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• Introduction to non-linear multi-scale 

simulations

– FE multi-scale simulations

• Problems to be solved at two scales

• Require Newton-Raphson iterations at both 

scales 

– Use of surrogate models

• Train a meso-scale surrogate model (off-line)

– Requires extensive data

– Obtained from RVE simulations

• Use the trained surrogate model during 

analyses (on-line)

– Surrogate acts as a homogenised 

constitutive law

– Expected speed-up of several orders
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• Definition of the surrogate model

– Artificial neuron

• Non-linear function on 𝑛0 inputs 𝑢𝑘

• Requires evaluation of weights 𝑤𝑘

• Requires definition of activation function 𝑓

– Activation functions 𝑓

– Feed-Forward Neuron Network

• Simplest architecture

• Layers of neurons

– Input layer

– 𝑁 − 1 hidden layers 

– Output layers

• Mapping ℜ𝑛0 → ℜ𝑛𝑁: 𝒗 = 𝒈(𝒖)

 

AI-accelerated multi-scale simulations
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• Input / output definition

– Input: Strain (history): 𝐅M  

– Output: Stress (history): 𝐏M 

• Elasto-plastic material behaviour

– No bijective strain-stress relation

• Feed-forward NNW cannot be used

• History should be accounted for 

• Recurrent neural network

– Allows a history dependent relation 

• Input 𝒖𝒕

• Output 𝒗𝒕 = 𝒈 𝒖𝒕, 𝒉𝒕−𝟏 

• Internal variable 𝒉𝒕 = 𝒈 𝒖𝒕, 𝒉𝒕−𝟏 

– Weights matrices 𝐔, 𝐖, 𝐕

• Trained using sequences

– Inputs  𝒖𝒕−𝒏
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• Previous Work with recurrent neural network*

– 1 Gated Recurrent Unit (GRU)

• Reset gate: select past information 

 to be forgotten 

• Update gate: select past information 

 to be passed along 

– 2 feed-forward NNWs

• FWInput to treat inputs 𝒖𝒕

• FWOutput to produce outputs 𝒗𝒕

– Details

• 𝒖𝒕 : homogenised GL strain 𝐄M (symmetric)

• 𝒗𝒕 : homogenised 2nd PK stress  𝐒M (symmetric)

• 100 hidden variables 𝒉𝒕

• FWInput one hidden layer of 60 neurons

• FWOutput two hidden layers of 100 neurons
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Recurrent Neural Network-accelerated multi-scale simulations

*L. Wu, V. D. Nguyen, N. G. Kilingar, and L. Noels. "A recurrent neural network-accelerated multi-scale model for elasto-plastic 

heterogeneous materials subjected to random cyclic and non-proportional loading paths." Computer Methods in Applied 

Mechanics and Engineering, 369 (01 September 2020): 113234. doi:10.1016/j.cma.2020.113234
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• Previous Work with recurrent neural network 

– Good accuracy on testing data

– Sequence increment 𝚫𝒖𝒕 = Δ𝐄M of comparable order of magnitude between training and 

testing data            

• What if online simulations use smaller increments?

– Oscillations / loss of accuracy can appear with GRU, LSTM* (both developed for Nature 

Language Processing)

– One needs to enforce self-consistency*

– Need to replace the GRU/LSTM unit

Recurrent Neural Network-accelerated multi-scale simulations

*Colin Bonatti, Dirk Mohr, On the importance of self-consistency in recurrent neural network models representing elasto-plastic 

solids, Journal of the Mechanics and Physics of Solids, 158, 2022, 104697, https://doi.org/10.1016/j.jmps.2021.104697.
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• Self-Consistent Linearized Minimal State Cell (SC-LMSC)*

– Ingredients:

• Incremental form of input variables converted to its direction 
∆𝒖𝑡

∆𝒖𝑡
 and norm ∆𝒖𝑡  *

• Activations layers fed by direction 
∆𝒖𝑡

∆𝒖𝑡
 and previous hidden variable direction 𝒉𝑡 

• Double exponential activation function on output 𝑶𝑡 of activation layers: 

–                                                 and ratio

– Hidden variables 𝒉𝒕  are an element-wise interpolation (ratio ෠𝒇𝒕 dependent on the norm of 

∆𝒖𝑡 ) between previous value 𝒉𝒕−𝟏 and ෡𝒉𝒕 

Self-Consistent Recurrent Neural Network

*Colin Bonatti, Dirk Mohr, On the importance of self-consistency in recurrent neural network models representing elasto-plastic 

solids, Journal of the Mechanics and Physics of Solids, 158, 2022, 104697, https://doi.org/10.1016/j.jmps.2021.104697.
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• Self-Consistency reinforcement through ad hoc recurrent unit/cell

– SC-LMSC originally to surrogate a constitutive model

– Can we develop easy and fast to train surrogate for RVE responses?

Self-Consistent Recurrent Neural Network
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• New cell 1: New simplified recurrent unit: Simplified Minimal Recurrent Unit

– The total form of input variable as well as increment norm  ∆𝒖𝑡  (like SC-LMCS) 

– Self-consistency weakly enforced 

• Using norm of ∆𝒖𝑡  and 

• Data augmentation during training (i.e. subdividing randomly increments in training data)

Self-Consistent Recurrent Neural Network
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• New cell 2: Self-Consistent Minimal Recurrent Unit with Total form of inputs

– The total form of input variable as well as increment norm  ∆𝒖𝑡  (like SC-LMCS) 

• Use as input 𝒖𝑡−1+ 𝛼𝑡  ∆𝒖𝑡   (n0 is a learnable parameter)

• acf is the same activation function as in  Fwinput

– Self-consistency enforced 

• Double exponential function                                             & ratio

• Hidden variables 𝒉𝒕 is an element-wise interpolation (ratio ෠𝒇𝒕 dependent on the norm of ∆𝒖𝑡 ) 

between previous value 𝒉𝒕−𝟏 and ෡𝒉𝒕 

Self-Consistent Recurrent Neural Network
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• New cell 3: Self-Consistent Minimal Recurrent Unit with Incremental form of inputs

– The incremental form of input variable as well as increment norm  ∆𝒖𝑡  (like LMCS) 

• Use as input ∆𝒖𝑡/ ∆𝒖𝑡  and ∆𝒖𝑡

• Non-linear transition blocks: 

– Self-consistency enforced 

• Double exponential function                                             & ratio

• Hidden variables 𝒉𝒕 is an element-wise interpolation (ratio ෠𝒇𝒕) between previous value 𝒉𝒕−𝟏 and ෡𝒉𝒕 

Self-Consistent Recurrent Neural Network
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• Training strategy

– Elasto-plastic composite RVE

– Training data

• Should cover full range of possible loading histories

• Use random walking strategy

• Completed with random cyclic loading

• Bounded by a hypercube of 12% deformation

Training of Recurrent Neural Network
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• Training stage

– Learnable parameters for 120 hidden variables 

Training of Recurrent Neural Network

Recurrent 

unit

SMRU SC-MRU-T SC-MRU-I

Transition 

block

- - Q Fw-Fw Q-Fw

Learnable 

parameters

44 284 58 925 59 644 59 284 74 164

TestingTraining
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• SC-MRU-T: Testing data with inserted extra-points

Testing of Recurrent Neural Network

Maximum inserted data points is 5, 20, 60 in each loading step 
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• FE2 vs. FE-RNN: Change in the increment size (between points A&B)

Multi-scale simulations with Recurrent Neural Network
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• FE2 vs. FE-RNN: Cost comparison

Multi-scale simulations with Recurrent Neural Network
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• FE2 vs. FE-RNN: Fields distribution

Multi-scale simulations with Recurrent Neural Network
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• FE2 vs. FE-RNN: Fields distribution

Multi-scale simulations with Recurrent Neural Network
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