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What is an inductively coupled plasma (ICP)?
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The most powerful ICP facility in the world, the Plasmatron, is
located at VKI.

N.B. The governing equations are Maxwell + Navier-Stokes.



ICP: segregated approach of previous solvers

Segregated approach: Maxwell is solved, then used as a known
field for N-S. Then, the solution for N-S is used as a known field
for Maxwell.




Segregated approach: pros and cons
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Pros cons
- It works. - Convergence can be hard to
- Allows to freeze the electric achieve.

field in unsteady simulations.



A multi-domain solver

i Maxwell 3
3 i Two approaches
- MONOLITHIC: system
.| Maxwell+NS 3 solved as a whole.
] 11 - COUPLED: two solvers
;::::::::::::::::::::::‘ that exchange
interface data.

The monolithic approach is chosen for its stability features.




The numerical method: HDG

Classic DG. HDG: traces. HDG: elements as
transmitters.

This method requires solving 2 types of systems:

1. Local systems solved directly & in parallel.

2. A global system smaller than the global DG system. Can also
be run in parallel.




The numerical method: HDG

Classic DG. HDG: traces. HDG: elements as
transmitters.

The code (Unified Framework) used has been developed by the
group of Prof. May.




HDG: Mathematical insights
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HDG: Conservativity
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Conservativity of the normal numerical flux
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Rem: one equation for equation per A.




Design constraints of multi-domain HDG

Conservativity of numerical flux
1w, a)ucs =o.
Local system equation
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= - A

Representation of discontinuous solution across interfaces



Multi-domain HDG: conservativity
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New conservativity equation
/ {JAC(/\MWMCM) —JAC(AZ,WQ,QQ) ds=0
.

Not enough! There are twice as many )\, need additional equations.



Multi-domain HDG: kinematic condition
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Kinematic conditions

/F(Aq,Az)dS =0
.

A and A, are usually correlated.

Now, we have the right amount of equations.



Multi-domain HDG: Solution strategy
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The coupling terms only affect the JA lines, so same solution

strategy as before!
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Continuous field with same equations on both sides
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Continuous field with same equations on both sides
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We enforce \q = )\,



Continuous field with same equations on both sides
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We enforce stringly A\ = X\,

Conservativity of the normal numerical flux retrieved

/r [Fh w, @) = 0.

Original scheme retrieved!

This is the case for ICP!



Boundary condition imposition
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The hybrid unknowns are destroyed. A value is imposed like a classic
BC.



Boundary condition imposition
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The hybrid unknowns are destroyed. A value is imposed like a classic
BC.



Validation: Conjugate heat transfer
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There exists analytical solutions for M <« 1, AT < 1.
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Validation: Conjugate heat transfer

Numerical Solution
=== Analytical Solution
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Conclusions and future work

- A nice tool has been implemented in the HDG code.
- Possibility of extending to various physical situation.
- Need to be properly analysed.

- Opens the gate to ICP in the HDG code.



