsymbol{x}) d V=\int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{\delta} \boldsymbol{u} d V$

- Introduction of a functional
- $\Phi(\boldsymbol{u}(V))=\int_{V} \Psi\left(\nabla \otimes^{s} \boldsymbol{u}(\boldsymbol{x})\right) d V-W^{\mathrm{ext}}(\boldsymbol{u}(V)) \quad \& W^{\mathrm{ext}}=\int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{u}(\boldsymbol{x}) d V$
- The weak form results from nulling the Gâteaux derivative

$$
\Phi^{\prime}(\boldsymbol{u}(V) ; \delta \boldsymbol{u}((V)))=\int_{V} \boldsymbol{\sigma}(\boldsymbol{x}): \nabla \otimes^{s} \boldsymbol{\delta} \boldsymbol{u}(\boldsymbol{x}) d V-\int_{V} \boldsymbol{b}_{0} \cdot \boldsymbol{\delta} \boldsymbol{u} d V=\mathbf{0}
$$

The solution of the weak form minimizes the energy: $\quad \boldsymbol{u}(V)=\arg \min _{\boldsymbol{u}(V)} \Phi\left(\boldsymbol{u}^{\prime}(V)\right)$

- We are looking for the solution of a minimization problem
- The potential is convex
- But it is not quadratic
- Quid inelastic materials?
- Non-linear finite element resolution on Quantum Computers?
- Inelastic materials
- Existence of a Helmholtz free energy $\Psi(\boldsymbol{\varepsilon}(x), \mathbf{q}(x)) \quad$ with $\left\{\begin{array}{l}\text { internal variables } \mathbf{q}(x) \\ \boldsymbol{\varepsilon}(x)=\nabla \otimes^{s} \boldsymbol{u}(\boldsymbol{x})\end{array}\right.$
- Dissipation \mathcal{D} and Clausius-Duhem inequality
- $\mathcal{D}=\boldsymbol{\sigma}: \dot{\boldsymbol{\varepsilon}}-\dot{\Psi} \geq 0 \quad$ with $\quad \dot{\Psi}=\frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}}: \dot{\boldsymbol{\varepsilon}}+\frac{\partial \Psi}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}}$
- Equality holds in case of a reversible transformation

$$
\boldsymbol{\sigma}=\frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}} \quad \square \text { for an irreversible process: } \mathcal{D}=\mathbf{Y} \cdot \dot{\mathbf{q}} \geq 0 \quad \text { with } \quad \mathbf{Y}=-\frac{\partial \Psi}{\partial \mathbf{q}}
$$

- Postulate the existence of a pseudo-potential $\Theta(\dot{\mathbf{q}})$ and its convex dual $\Theta^{*}(\mathbf{Y})$
- $\theta(\dot{\mathbf{q}})=\max _{\mathbf{Y}}\left[\mathbf{Y} \cdot \dot{\mathbf{q}}-\Theta^{*}(\mathbf{Y})\right]$
$\dot{\mathbf{q}}=\frac{\partial \Theta^{*}(\mathbf{Y})}{\partial \mathbf{Y}}$
$\& \mathbf{Y}=\frac{\partial \Theta(\dot{\mathbf{q}})}{\partial \dot{\mathbf{q}}}$
- Power functional \mathcal{E}
- New independent variables $(\dot{\varepsilon}, \dot{\mathbf{q}})$
- $\varepsilon(\dot{\varepsilon}, \dot{\mathbf{q}})=\dot{\Psi}+\theta(\dot{\mathbf{q}})=\frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}}: \dot{\varepsilon}-\mathbf{Y} \cdot \dot{\mathbf{q}}+\theta(\dot{\mathbf{q}})$

$$
\frac{\partial \varepsilon}{\partial \dot{\mathbf{q}}}=-\mathbf{Y}+\frac{\partial \Theta(\dot{\mathbf{q}})}{\partial \dot{\mathbf{q}}}=\mathbf{0} \quad \square \varepsilon \text { has to be minimized with respect to internal state }
$$

- Effective power functional ${ }^{*} \quad \mathcal{E}^{\text {eff }}(\dot{\boldsymbol{\varepsilon}})=\min _{\dot{\mathbf{q}}} \mathcal{E}(\dot{\boldsymbol{\varepsilon}}, \dot{\mathbf{q}}) \quad$ with $\boldsymbol{\sigma}=\frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}}=\frac{\partial \mathcal{E}^{\text {eff }}}{\partial \dot{\boldsymbol{\varepsilon}}}$
- The constitutive model is also a minimization problem

Quantum computing \& finite elements

- Non-linear finite element resolution on Quantum Computers?
- In elasticity we had
- $\boldsymbol{u}(V)=\arg \min _{\boldsymbol{u}^{\prime}(V)} \Phi\left(\boldsymbol{u}^{\prime}(V)\right) \quad$ with $\quad \Phi(\boldsymbol{u}(V))=\int_{V} \Psi\left(\nabla \otimes^{s} \boldsymbol{u}(\boldsymbol{x})\right) d V-W^{\mathrm{ext}}(\boldsymbol{u}(\boldsymbol{x}))$

- Double minimization problem in inelasticity

- Power functional \mathcal{E}

$$
\mathcal{E}(\dot{\varepsilon}, \dot{\mathbf{q}})=\frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}}: \dot{\varepsilon}-\mathbf{Y} \cdot \dot{\mathbf{q}}+\Theta(\dot{\mathbf{q}}) \quad \& \mathcal{E}^{\mathrm{eff}}(\dot{\varepsilon})=\min _{\dot{\mathbf{q}}} \mathcal{E}(\dot{\varepsilon}, \dot{\mathbf{q}}) \quad \square \quad \sigma=\frac{\partial \mathcal{E}^{\mathrm{eff}}}{\partial \dot{\varepsilon}}
$$

- Volume power functional

$$
\Phi(\dot{\boldsymbol{u}}(V), \dot{\mathbf{q}}(V))=\int_{V} \varepsilon\left(\nabla \otimes^{s} \dot{\boldsymbol{u}}, \dot{\mathbf{q}}\right)-\dot{W}^{\mathrm{ext}}(\dot{\boldsymbol{u}}(V))
$$

- Incremental volume energy functional on time interval $\left[t_{n} t_{n+1}\right]^{*}$

$$
\begin{aligned}
& \Delta \Phi\left(\boldsymbol{u}_{n+1}, \mathbf{q}_{n+1}\right)=\int_{V} \Delta \mathcal{E}\left(\nabla \otimes^{s} \boldsymbol{u}_{n+1}, q_{n+1}\right)-\Delta W^{\mathrm{ext}}\left(\boldsymbol{u}_{n+1}\right) \\
& \text { with } \quad \Delta \mathcal{E}\left(\nabla \otimes^{s} \boldsymbol{u}_{n+1}, \mathbf{q}_{n+1}\right)=\int_{t_{n}}^{t_{n+1}} \mathcal{E}\left(\nabla \otimes^{s} \dot{\boldsymbol{u}}, \dot{\mathbf{q}}\right) \quad \& \Delta \mathcal{E}^{\mathrm{eff}}(\boldsymbol{\varepsilon})=\min _{\mathbf{q}} \Delta \mathcal{E}(\varepsilon, \mathbf{q}) \quad, \quad \boldsymbol{\sigma}=\frac{\partial \Delta \mathcal{E}^{\mathrm{eff}}}{\partial \boldsymbol{\varepsilon}}
\end{aligned}
$$

- The problem solution reads

$$
\left\{\begin{array}{l}
\mathbf{q}_{n+1}=\arg \min _{\mathbf{q}^{\prime}} \Delta \Phi\left(\boldsymbol{u}_{n+1}, \mathbf{q}^{\prime}\right) \\
\Delta \Phi^{\mathrm{eff}}\left(\boldsymbol{u}_{n+1}\right)=\min _{\mathbf{q}^{\prime}} \Delta \Phi\left(\boldsymbol{u}_{n+1}, \mathbf{q}^{\prime}\right)=\int_{V} \Delta \mathcal{E}^{\mathrm{eff}}\left(\nabla \otimes^{s} \boldsymbol{u}_{n+1}\right)-\Delta W^{\mathrm{ext}} \\
\boldsymbol{u}_{n+1}=\arg \min _{\mathbf{u}^{\prime} \text { admissible }} \Delta \Phi^{\mathrm{eff}}\left(\boldsymbol{u}^{\prime}\right)
\end{array}\right.
$$

Quantum computing \& finite elements

- Example: J2-elasto-plasticity
- Helmholtz free energy
- $\Psi(\boldsymbol{\varepsilon}, \mathbf{q})=\frac{1}{2}\left(\varepsilon-\boldsymbol{\varepsilon}^{\mathrm{pl}}\right): \mathbb{C}^{\mathrm{el}}:\left(\varepsilon-\boldsymbol{\varepsilon}^{\mathrm{pl}}\right) \quad$ with $\quad \Delta \boldsymbol{\varepsilon}^{\mathrm{pl}}=\Delta \gamma \mathbf{N}$

Internal variables $\quad \mathbf{q}=\{\mathbf{N}, \Delta \gamma\} \quad$ under constraints $\quad \mathbf{N}: \mathbf{N}=\frac{3}{2}, \operatorname{tr}(\mathbf{N})=0 \quad \& \quad \Delta \gamma \geq 0$

- Dissipation pseudo-potential

$$
\Theta(\dot{\mathbf{q}})=\left\{\begin{array}{lr}
\left(\sigma_{y}^{0}+R(\gamma)\right) \dot{\gamma} & \text { if } \dot{\gamma} \geq 0 \\
\infty & \text { otherwise }
\end{array} \quad \Theta^{*}(\mathbf{Y})=\left\{\begin{array}{cr}
0 & \text { if } \sigma_{\mathrm{eq}}-\sigma_{y}^{0}-R \leq 0 \\
\infty & \text { otherwise }
\end{array}\right.\right.
$$

- Increment of the energy functional

$$
\begin{aligned}
& \mathcal{E}(\dot{\varepsilon}, \dot{\mathbf{q}})=\dot{\Psi}+\Theta(\dot{\mathbf{q}}) \\
& \Delta \mathcal{E}\left(\boldsymbol{\varepsilon}_{n+1}, \mathbf{q}\right)= \frac{1}{2}\left(\varepsilon_{n+1}-\Delta \gamma \mathbf{N}-\boldsymbol{\varepsilon}_{n}^{\mathrm{pl}}\right): \mathbb{C}^{\mathrm{el}}:\left(\varepsilon_{n+1}-\Delta \gamma \mathbf{N}-\varepsilon_{n}^{\mathrm{pl}}\right)+\int_{\gamma_{n}}^{\gamma_{n+1}}\left(\sigma_{y}^{0}+R\left(\gamma^{\prime}\right)\right) d \gamma^{\prime} \\
&-\frac{1}{2}\left(\varepsilon_{n}-\varepsilon_{n}^{\mathrm{pl}}\right): \mathbb{C}^{\mathrm{el}}:\left(\varepsilon_{n}-\varepsilon_{n}^{\mathrm{pl}}\right)
\end{aligned}
$$

$$
\Delta \mathcal{E}^{\mathrm{eff}}(\boldsymbol{\varepsilon})=\min _{\mathbf{q}} \Delta \mathcal{E}(\boldsymbol{\varepsilon}, \mathbf{q}) \quad \text { with constraints } \quad \mathbf{N}: \mathbf{N}=\frac{3}{2}, \operatorname{tr}(\mathbf{N})=0 \quad \& \Delta \gamma \geq 0
$$

- The problem is stated as a double constrained minimization problem

$$
\left[\begin{array}{l}
\mathbf{q}_{n+1}=\arg \min _{\mathbf{q}^{\prime} \text { constrained }} \Delta \Phi\left(\boldsymbol{u}_{n+1}, \mathbf{q}^{\prime}\right) \\
\Delta \Phi^{\mathrm{eff}}\left(\boldsymbol{u}_{n+1}\right)=\min _{\mathbf{q}^{\prime} \text { constrained }} \Delta \Phi\left(\boldsymbol{u}_{n+1}, \mathbf{q}^{\prime}\right)=\int_{V} \Delta \mathcal{E}^{\text {eff }}\left(\nabla \otimes^{s} \boldsymbol{u}_{n+1}\right)-\Delta W^{\mathrm{ext}} \\
\boldsymbol{u}_{n+1}=\arg \min _{\mathbf{u}^{\prime} \text { admissible }} \Delta \Phi^{\text {eff }}\left(\boldsymbol{u}^{\prime}\right)
\end{array}\right.
$$

Quantum computing \& finite elements

- Classical finite element resolution

$$
\mathrm{U}_{n+1}^{(i)}-=\left(\frac{\partial \boldsymbol{f}^{\mathrm{int}}}{\partial \mathrm{U}}\right)^{-1}\left[\boldsymbol{f}^{\mathrm{int}}\left(\sigma\left(\boldsymbol{U}_{a n+1}^{(i)}\right)\right)-f^{\mathrm{ext}}\right]
$$

- Finite element as a double-minimization problem

$$
\begin{aligned}
& \text { Loop until convergence } \\
& \mathbf{q}_{n+1}=\arg \min _{\mathbf{q}^{\prime} \text { constrained }} \Delta \Phi\left(u_{n+1}, \mathbf{q}^{\prime}\right) ; \\
& \Delta \Phi^{\mathrm{eff}}=\min _{\mathbf{q}^{\prime} \text { constrained }} \Delta \Phi\left(u_{n+1}, \mathbf{q}^{\prime}\right) \\
& u_{n+1}=\arg \min _{\mathbf{u}^{\prime} \text { admissible }} \Delta \Phi^{\mathrm{eff}}\left(\mathbf{u}^{\prime}\right)
\end{aligned}
$$

- Quantum annealers: ground state of an Ising-Hamiltonian
- No need for Jacobians
- No problem of convergence
- But how to make the optimisation problem solvable by quantum annealing?

Double-minimization process solved by Quantum annealing

- Finite element as a double-minimization problem
- Finite element problem

```
Loop until convergence
    \mp@subsup{\mathbf{q}}{n+1}{}=\operatorname{arg}\mp@subsup{\operatorname{min}}{\mp@subsup{\mathbf{q}}{}{\prime}\mathrm{ constrained }}{}\Delta\Phi(\mp@subsup{u}{n+1}{},\mp@subsup{\mathbf{q}}{}{\prime});
    \Delta\mp@subsup{\Phi}{}{\mathrm{ eff }}=\mp@subsup{m}{\mp@subsup{\mathbf{q}}{}{\prime}\mathrm{ constrained }}{\mp@subsup{m}{}{\prime}}\Delta\Phi(\mp@subsup{u}{n+1}{\prime},\mp@subsup{\mathbf{q}}{}{\prime})
    \mp@subsup{u}{n+1}{\prime}=\operatorname{arg}\mp@subsup{\operatorname{min}}{\mp@subsup{\mathbf{u}}{}{\prime}\mathrm{ admissible }}{}\Delta\mp@subsup{\Phi}{}{\mathrm{ eff }}(\mp@subsup{\mathbf{u}}{}{\prime})
```

- Ising Hamiltonian for Quantum annealing
- Goal: finding the ground state of a Hamiltonian $\mathbf{H}: \quad \mathbf{H}=\sum_{i \in V} h_{i} \mathbf{Z}_{i}+\sum_{(i, j) \in E} J_{i j} \mathbf{Z}_{i j}$

$$
\left|\boldsymbol{\phi}_{0}\right\rangle=\arg \min _{|\boldsymbol{\phi}\rangle}\langle\boldsymbol{\phi}| \mathbf{H}|\boldsymbol{\phi}\rangle
$$

- Problem reformulated in terms of binary variables $\mathbf{b}=\left[b_{i} \forall i \in V\right] \quad$ with $b_{i} \in\{0,1\}$
- QUBO optimisation problem $\mathcal{F}_{\text {QUBO }}=\sum_{(i, j) \in E \cup\{(i, i) \forall i \in V\}} A_{i j} b_{i} b_{j}=\mathbf{b}^{T}\{\mathbf{A} \mathbf{b}$
$\mathbf{b}=\arg \min _{\mathbf{b}^{\prime}} \mathcal{F}_{\text {QUBO }}\left(\mathbf{b}^{\prime} ; \boldsymbol{A}\right)$ User programmable parameters
- Steps to follow
- Transform the constrained minimization problem into an unconstrained one
- Transform the general unconstrained optimization problem into a series of quadratic ones
- Transform each continuous quadratic optimization problem into a binarized one
- Apply to the double-minimization framework

Double-minimization process solved by Quantum annealing

- Transform the constrained minimization problem into an unconstrained one
- Constrained multivariate minimization problem
- $\min _{\mathbf{w}} f(\mathbf{w}) \quad$ with $\quad \mathbf{w}^{\min } \leq \mathbf{w} \leq \mathbf{w}^{\max }$
- Under constraints $\quad h(\mathbf{w})=0 \quad \& \quad l(\mathbf{w}) \leq 0$
- Augmented minimization problem
- $f_{\text {aug }}(\mathbf{v})=f_{\text {aug }}(\mathbf{w}, \lambda)=f(\mathbf{w})+c^{h}(h(\mathbf{w}))^{2}+c^{l}(l(\mathbf{w})+\lambda)^{2} \quad$ with $\mathbf{v}=\{\boldsymbol{w}, \lambda \geq 0\}$
- Unconstrained minimization problem
- $\min _{\mathbf{v}} f_{\text {aug }}(\mathbf{v})$ with $\mathbf{v}^{\text {min }} \leq \mathbf{v} \leq \mathbf{v}^{\text {max }}$
- Bounds will be enforced during the binarization process
- Definition of the double-unconstrained minimization problem

```
Loop until convergence
    \mp@subsup{\mathbf{q}}{n+1}{}=\operatorname{arg}\mp@subsup{m}{\mp@subsup{\mathbf{q}}{}{\prime}\mathrm{ constrained }}{}\Delta\Phi(\mp@subsup{u}{n+1}{\prime},\mp@subsup{\mathbf{q}}{}{\prime});
    \Delta\mp@subsup{\Phi}{}{\mathrm{ eff }}=\mp@subsup{m}{\mp@subsup{\mathbf{q}}{}{\prime}\mathrm{ constrained }}{}\Delta\Phi(\mp@subsup{u}{n+1}{\prime},\mp@subsup{\mathbf{q}}{}{\prime})
    u
```

 Loop until convergence
 $$
\begin{aligned}
& \mathbf{q}_{n+1}, \lambda=\arg \min _{\left\{\mathbf{q}^{\prime}, \lambda \prime\right\}} \Delta \Phi_{\mathrm{aug}}\left(\boldsymbol{u}_{n+1}, \mathbf{q}^{\prime}, \lambda^{\prime}\right) ; \\
& \Delta \Phi^{\mathrm{eff}}=\min _{\left\{\mathbf{q}^{\prime}, \lambda \prime\right\}} \Delta \Phi_{\mathrm{aug}}\left(\boldsymbol{u}_{n+1}, \mathbf{q}^{\prime}, \lambda^{\prime}\right) \\
& \boldsymbol{u}_{n+1}=\arg \min _{\mathbf{u}^{\prime} \text { admissible }} \Delta \Phi^{\mathrm{eff}}\left(\mathbf{u}^{\prime}\right)
\end{aligned}
$$

Double-minimization process solved by Quantum annealing

- Transform the constrained minimization problem into an unconstrained one
- E.g.J2-plasticity
- $\Delta \mathcal{E}=\frac{1}{2}\left(\varepsilon_{n+1}-\Delta \gamma \mathbf{N}-\varepsilon_{n}^{\mathrm{pl}}\right): \mathbb{C}^{\mathrm{el}}:\left(\varepsilon_{n+1}-\Delta \gamma \mathbf{N}-\boldsymbol{\varepsilon}_{n}^{\mathrm{pl}}\right)+\int_{\gamma_{n}}^{\gamma_{n+1}}\left(\sigma_{y}^{0}+R\left(\gamma^{\prime}\right)\right) d \gamma^{\prime}$

$$
-\frac{1}{2}\left(\varepsilon_{n}-\varepsilon_{n}^{\mathrm{pl}}\right): \mathbb{C}^{\mathrm{el}}:\left(\varepsilon_{n}-\varepsilon_{n}^{\mathrm{pl}}\right)
$$

- Under constraints $\mathbf{N}: \mathbf{N}=\frac{3}{2}, \operatorname{tr}(\mathbf{N})=0 \& \Delta \gamma \geq 0$
- Change of variables

$$
\left\{\begin{array}{l}
\mathbf{N}: \mathbf{N}=\boldsymbol{\alpha}^{\boldsymbol{T}} \mathbf{M} \boldsymbol{\alpha}=\frac{3}{2} \\
\boldsymbol{\alpha}=\left[\alpha_{0} \ldots \alpha_{4}\right]^{\mathrm{T}},-\sqrt{\frac{3}{2}} \leq \alpha_{i} \leq-\sqrt{\frac{3}{2}},
\end{array}, \mathbf{N}=\left[\begin{array}{ccc}
\alpha_{0} & \alpha_{2} / \sqrt{2} & \alpha_{2} / \sqrt{2} \\
& \alpha_{1} & \alpha_{4} / \sqrt{2} \\
\mathrm{SYM} & & -\alpha_{0}-\alpha_{1}
\end{array}\right] \quad \& \mathbf{M}=\mathbf{c s t}\right.
$$

- Definition of the double unconstrained minimization problem

$$
\begin{aligned}
& \text { Loop until convergence } \\
& \qquad \mathbf{q}_{n+1}=\arg \min _{\mathbf{q}^{\prime} \text { constrained }} \Delta \Phi\left(u_{n+1}, \mathbf{q}^{\prime}\right) ; \\
& \Delta \Phi^{\text {eff }}=\min _{\mathbf{q}^{\prime} \text { constrained }} \Delta \Phi\left(u_{n+1}, \mathbf{q}^{\prime}\right) \\
& u_{n+1}=\arg \min _{\mathbf{u}^{\prime} \text { admissible }} \Delta \Phi^{\text {eff }}\left(\mathbf{u}^{\prime}\right)
\end{aligned}
$$

Loop until convergence

$$
\begin{aligned}
& \{\Delta \gamma, \alpha\}=\arg \min _{\left\{\Delta \gamma^{\prime}, \alpha^{\prime}\right\}}\left[\int_{V} \Delta \mathcal{E}\left(u_{n+1}, \Delta \gamma^{\prime}, \boldsymbol{\alpha}^{\prime}\right)+c^{h}\left(\alpha^{T} \mathrm{M} \alpha-\frac{3}{2}\right)^{2} d V\right] \\
& \Delta \Phi^{\mathrm{eff}}=\min _{\left\{\Delta \gamma^{\prime}, \alpha^{\prime}\right\}} \Delta \Phi_{\text {aug }}\left(u_{n+1}, \Delta \gamma^{\prime}, \alpha^{\prime}\right) \\
& u_{n+1}=\arg \min _{\mathbf{u}^{\prime} \text { admissible }} \Delta \Phi^{\text {eff }}\left(\mathbf{u}^{\prime}\right)
\end{aligned}
$$

Double-minimization process solved by Quantum annealing

- Transform the optimization problem into a series of quadratic ones
- Unconstrained optimization problem
- $\min _{\mathbf{v}} f_{\text {aug }}(\mathbf{v})$ with $\mathbf{v}^{\min } \leq \mathbf{v} \leq \mathbf{v}^{\max }$
- Taylor's expansion

QF $\left(\mathbf{z} ; f_{\text {aug }, \mathbf{v}}, f_{\text {aug,vv }}\right)$

- $f_{\text {aug }}(\mathbf{v}+\mathbf{z}) \simeq f_{\text {aug }}(\mathbf{v})+\mathbf{z}^{\mathrm{T}} f_{\text {aug }, \mathbf{v}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{z}^{\mathrm{T}} f_{\text {aug, } \mathbf{v}} \mathbf{z}$
- New series of optimization problems

$$
\left[f_{\text {aug }, \mathbf{v}^{\boldsymbol{i}}}=\left.\frac{\partial f_{\text {aug }}}{\partial v_{i}}\right|_{\mathbf{v}}\right.
$$

$$
f_{\text {aug,vv }}^{i j}=\left.\frac{\partial^{2} f_{\text {aug }}}{\partial v_{i} \partial v_{j}}\right|_{\mathrm{v}}
$$

- Iterate on \mathbf{z} with: $\mathbf{z}=\arg \min _{\mathbf{z}^{\prime}} \mathrm{QF}\left(\mathbf{z}^{\prime} ; f_{\text {aug, }}, f_{\text {aug }, \mathbf{v v}}\right)$
- Application to the double minimisation problem

```
Loop until convergence
    \(\mathbf{q}_{n+1}, \lambda=\arg \min _{\left\{\mathbf{q}^{\prime}, \lambda \prime\right\}} \Delta \Phi_{\text {aug }}\left(\boldsymbol{u}_{n+1}, \mathbf{q}^{\prime}, \lambda^{\prime}\right) ;\)
    \(\Delta \Phi^{\text {eff }}=\min _{\left.\left\{\mathbf{q}^{\prime}, \lambda\right\rangle\right\}} \Delta \Phi_{\text {aug }}\left(\boldsymbol{u}_{n+1}, \mathbf{q}^{\prime}, \lambda^{\prime}\right)\)
    \(\boldsymbol{u}_{n+1}=\arg \min _{\mathbf{u}^{\prime} \text { admissible }} \Delta \Phi^{\text {eff }}\left(\mathbf{u}^{\prime}\right)\)
```


Loop until convergence

Loop on $\quad u_{n+1} \leftarrow u_{n+1}+\Delta \mathbf{u}$

$$
\Delta u=\arg \min _{\Delta \mathrm{u}^{\prime} \text { admissible }} \Delta \mathbf{u}^{\prime \mathrm{T}} \Delta \Phi_{, \mathrm{u}}^{\text {eff }}+\frac{1}{2} \Delta \mathbf{u}^{\prime \mathrm{T}} \Delta \Phi_{, \mathrm{uu}}^{\text {eff }} \Delta \mathrm{u}^{\prime}
$$

Loop on $\quad \boldsymbol{q}_{n+1} \leftarrow \boldsymbol{q}_{n+1}+\Delta \mathbf{q}, \lambda \leftarrow \lambda+\Delta \lambda$

$$
\begin{aligned}
& \quad \Delta \mathbf{q}, \Delta \lambda=\arg \min _{\left\{\Delta \mathbf{q}^{\prime}, \Delta \lambda /\right\}}\left[\Delta \mathbf{q}^{\prime \mathrm{T}} \Delta \lambda^{\prime}\right] \Delta \Phi_{\text {aug, }\{\mathrm{q} \lambda\}}+\frac{1}{2}\left[\Delta \mathbf{q}^{\prime \mathrm{T}} \Delta \lambda^{\prime}\right] \Delta \Phi_{\text {aug }\{\mathbf{q} \lambda\}\{\mathbf{q} \lambda\}}\left[\Delta \mathbf{q}^{\prime \mathrm{T}} \Delta \lambda^{\prime}\right]^{\mathrm{T}} \\
& \Delta \Phi^{\mathrm{eff}}=\Delta \Phi_{\text {aug }}\left(\boldsymbol{u}_{n+1}, \mathbf{q}_{n+1}, \lambda\right)
\end{aligned}
$$

Double-minimization process solved by Quantum annealing

- Transform the optimization problem into a series of quadratic ones
- E.g.J2-plasticity
- Minimization with respect to the internal variables (at constant displacement field)

$$
\begin{aligned}
& -\Delta \Phi_{\text {aug }}\left(\boldsymbol{u}_{n+1}, \Delta \gamma, \boldsymbol{\alpha}\right)=\int_{V} \Delta \mathcal{E}\left(\boldsymbol{u}_{n+1}, \Delta \gamma^{\prime}, \boldsymbol{\alpha}\right)+c^{h}\left(\boldsymbol{\alpha}^{T} \mathrm{M} \boldsymbol{\alpha}-\frac{3}{2}\right)^{2} d V-\Delta W^{\mathrm{ext}}\left(\boldsymbol{u}_{n+1}\right) \\
& \text { with } \Delta \mathcal{E}=\frac{1}{2}\left(\boldsymbol{\varepsilon}_{n+1}-\Delta \gamma \mathbf{N}-\boldsymbol{\varepsilon}_{n}^{\mathrm{pl}}\right): \mathbb{C}^{\mathrm{el}}:\left(\boldsymbol{\varepsilon}_{n+1}-\Delta \gamma \mathbf{N}-\boldsymbol{\varepsilon}_{n}^{\mathrm{pl}}\right)+\int_{\gamma_{n}}^{\gamma_{n+1}}\left(\sigma_{y}^{0}+R\left(\gamma^{\prime}\right)\right) d \gamma^{\prime} \\
& \\
& -\frac{1}{2}\left(\boldsymbol{\varepsilon}_{n}-\boldsymbol{\varepsilon}_{n}^{\mathrm{pl}}\right): \mathbb{C}^{\mathrm{el}}:\left(\boldsymbol{\varepsilon}_{n}-\boldsymbol{\varepsilon}_{n}^{\mathrm{pl}}\right)
\end{aligned} \quad \begin{aligned}
& \Delta \Phi_{\text {aug }, \boldsymbol{\alpha}}=\sum_{\Xi}\left(\Delta \varepsilon_{, \mathbf{N}}: \frac{\partial \mathbf{N}}{\partial \boldsymbol{\alpha}}+2 c^{h} \mathbf{M} \boldsymbol{\alpha}\left(\boldsymbol{\alpha}^{T} \mathrm{M} \boldsymbol{\alpha}-\frac{3}{2}\right)\right) \omega^{\Xi} \quad \& \Delta \Phi_{\text {aug }, \Delta \gamma}=\sum_{\Xi} \Delta \varepsilon_{, \Delta \gamma} \omega^{\Xi} \\
& \Delta \Phi_{\text {aug }, \boldsymbol{\alpha} \boldsymbol{\alpha}}, \Delta \Phi_{\text {aug }, \boldsymbol{\alpha} \Delta \gamma}, \Delta \Phi_{\text {aug }, \Delta \gamma \boldsymbol{\alpha}}, \Delta \Phi_{\text {aug }, \Delta \gamma \Delta \gamma}
\end{aligned}
$$

- Minimization with respect to \boldsymbol{u}_{n+1} (at constant internal variables)

$$
\begin{gathered}
-\Delta \Phi^{\mathrm{eff}}\left(\boldsymbol{u}_{n+1}\right)=\int_{V} \Delta \mathcal{E}^{\mathrm{eff}}\left(\boldsymbol{u}_{n+1}\right) d V-\Delta W^{\mathrm{ext}}\left(\boldsymbol{u}_{n+1}\right) \quad \text { with } \quad \boldsymbol{\sigma}=\frac{\partial \Delta \mathcal{E}^{\mathrm{eff}}}{\partial \boldsymbol{\varepsilon}} \\
\Delta \begin{array}{l}
\Delta \Phi_{, \mathbf{u}}^{\mathrm{eff}}\left(\boldsymbol{u}_{n+1}\right)=\sum_{\Xi} \mathbf{B}^{\mathrm{T}}(\Xi) \boldsymbol{\sigma}(\Xi) \omega^{\Xi}-\mathbf{f}^{\text {ext }} \\
\Delta \Phi_{, \mathbf{u u}}^{\mathrm{eff}}\left(\boldsymbol{u}_{n+1}\right)=\sum_{\Xi} \mathbf{B}^{\mathrm{T}}(\Xi) \mathbb{C}^{\mathrm{el}(\Xi)} \boldsymbol{B}(\Xi) \omega^{\Xi}-\mathbf{f}^{\mathrm{ext}}
\end{array}
\end{gathered}
$$

- Only assembly operations required \square Performed on classical computers

Double-minimization process solved by Quantum annealing

- Transform each continuous quadratic optimization problem into a binarized one
- Optimization problems to be solved
- $\mathbf{z}=\arg \min _{\mathbf{z}} \mathrm{QF}\left(\mathbf{z}^{\prime}, f_{\text {aug }, \mathbf{v}}, f_{\text {aug,vv }}\right)$
$\& \mathrm{QF}\left(\mathbf{z} ; f_{\text {aug, },}, f_{\text {aug,vv }}\right)=\mathbf{z}^{\mathrm{T}} f_{\text {aug, } \mathbf{v}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{z}^{\mathrm{T}} f_{\text {aug,vv }} \mathbf{z}$
- With bounds: $\mathbf{v}_{\text {min }} \leq \mathbf{v}+\mathbf{z} \leq \mathbf{v}_{\text {max }}$
- These are Ising Hamiltonians to be minimized, but not of the QUBO type
- QUBO
- $\mathbf{b}=\left[b_{i} \forall i \in V\right] \quad$ with $\quad b_{i} \in\{0,1\}$
- Eigen value $\mathcal{F}_{\text {QUBo }}=\mathbf{b}^{T} \mathbf{A b}$
- QUBO optimization $\mathbf{b}=\arg \min _{\mathbf{b}^{\prime}} \mathcal{F}_{\text {QUBO }}\left(\mathbf{b}^{\prime} ; \mathbf{A}\right)$ parameters
- Binary-decimal conversion of a scalar field
- Definition of a L-bit string under the form $\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{lll}b_{0} & \ldots & b_{L-1}\end{array}\right]^{\mathrm{T}}$ with $b_{i} \in\{0,1\}$
- Conversion $b_{L-1} \ldots b_{0} \equiv \sum_{j=0}^{L-1} b_{j} 2^{j}=\boldsymbol{\beta}^{\mathrm{T}} \mathbf{b}_{\boldsymbol{1}} \quad$ with $\quad \boldsymbol{\beta}=\left[\begin{array}{llll}2^{0} & 2^{1} & \ldots & 2^{L-1}\end{array}\right]^{\mathrm{T}}$
- Introduce the bounds $z \in\left[z^{\min }, z^{\max }\right]$

$$
z=z^{\min }+\epsilon_{1} \boldsymbol{\beta}^{T} \mathbf{b}_{\mathbf{1}} \quad \text { with the scaling } \quad \epsilon_{1}=\frac{z^{\max }-z^{\min }}{2^{L}-1}
$$

- One scalar is represented (in a discrete way) by L qubits
- Binary-decimal conversion of a vector field
- Vector of size N represented by $N \times L$ qubits
- $\mathbf{z}=\mathbf{z}^{\min }+\left[\epsilon_{i} \boldsymbol{\beta}^{T} \mathbf{b}_{i}\right.$ for $\left.i=0 . . N-1\right] \quad \square \mathbf{z}=\mathbf{a}+\mathbf{D}(\boldsymbol{\epsilon}) \mathbf{b}$

Double-minimization process solved by Quantum annealing

- Transform each continuous quadratic optimization problem into a binarized one
- Optimization problems to be solved
- $\mathbf{z}=\arg \min _{\mathbf{z}^{\prime}} \mathrm{QF}\left(\mathbf{z}^{\prime}, f_{\text {aug, }, v}, f_{\text {aug,vv }}\right) \quad \& \mathrm{QF}\left(\mathbf{z} ; f_{\text {aug }, v}, f_{\text {aug,vv }}\right)=\mathbf{z}^{\mathrm{T}} f_{\text {aug }, v}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{z}^{\mathrm{T}} f_{\text {aug,vv }} \mathbf{z}$
- With bounds: $\mathbf{v}_{\text {min }} \leq \mathbf{v}+\mathbf{z} \leq \mathbf{v}_{\text {max }}$
- Binarization of $z \in \mathbb{R}^{N}$ into $N \times L$ qubits
- $\mathbf{z}=\mathbf{a}+\mathbf{D}(\boldsymbol{\epsilon}) \mathbf{b}$ with the bounds defining $\mathbf{a}=\mathbf{z}^{\text {min }}$ \& the scales $\boldsymbol{\epsilon}=\frac{\mathbf{z}^{\max }-\mathbf{z}^{\text {min }}}{2^{L}-1}$

$$
\mathrm{QF}\left(\mathbf{z} ; f_{\text {aug,v }}, f_{\text {aug }, \mathbf{v v}}\right)=\underbrace{=\frac{1}{2} \mathbf{b}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} f_{\text {aug,vv }} \mathbf{D b}+\mathbf{b}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}}\left(f_{\text {aug }, \mathrm{v}}+f_{\text {aug }, v \mathrm{v}} \mathbf{a}\right)}_{\mathcal{F}_{\mathrm{QUBO}}(\mathbf{b} ; \mathbf{A})} \frac{\mathbf{1}}{\mathbf{2}} \mathbf{a}^{\mathrm{T}}\left(f_{\text {aug }, \mathbf{v v}} \mathbf{a}+f_{\text {aug,v }}\right)
$$

- Minimization
- Bound $\mathbf{a}=\mathbf{z}^{\text {min }}$ and
- Scale $\boldsymbol{\epsilon}=\frac{z^{\text {max }}-z^{\text {min }}}{2^{L}-1}$
- Updated when building the QUBO

Double-minimization process solved by Quantum annealing

- Application to the double-minimization problem

Loop until convergence

Loop on $\quad u_{n+1} \leftarrow u_{n+1}+\Delta \mathbf{u}$

$$
\Delta u=\arg \min _{\Delta \mathrm{u}^{\prime} \text { admissible }} \Delta \mathbf{u}^{\prime \mathrm{T}} \Delta \Phi_{, \mathrm{u}}^{\text {eff }}+\frac{1}{2} \Delta \mathrm{u}^{\prime \mathrm{T}} \Delta \Phi_{, \mathrm{uu}}^{\text {eff }} \Delta \mathrm{u}^{\prime}
$$

Loop on $\quad \boldsymbol{q}_{n+1} \leftarrow \boldsymbol{q}_{n+1}+\Delta \mathbf{q}, \lambda \leftarrow \lambda+\Delta \lambda$

$$
\Delta \mathbf{q}, \Delta \lambda=\arg \min _{\left\{\Delta \mathbf{q}^{\prime}, \Delta \lambda \lambda\right\}}\left[\Delta \mathbf{q}^{\prime \mathrm{T}} \Delta \lambda^{\prime}\right] \Delta \Phi_{\text {aug },\{\mathrm{q} \lambda\}}+\frac{1}{2}\left[\Delta \mathbf{q}^{\prime \mathrm{T}} \Delta \lambda^{\prime}\right] \Delta \Phi_{\text {aug },\{\mathrm{q} \lambda\}\{\mathrm{q} \lambda\}}\left[\Delta \mathbf{q}^{\prime \mathrm{T}} \Delta \lambda^{\prime}\right]^{\mathrm{T}}
$$

$$
\Delta \Phi^{\text {eff }}=\Delta \Phi_{\text {aug }}\left(\boldsymbol{u}_{n+1}, \mathbf{q}_{n+1}, \lambda\right)
$$

Loop until convergence

Loop on $\quad u_{n+1} \leftarrow u_{n+1}+\Delta \mathrm{u}$
$f(\Delta u)=\Delta \mathbf{u}^{\mathrm{T}} \Delta \Phi_{, \mathrm{u}}^{\text {eff }}+\frac{1}{2} \Delta \mathbf{u}^{\mathrm{T}} \Delta \Phi_{, \mathrm{uu}}^{\text {eff }} \Delta \mathrm{u}$

Update $\mathrm{a}_{\mathrm{u}}, \mathbf{D}\left(\epsilon_{\mathrm{u}}\right)$
$\mathbf{b}_{u}=\arg \min _{\mathbf{b}_{u}^{\prime}}\left(\frac{1}{2} \mathbf{b}_{u}^{\prime}{ }^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \Delta \Phi_{\text {,uu }}^{\text {e.ff }} \mathbf{D} \mathbf{b}_{u}^{\prime}+\mathbf{b}_{\mathrm{u}}^{\prime}{ }^{\mathrm{T}} \mathbf{D}^{\mathrm{T}}\left(\Delta \phi_{, \mathrm{u}}^{\text {eff }}+\Delta \Phi_{\text {,uf }}^{\text {,eff }} \mathrm{a}_{\mathrm{u}}\right)\right)$
Loop on $\quad q_{n+1} \leftarrow \boldsymbol{q}_{n+1}+\Delta \mathrm{q}, \lambda \leftarrow \lambda+\Delta \lambda$
$f(\Delta \mathbf{q}, \Delta \lambda)=\left[\Delta \mathbf{q}^{\mathrm{T}} \Delta \lambda\right] \Delta \Phi_{\operatorname{aug},\{\mathrm{q} \lambda\}}+\frac{1}{2}\left[\Delta \mathbf{q}^{\mathrm{T}} \Delta \lambda\right] \Delta \Phi_{\operatorname{aug},\{\mathrm{q} \lambda\}\{\mathrm{q} \lambda\}}\left[\Delta \mathbf{q}^{\mathrm{T}} \Delta \lambda\right]^{\mathrm{T}}$ Update $\mathbf{a}_{\mathbf{q}}, \mathbf{D}\left(\epsilon_{\mathbf{q}}\right)$

$$
\begin{aligned}
& \text { Quantum } \quad \mathbf{b}_{\mathbf{q}}=\arg \min _{\mathbf{b}_{q}^{\prime}}\left(\frac{1}{2} \mathbf{b}_{\mathbf{q}}^{\prime \mathrm{T}} \mathbf{D}^{\mathrm{T}} \Delta \Phi_{\operatorname{aug}\{\mathrm{q} \lambda\}\{\mathrm{q} \lambda\}} \mathbf{D} \mathbf{b}_{\mathbf{q}}^{\prime}+\mathbf{b}_{\mathbf{q}}^{\prime}{ }^{\mathrm{T}} \mathbf{D}^{\mathrm{T}}\left(\Phi_{\operatorname{aug}\{q \lambda\}}+\Delta \Phi_{\operatorname{aug}\{q \lambda\}\{q \lambda\}} \mathbf{a}_{\mathbf{q}}\right)\right) \\
& \text { annealing }
\end{aligned}
$$

Application on 1D problems

- Uniaxial-strain test

- Elastic case
- Simple minimization conducted on the displacement field
- Consider different numbers N of elements
- Consider different binarizations L of each nodal displacement: $b_{L-1} \ldots b_{0} \equiv \sum_{j=0}^{L-1} b_{j} 2^{j}=\boldsymbol{\beta}^{\mathrm{T}} \mathbf{b}_{\boldsymbol{i}}$
- Resolution by quantum annealing on DWave Advantage QPU

Loop on $\quad u_{n+1} \leftarrow u_{n+1}+\Delta \mathbf{u}$
$f(\Delta u)=\Delta \mathbf{u}^{\mathrm{T}} \Delta \Phi_{, \mathrm{u}}^{\text {eff }}+\frac{1}{2} \Delta \mathbf{u}^{\mathrm{T}} \Delta \Phi_{, \mathrm{uu}}^{\text {eff }} \Delta \mathbf{u}$
Update $\mathrm{a}_{\mathrm{u}}, \mathbf{D}\left(\epsilon_{\mathrm{u}}\right)$
$\mathbf{b}^{\prime}{ }_{u} \mathbf{A} \mathbf{b}^{\prime}{ }_{u}$

Quantum
annealing $\begin{aligned} & \text { from dwave.system import DWaveSampler, EmbeddingComposite } \\ & \text { sampler = EmbeddingComposite(DWaveSampler()) } \\ & \text { sampleset = sampler.sample_qubo(A, num_reads=100, annealing_time=20) } \\ & \text { b= sampleset.first.sample }\end{aligned}$

Application on 1D problems

- Uniaxial-strain test
- Elastic case
- Error analysis for 5 realizations for different total numbers of qubits

With increasing total number $N \times L$ of qubits

- Discrepancy between realizations increases
- Required number of iterations increases

Application on 1D problems

- Uniaxial-strain test
Elastic case
- Effect of annealing time and number of reads

With increasing number of reads

- Required number of iterations decreases
- But not necessarily the quantum processing unit (QPU) access time

Application on 1D problems

- Uniaxial-strain test

- Elasto-plastic case
- Double minimization
- Binarizations L of each nodal displacement and internal variable: $b_{L-1} \ldots b_{0} \equiv \sum_{j=0}^{L-1} b_{j} 2^{j}=\boldsymbol{\beta}^{\mathrm{T}} \mathbf{b}_{\boldsymbol{i}}$
- Resolution by quantum annealing on DWave Advantage QPU

Loop until convergence

Loop on $\quad u_{n+1} \leftarrow u_{n+1}+\Delta \mathrm{u}$
$f(\Delta u)=\Delta \mathbf{u}^{\mathrm{T}} \Delta \Phi_{, \mathrm{u}}^{\text {eff }}+\frac{1}{2} \Delta \mathbf{u}^{\mathrm{T}} \Delta \Phi_{, \mathrm{uu}}^{\text {eff }} \Delta \mathbf{u}$

$$
\text { Update } \mathbf{a}_{\mathrm{u}}, \mathbf{D}\left(\epsilon_{\mathrm{u}}\right)
$$

$$
\mathbf{b}_{\mathbf{u}}=\arg \min _{\mathbf{b}_{u}^{\prime}}\left(\frac{1}{2} \mathbf{b}_{u}^{\prime}{ }^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \Delta \Phi_{, \text {euf }}^{\text {eut }} \mathbf{D} \mathbf{b}_{\mathbf{u}}^{\prime}+\mathbf{b}_{\mathbf{u}}^{\prime \mathrm{T}} \mathbf{D}^{\mathrm{T}}\left(\Delta \Phi_{, \mathrm{u}}^{\text {eff }}+\Delta \Phi_{, \text {,uff }}^{\text {eff }}\right)\right) \text { Local iterations }
$$

Loop on $\quad \boldsymbol{q}_{n+1} \leftarrow \boldsymbol{q}_{n+1}+\Delta \mathbf{q}, \lambda \leftarrow \lambda+\Delta \lambda$
$f(\Delta \mathbf{q}, \Delta \lambda)=\left[\Delta \mathbf{q}^{\mathrm{T}} \Delta \lambda\right] \Delta \Phi_{\operatorname{aug},\{\mathrm{q} \lambda\}}+\frac{1}{2}\left[\Delta \mathbf{q}^{\mathrm{T}} \Delta \lambda\right] \Delta \Phi_{\operatorname{aug},\{\mathrm{q} \lambda\}\{\mathrm{q} \lambda\}}\left[\Delta \mathbf{q}^{\mathrm{T}} \Delta \lambda\right]^{\mathrm{T}}$ Update $\mathrm{a}_{\mathrm{q}}, \mathrm{D}\left(\epsilon_{\mathrm{q}}\right)$

$$
\begin{aligned}
& \quad \mathbf{b}_{\mathbf{q}}=\arg \min _{\mathbf{b}_{\mathbf{q}}^{\prime}}\left(\frac{1}{2} \mathbf{b}_{\mathbf{q}}^{\prime \mathrm{T}} \mathbf{D}^{\mathrm{T}} \Delta \Phi_{\operatorname{aug},\{\mathrm{q} \lambda\}\{\mathrm{q} \lambda\}} \mathbf{D} \mathbf{b}_{\mathbf{q}}^{\prime}+\mathbf{b}_{\mathbf{q}}^{\prime \mathrm{T}} \mathbf{D}^{\mathrm{T}}\left(\Phi_{\operatorname{aug}\{\mathrm{q} \lambda\}}+\Delta \Phi_{\operatorname{aug},\{\mathrm{q} \lambda\}\{\mathrm{q} \lambda\}} \mathbf{a}_{\mathbf{q}}\right)\right) \\
& \Delta \Phi^{\text {eff }}=\Delta \Phi_{\text {aug }}\left(\boldsymbol{u}_{n+1}, \mathbf{q}_{n+1}, \lambda\right)
\end{aligned}
$$

Application on 1D problems

- Uniaxial-strain test
- Elasto-plastic case

- Effect of double-minimization \& local iterations

The number of local iterations decreases as the double minimisation iterations proceed

Application on 2D problems

- 2D-elasto-plastic case

- Double minimization - Resolution by quantum annealing on DWave Advantage QPU

$t=0.5 \mathrm{~s}$

Current solution

FEM

Application on 2D problems

- 2D-elasto-plastic case

- Effect of double-minimization \& local iterations

Conclusions

- Application of QC to FEM
- FE resolution needs to be rethought
- It will probably stay advantageous to solve part of the problem on classical computers
- Quantum annealing
- Real annealers can now be used
- Efficient to solve optimization problem.... FEM is actually a minimization problem
- Main current limitation is the number of connected qubits
- Publication
- V. D. Nguyen, F. Remacle, L. Noels. A quantum annealing-sequential quadratic programming assisted finite element simulation for non-linear and history-dependent mechanical problems. European Journal of Mechanics - A/solids 105, 105254 10.1016/j.euromechsol.2024.105254
- Data and code on
- Doi: 10.5281/zenodo. 10451584

