Development of a multi-domain hybridized discontinuous Galerkin solver

Author: Corthouts Nicolas

Promoters: Hillewaert Koen, May Georg

What is an inductively coupled plasma (ICP)?

Torch

Test chamber

The most powerful ICP facility in the world, the Plasmatron, is located at VKI.

N.B. The governing equations are Maxwell + Navier-Stokes.

ICP: segregated approach of previous solvers

Segregated approach: Maxwell is solved, then used as a known field for N-S. Then, the solution for N-S is used as a known field for Maxwell.

Segregated approach: pros and cons

Pros

Cons

- It works.
- Allows to freeze the electric field in unsteady simulations.
- Convergence can be hard to achieve.

A multi-domain solver

Two approaches

- MONOLITHIC: system solved as a whole.
- COUPLED: two solvers that exchange interface data.

The monolithic approach is chosen for its stability features.

The numerical method: HDG

This method requires solving 2 types of systems:

- 1. Local systems solved directly & in parallel.
- 2. **A global system** smaller than the global DG system. Can also be run in parallel.

The numerical method: HDG

The code (**Unified Framework**) used has been developed by the group of Prof. May.

HDG: Mathematical insights

$$\begin{pmatrix} A & B & R \\ C & D & S \\ L & M & N \end{pmatrix} \begin{pmatrix} \delta Q \\ \delta W \\ \delta \Lambda \end{pmatrix} = \begin{pmatrix} F \\ G \\ H \end{pmatrix}$$

Local system equation

Global system equation

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \delta Q \\ \delta W \end{pmatrix} = \begin{pmatrix} F \\ G \end{pmatrix} - \begin{pmatrix} R \\ S \end{pmatrix} \delta \Lambda \qquad \begin{pmatrix} L & M \end{pmatrix} \begin{pmatrix} \delta Q \\ \delta W \end{pmatrix} + N \delta \Lambda = H \quad (1)$$

HDG: Conservativity

Conservativity of the normal numerical flux

$$\int_{\Gamma} [[\hat{f}(\lambda, w, q)]] \mu dS = 0.$$

Rem: one equation for equation per λ .

Design constraints of multi-domain HDG

Conservativity of numerical flux

$$\int_{\Gamma} [[\hat{f}(\lambda, w, q)]] \mu dS = 0.$$

Local system equation

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \delta Q \\ \delta W \end{pmatrix} = \begin{pmatrix} F \\ G \end{pmatrix} - \begin{pmatrix} R \\ S \end{pmatrix} \delta \Lambda$$

Representation of discontinuous solution across interfaces

Multi-domain HDG: conservativity

New conservativity equation

$$\int_{\Gamma} \left[\hat{f}(\lambda_1, w_1, q_1) - \hat{f}(\lambda_2, w_2, q_2) \right] dS = 0$$

Not enough! There are twice as many λ , need additional equations.

Multi-domain HDG: kinematic condition

Kinematic conditions

$$\int_{\Gamma} \mathcal{F}(\lambda_1,\lambda_2) dS = 0$$

 λ_1 and λ_2 are usually correlated.

Now, we have the right amount of equations.

(A_1	B_1	R_1	0	0	0	0	0	0		$\left(\delta Q_1 \right)$		(F_1)
	C_1	D_1	S_1	0	0	0	0	0	0		δW_1		G ₁
	L_1	M_1	N_1	L ₁₂	M ₁₂	N ₁₂	L ₁₃	M ₁₃	N ₁₃		$\delta \Lambda_1$		H_1
	0	0	0	A ₂	B ₂	R_2	0	0	0		δQ_2		F_2
	0	0	0	C ₂	D_2	S_2	0	0	0		δW_2	=	G ₂
	L_{21}	M_{21}	N_{21}	L ₂	M_2	N_2	L ₂₃	M_{23}	N ₂₃		$\delta \Lambda_2$		H_2
	0	0	0	0	0	0	A ₃	B ₃	R ₃		δQ_3		F_3
	0	0	0	0	0	0	<i>C</i> ₃	D_3	S_3		δW_3		G ₃
ĺ	L_{31}	M ₃₁	N ₃₁	L ₃₂	M ₃₂	N ₃₂	L ₃	M_3	N3 .	/	$\delta \Lambda_3$ /		\ H ₃ /

The coupling terms only affect the $\delta \Lambda$ lines, so same solution strategy as before!

Continuous field with same equations on both sides

Continuous field with same equations on both sides

We enforce $\lambda_1 = \lambda_2$

Continuous field with same equations on both sides

We enforce stringly $\lambda_1 = \lambda_2$

Conservativity of the normal numerical flux retrieved

$$\int_{\Gamma} [[\hat{f}(\lambda, w, q)]] \mu dS = 0.$$

Original scheme retrieved!

This is the case for ICP!

Boundary condition imposition

The hybrid unknowns are destroyed. A value is imposed like a classic BC.

Boundary condition imposition

The hybrid unknowns are destroyed. A value is imposed like a classic BC.

Validation: Conjugate heat transfer

At the solid/fluid interface $\label{eq:Tf} \mathcal{T}^{\rm f} = \mathcal{T}^{\rm s}$

$$k_{\rm s} \nabla T^f = k_f \nabla T^{\rm s}$$

There exists analytical solutions for $M \ll 1$, $\Delta T \ll 1$.

Validation: Conjugate heat transfer

- A nice tool has been implemented in the HDG code.
- Possibility of extending to various physical situation.
- Need to be properly analysed.
- Opens the gate to ICP in the HDG code.